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THREE NONTRIVIAL SOLUTIONS FOR NEUMANN
PROBLEMS RESONANT AT ANY POSITIVE EIGENVALUE

SOPHIA TH. KYRITSI - NIKOLAOS S. PAPAGEORGIOU

We consider a semilinear Neumann problem with a parametric reaction
which has a concave term and a perturbation which at±∞ can be resonant
with respect to any positive eigenvalue. Using variational methods based
on the critical point theory and Morse theory, we show that there exists a
critical parameter value λ ∗>0 such that if λ∈(0,λ ∗), then the problem
has at least three nontrivial smooth solutions.

1. Introduction

Let Ω⊆ RN be a bounded domain with a C2-boundary. We study the following
nonlinear Neumann problem:

−4u(z) = λ |u(z)|q−2u(z)+ f
(
z,u(z)

)
in Ω,

∂u
∂n

= 0 on ∂Ω, λ >0,1<q<2.
(Pλ )

We are looking for multiple nontrivial smooth solutions when the equation
is resonant with respect to any positive (i.e., nonprincipal) eigenvalue of the
negative Neumann Laplacian.
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In the past resonant Neumann problems were investigated by Gupta [5],
Iannacci-Nkashama [6, 7], Kuo [9], Mawhin [13], Mawhin-Ward-Willem [14],
Rabinowitz [20], Tang [21] and Tang-Wu [22]. Gupta [5] and Iannacci-Nka-
shama [6, 7] use a sign condition on the reaction term. Kuo [9] uses a kind
of Landesman-Lazer type condition, while Mawhin [13] and Mawhin-Ward-
Willem [14] use a monotonicity condition. Rabinowitz [20] uses a periodicity
condition. Finally, Tang [21] and Tang-Wu [22] employ an anticoercivity con-
dition on F(z, ·) (recall F(z,x) =

∫ x
0 f (z,s)ds). With the exception of Iannacci-

Nkashama [6] and Tang [21], all the other works mentioned above, consider
problems resonant with respect to the principal eigenvalue λ̂0 = 0. Moreover,
only Tang [21] proves multiplicity results. The others have existence theorems.
In fact, Tang [21] considers equations resonant with respect to λ̂0 = 0 and also
equations resonant with respect to λ̂k >0, k ≥ 1. Under different hypotheses in
the two cases proves the existence of two nontrivial solutions using variational
methods (the local linking theorem and the reduction technique). In his problem
the reaction is z-independent, i.e., f (z,x) = f (x) and C1.

In this paper we use critical point theory and Morse theory to prove a mul-
tiplicity theorem establishing the existence of at least three nontrivial smooth
solutions for equations which can be resonant at ±∞ with respect to any posi-
tive eigenvalue λ̂k>0. We point out that the term λ |x|q−2x, 1<q<2 is concave
(sublinear) term. So, our reaction (the right-hand side of the equation) is not C1

even if f (z, ·) is. This is in contrast to Tang [21]. None of the aforementioned
works allows the presence of concave terms. Equations with such terms were
investigated in the context of Dirichlet problems. In this direction, we mention
the works of de Paiva-Massa [4], Li-Wu-Zhou [12], Perera [19] and Wu-Yang
[23].

2. Mathematical Background

In this section, for the convenience of the reader, we recall some of the main
mathematical tools which we will use in this paper.

We start with critical point theory. Let X be a Banach space and X∗ its
topological dual. By 〈·, ·〉 we denote the duality brackets for the pair (X∗,X).
Let ϕ ∈C1(X). We say that ϕ satisfies the Cerami condition (the C-condition
for short), if the following is true:

“Every sequence {xn}n≥1⊆X such that {ϕ(xn)}n≥1 ⊆R is bounded
and (1+‖xn‖)ϕ ′(xn)−→ 0 in X∗ as n→∞, admits a strongly con-
vergent subsequence”.

Using this compactness-type condition, we can derive the following theo-
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rem, known in the literature as the mountain pass theorem, which gives a mini-
max characterization of certain critical values of a C1-functional.

Theorem 2.1. If X is a Banach space, ϕ ∈C1(X) and satisfies the C-condition,
x0, x1 ∈ X, ‖x1− x0‖>r>0

max{ϕ(x0),ϕ(x1)}< inf[ϕ(x) : ‖x− x0‖= r] = ηr

c = inf
γ∈Γ

max
0≤t≤1

ϕ
(
γ(t)

)
where Γ =

{
γ ∈C([0,1],X) : γ(0) = x0,γ(1) = x1

}
,

then c≥ ηr and c is a critical value of ϕ .

