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A BIFURCATION –TYPE THEOREM FOR THE POSITIVE
SOLUTIONS OF A NONLINEAR NEUMANN PROBLEM

WITH CONCAVE AND CONVEX TERMS

D. KRAVVARITIS - N. S. PAPAGEORGIOU - G. SMYRLIS

We consider a nonlinear elliptic Neumann problem driven by the p-
Laplacian with a reaction that involves the combined effects of a “con-
cave” and of a “convex”terms. The convex term (p-superlinear term) need
not satisfy the Ambrosetti-Rabinowitz condition. Employing variational
methods based on the critical point theory together with truncation tech-
niques, we prove a bifurcation type theorem for the equation.

1. Introduction
Let Ω⊆ RN (N ≥ 1) be a bounded domain with a C2-boundary ∂Ω.

We consider the following nonlinear Neumann problem:

−∆pu(z)+β (z)|u(z)|p−2u(z) = λ |u(z)|q−2u(z)+ f (z,u(z))

a.e. in Ω, u > 0, (1)

∂u
∂n

= 0 on ∂Ω,

β ∈ L∞(Ω)+ \{0}, λ > 0, 1 < q < p < ∞.
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Here ∆pu = div (||Du||p−2Du).
Note that the term x→ λ |x|q−2x is (p−1)–sublinear near +∞ (“concave”

term).
The Carathéodory function f (z,x), z ∈Ω, x ∈ R is supposed to be (p−1)–

superlinear near +∞ ( “convex” perturbation).
The aim of this work is to establish a bifurcation-type result for the positive

smooth solutions of (1), with respect to the parameter λ > 0.

Particular case. The right hand side term of (1) has the form

x→ λ |x|q−2x+ |x|r−2x,

with 1 < q < p < r < p∗ (= the critical Sobolev exponent). This particular case
is what we mostly encounter in the literature and only in the context of Dirichlet
problems. In this direction we mention the semilinear (i.e., p = 2) work of
Ambrosetti-Brezis-Cerami [1], which was the first to consider problems with
concave and convex terms. The above work was extended to nonlinear problems
driven by the p-Laplacian, by Garcia Azorero-Manfredi-Peral Alonso [4] and by
Guo-Zhang [5], for p≥ 2.

For Dirichlet problems driven by the p-Laplacian and with reactions of more
general form we refer to the following works:

• Boccardo-Escobedo-Peral [3], where the reaction is λg(x)+ xr−1, x ≥
0, g : R+→ R continuous with (q−1)-polynomial growth with 1 < q <
p < r < p∗ and the function x→ λg(x)+ xr−1 is nondecreasing on R+.
In their work, they prove the existence of only one positive solution for
λ > 0 suitably small.

• Hu-Papageorgiou [6], where the “convex” ((p− 1)–superlinear) term is
a more general Caratheodory function f (z,x) satisfying the well-known
Ambrosetti-Rabinowitz (AR) condition.

To the best of our knowledge, no bifurcation-type results exist for the Neu-
mann problem. We mention only the work of Wu-Chen [11], where the reaction
is of the form λ f (z,x), λ > 0 and f (·, ·) is (p− 1)–sublinear near infinity
in x ∈ R. In [11], the authors also impose the extra restrictive conditions that
essinf

Ω
β > 0 and that N < p. They produce three solutions for all λ > 0 in an

open interval. The obtained solutions are not positive.

2. The hypotheses on the perturbation.

(H) : The Carathéodory function f (z,x), z ∈ Ω, x ∈ R has (r− 1)–polynomial
growth with respect to x, where p < r < p∗. Moreover
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(i) lim
x→0+

f (z,x)
xp−1 = 0 uniformly for a.a. z ∈Ω

(ii) there exists δ0 > 0 such that f (z,x)≥ 0 for a.a. z ∈Ω, all x ∈ [0, δ0]

and ∀θ > 0, ∃ ξ̂θ > 0 such that for a.a. z ∈Ω,

x→ f (z,x)+ ξ̂θ xp−1 is increasing on [0,θ ].

(iii) if F(z,x) =
∫ x

0
f (z,s)ds, then

lim
x→+∞

F(z,x)
xp =+∞, η0 ≤ liminf

x→+∞

f (z,x)x− pF(z,x)
xτ

,

uniformly for a.a. z ∈Ω, where

τ ∈
(
(r− p)max

{
1,

N
p

}
, p∗

)
, q < τ, η0 > 0.