For ϕ ∈C1(X) and c ∈ R, we introduce the following sets:

ϕ
c={x∈X:ϕ(x)≤ c}, Kϕ={x∈X:ϕ ′(x)=0} and Kc

ϕ={x∈Kϕ :ϕ(x)=c}.

Let (Y1,Y2) be a topological pair with Y2 ⊆ Y1 ⊆ X . For every integer k ≥ 0,
by Hk(Y1,Y2) we denote the k th

= relative singular homology group with integer
coefficients for the pair (Y1,Y2). For k<0, Hk(Y1,Y2) = 0. The critical groups of
ϕ at an isolated critical point x∈X with ϕ(x) = c (i.e., x ∈ Kc

ϕ ), are defined by

Ck(ϕ,x) = Hk
(
ϕ

c∩U,ϕc∩U \{x}
)

for all k ≥ 0,

with U a neighborhood of x such that Kϕ ∩ϕc ∩U ={x} (see Chang [2] and
Mawhin-Willem [15]). The excision property of singular homology theory im-
plies that the above definition of critical groups is independent of the particular
choice of the neighborhood U of x.

Suppose that ϕ ∈C1(X) satisfies the C-condition and −∞< infϕ(Kϕ). Let
c< infϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X ,ϕc) for all k ≥ 0.

The deformation theorem, (valid since ϕ satisfies the C-condition, see Papa-
georgiou-Kyritsi [18, p. 274]), implies that this definition of critical groups is
independent of the particular choice of the level c< infϕ(Kϕ). If Kϕ is finite,
then we set

M(t,x) = ∑
k≥0

rank Ck(ϕ,x)tk for all t ∈ R, x ∈ Kϕ

and P(t,∞) = ∑
k≥0

rank Ck(ϕ,∞)tk for all t ∈ R.

We have the Morse relation

∑
x∈Kϕ

M(t,x) = P(t,∞)+(1+ t)Q(t), (1)
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where Q(t)= ∑
k≥0

βktk is a formal series in t ∈ R with nonnegative integer

coefficients (see [2] and [15]).
Let X = H be a Hilbert space, x ∈ H, U a neighborhood of x, and ϕ ∈

C2(U). If x ∈ Kϕ , then its Morse index is defined to be the supremum of the
dimensions of the vector subspaces of H on which ϕ ′′(x) is negative definite.
We say that x ∈ Kϕ is nondegenerate, if ϕ ′′(x) is invertible. The critical groups
of ϕ at a nondegenerate critical point x ∈ H with Morse index d are given by
Ck(ϕ,x) = δk,dZ for all k ≥ 0, where δk,d is the Kronecker symbol, i.e., δk,d ={

1 if k = d
0 if k 6= d

.

Next, let us recall some basic facts about the spectrum of the negative Neu-
mann Laplacian. Let m ∈ L∞(Ω), m ≥ 0, m 6= 0, (a weight function), and con-
sider the following weighted linear eigenvalue problem

−4u(z) = λ̂m(z)u(z) in Ω,
∂u
∂n

= 0 on ∂Ω. (2)

Note that λ̂0 = λ̂0(m) = 0 is an eigenvalue of (2) with corresponding eigen-
space R. Moreover, using the spectral theorem for compact operators, we
can show that (2) has a sequence {λ̂k(m)}k≥0 of distinct eigenvalues such that
λ̂k(m)→+∞. If m≡ 1, then we simply write λ̂k for λ̂k(1).

For every integer k≥ 0, by E
(
λ̂k(m)

)
we denote the eigenspace correspond-

ing to the eigenvalue λ̂k(m). Regularity theory implies that E
(
λ̂k(m)

)
⊆C1

n(Ω)
and it has the unique continuation property (UCP for short), namely if u ∈
E
(
λ̂k(m)

)
vanishes on a set of positive measure, then u(z) = 0 for all z ∈ Ω.

We set

Hk =
k⊕

i=0

E
(
λ̂i(m)

)
and Ĥk = H⊥k =

⊕
i≥k+1

E
(
λ̂i(m)

)
.

Using these spaces, we have the following variational characterizations of
the eigenvalues {λ̂k(m)}k≥0:

0 = λ̂0(m) = min
[ ‖Du‖2

2∫
Ω

mu2dz
: u ∈ H1(Ω),u 6= 0

]
(3)

and for k ≥ 1

λ̂k(m) = max
[ ‖Du‖2

2∫
Ω

mu2dz
: u ∈ Hk,u 6= 0

]
= min

[ ‖Dû‖2
2∫

Ω
mû2dz

: û ∈ Ĥk−1, û 6= 0
]
.

(4)
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In (3) the minimum is attained on E
(
λ̂0(m)

)
= R. In (4) the maximun and

the minimum are both realized on E
(
λ̂k(m)

)
. From (4) and the UCP, it is clear

that the following monotonicity property is true for the eigenvalues:

“If m,m′ ∈ L∞(Ω), 0≤m≤m′, m 6= 0, m′ 6= m, then λ̂k(m′)<λ̂k(m)
for all k ≥ 1”.

From Iannizzotto-Papageorgiou [8], we take the following simple lemma:

Lemma 2.2. If ϑ ∈ L∞(Ω), ϑ(z) ≤ 0 a.e. in Ω and ϑ 6= 0, then there exists
ξ0>0 such that ‖Du‖2

2−
∫

Ω
ϑ(z)u(z)2dz≥ ξ0‖u‖2 for all u ∈ H1(Ω).

Hereafter by ‖ · ‖ we denote the norm in the Sobolev space H1(Ω) and by
‖ · ‖2 the norm of L2(Ω) and of L2(Ω,RN). Finally, by | · |N we denote the

Lesesgue measure on RN and 2∗ =
{ 2N

N−2 if N>2
+∞ if N ≤ 2

is the Sobolev critical

exponent.

3. Three Nontrivial Solutions

The hypotheses on f (z,x) are:

H: f : Ω×R−→R is a measurable function such that for a.a. z∈Ω, f (z,0) = 0,
f (z, ·) ∈C1(R) and

(i) | f ′x(z,x)| ≤ α(z)+c|x|r−2 for a.a z∈Ω, all x∈R, with α ∈ L∞(Ω)+,
c>0, 2<r<2∗;

(ii) there exist an integer m ≥ 1, a function η0 ∈ L∞(Ω), β0 > 0 and
µ ∈ (q,2] such that

η0(z)≤ liminf
|x|→∞

f (z,x)
x
≤ limsup
|x|→∞

f (z,x)
x
≤ λ̂m,

uniformly for a.a. z ∈Ω

η0(z)≥ λ̂m−1 for a.a. z ∈Ω, and if m = 1, then η0 6= λ̂m−1,

β0 ≤ liminf
|x|→∞

f (z,x)x−2F(z,x)
|x|µ

uniformly for a.a. z ∈Ω;

(iii) f ′x(z,0) = lim
x→0

f (z,x)
x ≤ 0 uniformly for a.a. z ∈Ω and f ′x(·,0) 6= 0.

Remark 3.1. Hypothesis H(ii) implies that at ±∞ we can have resonance with
respect to any positive eigenvalue. In fact double resonance is possible for m≥
2.
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Example 3.2. The following function f (x) satisfies hypotheses H (for the sake
of simplicity we drop the z-dependence):

f (x) =


λmx−|x|τ−2x− ξ

|x| if x<−1
−x if −1≤ x≤ 1
λmx− xτ−1 + ξ

x if 1<x,

with m≥ 2, 1<q<τ <2 and ξ = (2− τ)
/

2>0.

Let ϕλ : H1(Ω)−→R be the energy functional for problem (Pλ ) defined by

ϕλ (u) =
1
2
‖Du‖2

2−
λ

q
‖u‖q

q−
∫

Ω

F
(
z,u(z)

)
dz for all u ∈ H1(Ω)

(recall that F(z,x) =
∫ x

0 f (z,s)ds). Evidently ϕλ ∈ C1
(
H1(Ω)

)
∩C2

(
H1(Ω) \

{0}
)
.

Proposition 3.3. If hypotheses H hold and λ > 0, then ϕλ satisfies the C-
condition.