Remark 2.1. In order to express the “ (p−1)–superlinearity” of f (z,x) with re-
spect to x near +∞, instead of the usual in such cases AR-condition, we employ
the much weaker conditions H(iii).

3. Some function spaces

In the study of our problem we will use the following two function spaces

C1
n(Ω) = {u ∈C1(Ω) :

∂u
∂n

= 0 on ∂Ω}, W 1,p
n (Ω) =C1

n(Ω)
||·||

,

where || · || denotes the Sobolev norm of W 1,p(Ω).
Note that C1

n(Ω) is an ordered Banach space with positive cone

C+ = {u ∈C1
n(Ω) : u(z)≥ 0 for all z ∈Ω}.

This cone has a nonempty interior given by

int C+ = {u ∈C+ : u(z)> 0 for all z ∈Ω}.
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4. The Euler functional

Let ϕλ : W 1,p
n (Ω)→ R be the Euler functional for problem (1) defined by

ϕλ (u) =
1
p
||Du||pp +

1
p

∫
Ω

β |u|pdz − λ

q
||u+||qq −

∫
Ω

F(z,u)dz,

where F(z,x) =
∫ x

0
f (z,s)ds.

Proposition 4.1. Under hypotheses (H), ϕλ ∈C1
(

W 1,p
n (Ω)

)
and each nontriv-

ial critical point of ϕλ is a positive smooth solution of (1).

The proof is mainly based on the nonlinear regularity theory and also on the
nonlinear maximum principle combined with hypothesis H(ii).

Proposition 4.2. Under hypotheses (H), ϕλ satisfies the Cerami condition (C–
condition): “ Every sequence {xn}n≥1 ⊆ X =W 1,p

n (Ω) such that

sup
n
|ϕλ (xn)|< ∞, (1+ ||xn||)ϕ ′λ (xn)→ 0 in X∗ as n→ ∞,

has a strongly convergent subsequence. ”

Some ideas of the proof may be found in [9, proof of Proposition 1]. We
note that hypothesis H(iii) is crucially used.

5. The bifurcation -type result

Theorem 5.1. If hypotheses (H) hold and β ∈ L∞
+(Ω) \ {0}, then there exists

λ ∗ > 0 such that

(a) for λ ∈ (0, λ ∗) problem (1) has at least two positive smooth solutions

(b) for λ = λ ∗ problem (1) has at least one positive smooth solution

(c) for λ > λ ∗ problem (1) has no positive solution

The proof of Theorem 1 may be divided into two parts:

Part I. We prove that the set

S = {λ > 0 : problem (1) has a positive smooth λ -solution}

is nonempty and bounded from above.

Part II. We prove that λ ∗ = supS has the desired properties.

Sketch of the proof of Part I.
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Proposition 5.2. There exists λ̂ > 0 such that for every λ ∈ (0, λ̂ ) we can find
ρλ > 0 for which we have

inf [ ϕλ (u) : ||u||= ρλ ] = ηλ > 0.

For the proof of Prop. 5.2 one needs to work in a similar way as in the proof
of Lemma 2.1 (i) of [7], taking into account hypothesis H(i) combined with the
fact that q < p.

Proposition 5.3. We have

ϕλ (tu)→−∞ as t→+∞,

for each u ∈C+ \{0} with ||u||p = 1.

The proof of Prop. 5.3 is based on the p-superlinearity of F(z,x) with re-
spect to x near +∞ (H(iii)) and also on the fact that q < p.

Now Prop. 4.1, 4.2, 5.2, 5.3 via Mountain Pass Theorem yield

Proposition 5.4. If λ̂ is as postulated in Prop. 5.2, then (0, λ̂ ) ⊆ S . Hence,
S 6=∅.

To proceed, we prove that S is bounded from above. We begin with a com-
parison result stated below:

Lemma 5.5. Let β ∈ L∞(Ω)+ \{0} ,u, ũ ∈ int C+ and R > 0 such that for a.a.
z ∈Ω,

−∆pu(z)+β (z)u(z)p−1 +R≤−∆pũ(z)+β (z)ũ(z)p−1.

Then u < ũ on Ω.