Proof. Let {un}n≥1 ⊆ H1(Ω) such that

ϕλ (un)−→ c ∈ R as n→∞ (5)

and (1+‖un‖)ϕ ′λ (un)−→ 0 in H1(Ω)∗ as n→∞. (6)

From (6) we have

|
〈
ϕ
′
λ
(un),h

〉
| ≤ εn‖h‖

1+‖un‖
for all h ∈ H1(Ω) with εn −→ 0+,

⇒
∣∣∣〈A(un),h〉−λ

∫
Ω

|un|q−2unhdz−
∫

Ω

f (z,un)hdz
∣∣∣≤ εn‖h‖

1+‖un‖

(7)

for all n≥1, where A ∈L
(
H1(Ω),H1(Ω)∗

)
is defined by

〈A(u),y〉=
∫

Ω

(Du,Dy)RN dz

for all u,y ∈ H1(Ω). In (7) we choose h = un ∈ H1(Ω) and have∣∣‖Dun‖2
2−λ‖un‖q

q−
∫

Ω

f (z,un)undz
∣∣≤ εn for all n≥1.

Since εn −→ 0+, given ε >0 we can find n0 = n0(ε)≥ 1 such that

−ε ≤−‖Dun‖2
2 +λ‖un‖q

q +
∫

Ω

f (z,un)undz≤ ε for all n≥ n0. (8)
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Also, by virtue of (5), we can find n1 = n1(ε)≥ n0 such that

2c− ε ≤ ‖Dun‖2
2−

2
q

λ‖un‖q
q−

∫
Ω

2F(z,un)dz≤ 2c+ ε for all n≥ n1. (9)

Adding (8) and (9) we obtain∫
Ω

(
f (z,un)un−2F(z,un)

)
dz≤ 2(c+ ε)+λ

(2
q
−1
)
‖un‖q

q

for all n≥ n1,

⇒ limsup
n→∞

1
‖un‖µ

∫
Ω

(
f (z,un)un−2F(z,un)

)
dz≤ 0

(10)

(recall that q<µ ≤ 2).
Claim: {un}n≥1 ⊆ H1(Ω) is bounded.
We argue by contradiction. So, we assume that ‖un‖ −→ ∞ and set yn =

un
‖un‖ ,

n≥1. Then ‖yn‖= 1 for all n≥1 and so (at least for a subsequence), we have

yn
w−→ y in H1(Ω) and yn −→ y in L2(Ω). (11)

From (7) we have∣∣∣〈A(yn),h〉−
λ

‖un‖2−q

∫
Ω

|yn|q−2ynhdz−
∫

Ω

f (z,un)

‖un‖
hdz
∣∣∣

≤ εn
‖h‖

(1+‖un‖)‖un‖
for all n≥1.

(12)

Choose h = yn− y ∈ H1(Ω) and pass to the limit as n→∞. Using (11) and

because
{

f
(
·,un(·)

)
‖un‖

}
⊆ L2(Ω) is bounded (see H(i), (ii)), we obtain

lim
n→∞
〈A(yn),yn− y〉= 0,

⇒‖Dyn‖2 −→ ‖Dy‖2 as n→∞.

From (11) we also have Dyn
w−→ Dy in L2(Ω,RN) and so from the Kadec-

Klee property of Hilbert spaces, we have that Dyn −→Dy in L2(Ω,RN). There-
fore

yn −→ y in H1(Ω) and ‖y‖= 1. (13)

Since
{

f
(
·,un(·)

)
‖un‖ = gn(·)

}
n≥1
⊆ L2(Ω) is bounded, we may assume that

gn
w−→ g in L2(Ω). (14)
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Using hypothesis H(ii) and reasoning as in Motreanu-Motreanu-Papageor-
giou [16, see the proof of Proposition 5], we show that

g(z) = ξ (z)y(z) a.e. in Ω, with η0(z)≤ ξ (z)≤ λ̂m a.e. in Ω. (15)

So, if in (12) we pass to the limit as n→∞, recalling that q∈ (1,2) and using
(13) through (15), we obtain

〈A(y),h〉=
∫

Ω

ξ yhdz for all h ∈ H1(Ω),

⇒ A(y) = ξ y,

⇒−4y(z) = ξ (z)y(z) a.e. in Ω,
∂y
∂n

= 0 on ∂Ω.

(16)

Recall that η0(z) ≤ ξ (z) ≤ λ̂m a.e. in Ω (see (15)). If m = 1, then ξ ≥ 0,
ξ 6= 0 and if ξ 6= λ̂1, then from (16) we have y = 0, since λ̂1(λ̂1) = 1< λ̂1(ξ ).
But this contradicts (15). If m≥ 2 and ξ 6= λ̂m−1, ξ 6= λ̂m, then again by virtue
of the monotonicity of the eigenvalues with respect to the weight (see Section
2), we have λ̂m−1(ξ )< λ̂m−1(λ̂m−1) = 1 and λ̂m(ξ )> λ̂m(λ̂m) = 1. This fact
together with (16) implies that y = 0, a contradiction to (15). So, suppose that
ξ = λ̂m−1 or ξ = λ̂m. Then y ∈ E(λ̂m) and so by the UCP y(z) 6= 0 a.e. in Ω

(recall that y 6= 0, see (15)). This implies that |un(z)| −→ +∞ for a.a. z ∈ Ω.
Hence by virtue of hypothesis H(ii) we have

0<β0 ≤ liminf
n→∞

f
(
z,un(z)

)
un(z)−2F

(
z,un(z)

)
|un(z)|µ

for a.a. z ∈Ω. (17)

Using Fatou’s lemma, we have

liminf
n→∞

1
‖un‖µ

∫
Ω

(
f (z,un)un−2F(z,un)

)
dz

liminf
n→∞

∫
Ω

f (z,un)un(z)−2F(z,un)

|un|µ
|yn|µdz≥ β0‖y‖µ

µ >0
(18)

(see (17) and (15)).
Comparing (10) and (18) we reach a contradiction. This proves the Claim.
Because of the Claim, we may assume that

un
w−→ u in H1(Ω) and un −→ u in L2(Ω) as n→∞. (19)

In (7) we choose h = un−u, pass to the limit as n→∞ and use (19) and use
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the fact that
{

f
(
·,un(·)

)
‖un‖

}
n≥1
⊆ L2(Ω) is bounded. We obtain

lim
n→∞
〈A(un),un−u〉= 0,

⇒ un −→ u in H1(Ω) as n→∞ (as before),

⇒ ϕλ satisfies the C-condition.

Proposition 3.4. If hypotheses H hold, then there exists λ ∗>0 such that for
every λ ∈ (0,λ ∗), we can find ρλ ∈ (0,1) small such that inf[ϕλ (u) : ‖u‖ =
ρλ ] = mλ >0.

Proof. Hypotheses H(i) and (iii) imply that given ε>0, we can find c1 = c1(ε)>
0 such that

F(z,x)≤ 1
2
(

f ′x(z,0)+ ε
)
x2 + c1|x|r for a.a. z ∈Ω, all x∈R. (20)

Recall that f ′x(z,0) ≤ 0 a.e. in Ω and f ′x(·,0) 6= 0. For every u ∈ H1(Ω) we
have:

ϕλ (u) =
1
2
‖Du‖2

2−
λ

q
‖u‖q

q−
∫

Ω

F
(
z,u(z)

)
dz

≥ 1
2
‖Du‖2

2−
λ

q
‖u‖q

q−
1
2

∫
Ω

f ′x(z,0)u
2dz− ε

2
‖u‖2− c2‖u‖r

for some c2>0 (see (20))

≥ ξ0− ε

2
‖u‖2− λ

q
c3‖u‖q− c2‖u‖r for some c3>0

(21)

(see Lemma 2.2). Choosing ε ∈ (0,ξ0), we obtain

ϕλ (u)≥ c4‖u‖2− λ

q
c3‖u‖q− c2‖u‖r with c4 =

ξ0− ε

2
>0,

⇒ ϕλ (u)≥
(
c4−

λ

q
c3‖u‖q−2− c2‖u‖r−2)‖u‖2 for all u ∈ H1(Ω).

(22)

We introduce the function

σλ (t) =
λ

q
c3tq−2 + c2tr−2, t>0.

Evidently σλ is continuous on (0,+∞) and since q<2<r, we have

σλ (t)−→+∞ as t→ 0+ and σλ (t)−→+∞ as t→+∞.
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Therefore, we can find t0 ∈ (0,+∞) such that

σλ (t0) = inf
(0,+∞)

σλ ,

⇒ σ
′
λ
(t0) =

λ

q
(q−2)c3tq−3

0 + c2(r−2)tr−3
0 = 0,

⇒ λ

q
(2−q)c3tq−3

0 = c2(r−2)tr−3
0 ,

⇒ t0 = t0(λ ) =
[

λc3(2−q)
qc2(r−2)

] 1
r−q

.

We consider σλ (t0) and we see that we can find λ ∗>0 such that

λ ∈ (0,λ ∗)⇒ σλ (t0)<c4 (see (22)).