The proof of the above lemma is mainly based on the monotonicity prop-
erties of the operator T : X → X∗ (X = W 1,p

n (Ω)) induced by the differential
operator u→−∆pu+β (·)|u|p−2u.

Proposition 5.6. The set S is bounded from above.

Proof. The (p−1)–superlinearity of f (z,x) with respect to x near +∞ combined
with hypothesis H(ii) enables us to choose λ > 0 large such that

λxq−1 + f (z,x)≥ ||β ||∞xp−1 for a.a. z ∈Ω, all x≥ 0.

Claim. λ is an upper bound of S.
Indeed, suppose that for some λ > λ our problem has a λ -solution u ∈ int

C+. Let m = min
Ω

u > 0. Then for a.a. z ∈Ω,

−∆pu(z)+β (z)u(z)p−1 ≥ ||β ||∞u(z)p−1 +(λ −λ )u(z)q−1

≥−∆pm+β (z)mp−1 +(λ −λ )mq−1

which implies (see Lemma 5.5) that u > m on Ω (false!).
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Sketch of the proof of Part II.

Lemma 5.7. Let 0 < λ < λ̃ and ũ ∈ int C+ be a λ̃ -solution. Then there exists
a λ -solution u0 ∈ int C+ such that 0 < u0 < ũ on Ω, ϕλ (u0)< 0.

Proof. We consider the following truncation of the reaction:

gλ (z,x) =


0, if x≤ 0

λxq−1 + f (z,x), if 0 < x < ũ(z)

λ ũ(z)q−1 + f (z, ũ(z)), if ũ(z)≤ x.

We set Gλ (z,x) =
∫ x

0 gλ (z,s)ds and consider the C1-functional

ψλ (u) =
1
p
||Du||pp +

1
p

∫
Ω

β |u|pdz −
∫

Ω

Gλ (z,u)dz.

By using suitable test functions we may show that each critical point of ψλ

lies in the interval [0, ũ] and it is also a critical point of the Euler functional ϕλ .
Moreover, ψλ is coercive and weakly lower semicontinuous.
Employing hypothesis H(ii) in conjunction with Lemma 5.5 and with Propo-

sition 4.1, we may show that each global minimizer u0 of ψλ satisfies the con-
clusions of Lemma 5.7.

To proceed, set λ ∗ = supS.

Proposition 5.8. If λ ∈ (0,λ ∗), then problem (1) has least two smooth positive
solutions

u0 , û ∈ int C+ , u0 6= û, u0 ≤ û, ϕλ (u0)< 0.

Proof. Let λ ∈ (0,λ ∗). Choose λ̃ ∈ (λ , λ ∗)∩S and a λ̃ -solution ũ ∈ int C+ .
By view of Lemma 5.7, we may find a λ -solution u0 ∈ int C+ such that

0 < u0 < ũ, ϕλ (u0)< 0.

Next, consider the following truncation of the reaction:

f̂λ (z,x) =


λu0(z)q−1 + f (z,u0(z)), if x≤ u0(z)

λxq−1 + f (z,x), if u0(z)< x.

Let F̂λ (z,x) =
∫ x

0
f̂λ (z,s)ds and consider the C1-functional

ϕ̂λ (u) =
1
p
||Du||pp +

1
p

∫
Ω

β |u|pdz −
∫

Ω

F̂λ (z,u)dz.
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By using suitable test functions we may show that for each critical point w
of ϕ̂λ , we have u0 ≤ w and that w is also a critical point of the Euler functional
ϕλ .

Evidently, ϕ̂λ |[0, ũ] is coercive and weakly lower semicontinuous, so, it
possesses a minimizer ũ0 ∈ [0, ũ]. It is known that in general, ũ0 lies in the
normal cone of [ 0, ũ ] at ũ0 , i.e.,

0≤
∫

Ω

||Dũ0||p−2(Dũ0, Dy−Dũ0)RN dz+
∫

Ω

β ũp−1
0 (y− ũ0 )

−
∫

Ω

f̂λ (z, ũ0 )(y− ũ0 )dz, (2)

for all y ∈ [0, ũ].
Let h ∈W 1,p

n (Ω) and δ > 0 and define

y(z) =


0, if z ∈ { ũ0 +δh≤ 0 }

ũ0(z)+δh(z), if z ∈ { 0 < ũ0 +δh < ũ }
ũ(z), if z ∈ { ũ≤ ũ0 +δh }.