Therefore, from (22) it follows that

inf[ϕλ (u) : ‖u‖= ρλ ] = mλ >0 where ρλ = t0(λ )>0.

With the next proposition, we produce the full mountain pass geometry for
the functional ϕλ .

Proposition 3.5. If hypotheses H hold and λ >0, then ϕλ (ξ )−→−∞ as |ξ | →
∞, ξ ∈ R.

Proof. Hypothesis H(ii) implies that

η0(z)≤ liminf
|x|→∞

2F(z,x)
x2 ≤ limsup

|x|→∞

2F(z,x)
x2 ≤ λ̂m uniformly for a.a. z∈Ω (23)

(see, for example, Aizicovici-Papageorgiou-Staicu [1]). Then (23) together with
hypothesis H(i), imply that given ε >0, we can find c5 = c5(ε)>0 such that

F(z,x)≥ 1
2
(
η0(z)− ε

)
x2− c5 for a.a. z ∈Ω, all x∈R. (24)

Then for ξ ∈ R we have

ϕλ (ξ ) =−
λ

q
|ξ |q|Ω|N−

∫
Ω

F(z,ξ )dz

≤−λ

q
|ξ |q|Ω|N +

ξ 2

2

∫
Ω

(
ε−η0(z)

)
dz+ c5|Ω|N (see (24)).

(25)
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Since η0 ≥ 0, η0 6= 0 (see H(ii)), we see that if ε ∈ (0, 1
|Ω|N

∫
Ω

η0dz), then
from (25) it follows that

ϕλ (ξ )−→−∞ as |ξ | → ∞,ξ ∈ R.

From Motreanu-Motreanu-Papageorgiou [17], we know that the concave
term leads to the triviality of the critical groups of ϕλ , λ >0, at u = 0.

Proposition 3.6. If hypotheses H hold and λ > 0, then Ck(ϕλ ,0) = 0 for all
k ≥ 0.

Next we compute the critical groups of ϕλ at infinity.

Proposition 3.7. If hypotheses H hold and λ >0, then Ck(ϕλ ,∞) = δk,dm−1Z for
all k ≥ 0, where dm−1 = dimHm−1.

Proof. Let τ ∈ (λm−1,λm) and consider the C2-functional σ : H1(Ω)−→ R de-
fined by

σ(u) =
1
2
‖Du‖2

2−
τ

2
‖u‖2

2 for all u ∈ H1(Ω).

We consider the homotopy ĥ : [0,1]×H1(Ω)−→ R defined by

ĥ(t,u) = (1− t)ϕλ (u)+ tσ(u) for all (t,u) ∈ [0,1]×H1(Ω).

Claim : There exist α ∈ R and δ >0 such that for every t ∈ [0,1]

ĥ(t,u)≤ α ⇒ (1+‖u‖)‖ĥ′u(t,u)‖ ≥ δ .

We argue indirectly. So, suppose that the Claim is not true. Then we can
find {tn}n≥1 ⊆ [0,1] and {un}n≥1 ⊆ H1(Ω) such that

tn −→ t ∈ [0,1], ‖un‖ −→ ∞, ĥ(t,un)−→−∞

and (1+‖un‖)ĥ′u(tn,un)−→ 0 as n→∞
(26)

(recall that ĥ is bounded, i.e., maps bounded sets to bounded ones).
From the last convergence in (26), we have∣∣∣〈A(un),h〉−λ (1−tn)

∫
Ω

|un|q−2unhdz−(1−tn)
∫

Ω

f (z,un)hdz−tnτ

∫
Ω

unhdz
∣∣∣

≤ εn‖h‖
1+‖un‖

(27)
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for all h ∈ H1(Ω) with εn→ 0+.
Let yn =

un
‖un‖ , n≥1. Then ‖yn‖= 1 for all n≥1 and so we may assume that

yn
w−→ y in H1(Ω) and yn −→ y in L2(Ω) as n→∞. (28)

Multiplying (27) with 1
‖un‖ , we obtain

∣∣∣〈A(yn),h〉−
λ (1−tn)
‖un‖2−q

∫
Ω

|yn|q−2ynhdz−(1−tn)
∫

Ω

f (z,un)

‖un‖
hdz−tnτ

∫
Ω

ynhdz
∣∣∣

≤ εn‖h‖
(1+‖un‖)‖un‖

(29)
Recall that

f
(
·,un(·)

)
‖un‖

w−→ g = ξ y in L2(Ω) with η0(z)≤ ξ (z)≤ λm a.e. in Ω (30)

(see (14), (15)).
If in (29) we choose h = yn−y ∈H1(Ω) and pass to the limit as n→∞, then

lim
n→∞
〈A(yn),yn− y〉= 0 (see (28), (30)),

⇒ yn −→ y in H1(Ω) and so ‖y‖= 1.
(31)

Passing to the limit as n→∞ in (29) and using (30) and (31) and the fact that
q<2, we obtain

〈A(y),h〉=
(
(1− t)ξ + tτ

)
y,

⇒ −4y(z) = ξt(z)y(z) a.e. in Ω,
∂u
∂n

= 0 on ∂Ω
(32)

with ξt(z) = (1− t)ξ (z)+ tτ .
Note that λ̂m−1 ≤ ξt(z)≤ λ̂m a.e. in Ω.
If t ∈ (0,1], then the two inequalities are strict and so as before exploiting

the nonotonicity of the eigenvalues on the weight function, we infer that y = 0,
which contradicts (31).

If t = 0, then ξ0 = ξ . As in the proof of Proposition 3.3, the cases m = 1,
ξ 6= λ̂1 and m≥ 2, ξ 6= λ̂m−1, ξ 6= λ̂m, lead to y = 0, a contradiction to (31). So,
we assume that ξ = λ̂m−1 or ξ = λ̂m. Then y(z) 6= 0 a.e. in Ω by the UCP and
so |un(z)| −→∞ for a.a. z∈Ω and this by virtue of hypothesis H(ii) implies that

0<β0 ≤ liminf
n→∞

f
(
z,un(z)

)
un(z)−2F

(
z,un(z)

)
|un(z)|µ

for a.a. z ∈Ω. (33)
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From the third convergence in (26), we see that we can find n2 ≥ 1 such that

‖Dun‖2
2− (1− tn)

2λ

q
‖un‖q

q− (1− tn)
∫

Ω

2F(z,un)dz− tnτ‖un‖2
2 ≤ 0 (34)

for all n≥ n2.
Similarly, from (27) and if h = un ∈ H1(Ω), then given ε >0, we can find

n3 = n3(ε)≥ n2 such that

−‖Dun‖2
2 +λ (1− tn)‖un‖q

q +(1− tn)
∫

Ω

f (z,un)undz+ tnτ‖un‖2
2 ≤ ε (35)

for all n≥ n3.
Since tn −→ t = 0, we may assume that 1− tn > 0 for all n ≥ n3. Adding

(34) and (35) we obtain∫
Ω

(
f (z,un)un−2F(z,un)

)
dz≤ εn

1− tn
+λ

(2
q
−1
)
‖un‖q

q for all n≥ n3,

⇒ limsup
n→∞

∫
Ω

(
f (z,un)un−2F(z,un)

)
|un|µ

dz≤ 0 (36)

(recall that q<µ and ε >0 was arbitrary).
On the other hand from (33) and Fatou’s lemma, we have

liminf
n→∞

1
‖un‖µ

∫
Ω

(
f (z,un)un−2F(z,un)

)
dz

≥
∫

Ω

liminf
n→∞

f (z,un)un(z)−2F(z,un)

|un|µ
|yn|µdz

≥ β0‖y‖µ

µ >0.

(37)

Comparing (36) and (37) we reach a contradiction. This proves the Claim.
Note that ĥ(0, ·) = ϕλ satisfies the C-condition (see Proposition 3.3). Simi-

larly since τ ∈ (λm−1,λm), ĥ(1, ·) = σ too satisfies the C-condition. So, because
of the Claim we can apply from Liang-Su [10, Proposition 3.2] and have

Ck
(
ĥ(0, ·),∞

)
=Ck

(
ĥ(1, ·),∞

)
for all k ≥ 0,

⇒Ck(ϕλ ,∞) =Ck(σ ,∞) for all k ≥ 0.
(38)

Since τ ∈ (λm−1,λm), u = 0 is the only critical point of σ and it is a nonde-

generate critical point of Morse index dm−1 = dim
m−1
⊕
i=0

E(λ̂i). Hence

Ck(σ ,∞) =Ck(σ ,0) = δk,dm−1Z for all k ≥ 0,

⇒ Ck(ϕλ ,∞) = δk,dm−1Z for all k ≥ 0 (see (38)).
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Now we are ready for the “three solutions theorem” for problem (Pλ ).