Evidently y ∈ [0, ũ], so we may use it as a test function in (2). Arguing
in a similar way as in [10, proof of Proposition 9] and then taking the limit
as δ → 0+, we may show that ϕ ′

λ
(ũ0) = 0. Hence, ũ0 is a positive smooth

λ -solution to our problem.
If ũ0 6= u0, we are done. Suppose that ũ0 = u0. Since u0 ∈ (0, ũ), we in-

fer that u0 is a local C1
n(Ω)−minimizer of ϕ̂λ and thus, a local W 1,p

n (Ω)−
minimizer of ϕ̂λ (see for example [2, Proposition 3.1]). Without loss of gener-
ality, we may assume that u0 is an isolated critical point and local minimizer of
the functional ϕ̂λ .Then there exists r > 0 such that

ϕ̂λ (u0)< inf[ ϕ̂λ (u) : ||u−u0||= r ] (see [8, proof of Prop. 6]).

Moreover, we may show that ϕ̂λ satisfies the conclusions of Propositions 4.2
and 5.3. Now Mountain Pass Theorem gives rise to some critical point û of ϕ̂λ

such that û 6= u0 . It follows that u0 ≤ û and that û is a nontrivial critical point
of ϕλ . Thus, û is a second positive smooth λ -solution to our problem.

Regarding the extremal case λ = λ ∗, we show that problem (1) has at least
one smooth positive solution.

We begin with an interesting lemma:
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Lemma 5.9. Let S′ ⊆ S be nonempty and bounded from below with infS′ > 0
and B⊆ int C+ be || · ||∞ -bounded. Then there exists w ∈ int C+ such that for
each λ ∈ S′ and for each λ -solution u ∈ B, we have w≤ u.

Proof. Set λ0 = infS′, θ = sup{||u|| : u ∈ B} and let ξ̂θ > 0 be as postulated
in hypothesis H(ii). Choose ρ ∈ (0,λ0 ) and consider the following Neumann
problem: −∆pw(z)+(β (z)+ ξ̂θ )w(z)p−1 = ρw(z)q−1 in Ω,

∂w
∂n

= 0 on a.e. in ∂Ω, w > 0.
(3)

It turns out that (3) has at least one solution w ∈ int C+ . Indeed, we may
show that the corresponding Euler functional is coercive (recall that q < p) and
also that all of its nontrivial critical points lie in int C+ (see Prop. 4.1).

Now choose λ ∈ S′ and let u ∈ B be a λ -solution. Set

t = min
{

u(z)
w(z)

: z ∈Ω

}
> 0.

It suffices to show that t ≥ 1. Suppose on the contrary that 0 < t < 1. Then for
a.a. z ∈Ω, we have

−∆pu(z)+(β (z)+ ξ̂θ )u(z)p−1 ≥ λu(z)q−1 ≥ λ tq−1w(z)q−1

≥ λ0t p−1w(z)q−1 (recall: 0 < t < 1, q < p)

= ρt p−1w(z)q−1 +(λ0−ρ)t p−1w(z)q−1

≥−∆p(tw)(z)+(β (z)+ ξ̂θ )(tw(z))p−1 +R,

where R = (λ0−ρ)t p−1
(

min
Ω

w
)q−1

> 0.

Then Lemma 5.5 implies that u(z)> tw(z), z∈Ω, which is a contradiction.

Proposition 5.10. For λ = λ ∗, problem (1) has at least one smooth positive
solution.

Proof. Choose a nondecreasing sequence (λn) ⊆ S such that λn ↑ λ ∗. By view
of Prop.5.8, we may find {un}n≥1 ⊆ int C+ such that

ϕ
′
λn
(un) = 0, ϕλn(un)< 0, for all n≥ 1.
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Arguing in a similar way as in [9, proof of Proposition 1], we may show (by
passing to subsequences) that

un→ u∗, strongly in W 1,p
n (Ω).

Then nonlinear regularity theory guarantees that sup
n
||un||∞ < ∞ and that

u∗ is a smooth λ ∗-solution.
Now Lemma 5.9 asserts that for some w ∈ int C+, we have w≤ un , n≥ 1.

Thus, w≤ u∗, so u∗ ∈ int C+.
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