Theorem 3.8. If hypotheses H hold, then there exists λ ∗>0 such that for all λ ∈
(0,λ ∗) problem (Pλ ) has at least three nontrivial smooth solutions û,u0,y0 ∈
C1(Ω).

Proof. Let λ ∗>0 be as in Proposition 3.4. By virtue of Propositions 3.3, 3.4
and 3.5, we can apply Theorem 2.1 (the mountain pass theorem), and obtain
û ∈ H1(Ω) a critical point of ϕλ . Then û solves (Pλ ) and û ∈ C1(Ω) (by the
regularity theory).

Moreover, from Li-Li-Liu [11, Theorem 2.7], we have

Ck(ϕλ , û) = δk,1Z for all k ≥ 0. (39)

From Proposition 3.6, we know that

Ck(ϕλ ,0) = 0 for all k ≥ 0. (40)

Comparing (39) and (40), we infer that û 6= 0 (alternatively the nontriviality
of û results from Theorem 2.1, since ϕλ (0) = 0<mλ ≤ ϕλ (û) (see Proposition
3.4)).

Exploiting the compact embedding of H1(Ω) into L2(Ω), we can easily
check that ϕλ is sequentially weakly lower semicontinuous. Since Bρλ

= {u ∈
H1(Ω) : ‖u‖ ≤ ρλ} (ρλ > 0 as in Proposition 3.4) is weakly compact, by the
Weierstrass theorem, we can find u0 ∈ Bρλ

such that

ϕλ (u0) = inf
Bρ

λ

ϕλ .

For ξ ∈R, ‖ξ‖ ≤ ρλ small, since q<2, we see that ϕλ (ξ )<0 = ϕλ (0) (see
hypothesis H(iii)). Therefore

ϕλ (u0)<0 = ϕλ (0), ⇒ u0 6= 0.

Let σ = inf
∂Bρ

λ

ϕλ − inf
Bρ

λ

ϕλ >0 (see Proposition 3.4). Let ε ∈ (0,σ). Invoking

the Ekeland variational principle (see, for example, Papageorgiou-Kyritsi [18,
p. 89]), we can find uε ∈ Bρλ

such that

ϕλ (uε)≤ inf
Bρ

λ

ϕλ + ε (41)

and ϕλ (uε)≤ ϕλ (y)+ ε‖y−uε‖ for all y ∈ Bρλ
. (42)

From (41) and since ε <σ , we see that

ϕλ (uε)< inf
∂Bρ

λ

ϕλ , ⇒ uε ∈ Bρλ
.
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Let ψε

λ
(y) = ϕλ (y)+ ε‖y− uε‖ for all y ∈ H1(Ω). Clearly this is a locally

Lipschitz function and from (42) we see that uε is a minimizer of ψε

λ
on Bρλ

.
So, if by ∂ψε

λ
(uε) we denote the generalized subdifferential of ψε

λ
at uε and by

(ψε

λ
)0(uε ; ·) the generalized directional derivative of ψε

λ
at uε (see Clarke [3]),

we have

0 ∈ ∂ψ
ε

λ
(uε) (recall uε ∈ Bρλ

),

⇒ 0≤ (ψε

λ
)0(uε ;h) for all h ∈ H1(Ω),

⇒ −ε‖h‖ ≤
〈
ϕ
′
λ
(uε),h

〉
for all h ∈ H1(Ω).

Invoking from Papageorgiou-Kyritsi [18, Lemma 4.1.44, p. 287], we can
find u∗ ∈ H1(Ω)∗, ‖u∗‖∗ ≤ 1 such that

ε 〈u∗,h〉 ≤
〈
ϕ
′
λ
(uε),h

〉
for all h ∈ H1(Ω)

⇒ ϕ
′
λ
(uε) = εu∗.

(43)

Let εn =
1
n and set un = uεn ∈ Bρλ

. Then

ϕλ (un)−→ inf
Bρ

λ

ϕλ (see (41))

and ϕ
′
λ
(un)−→ 0 in H1(Ω)∗ (see (43)).

Invoking Proposition 3.3, we have

un −→ u0 in H1(Ω),

⇒ ϕλ (u0) = inf
Bρ

λ

ϕλ and ϕ
′
λ
(u0) = 0.

Therefore u0 is a solution of (Pλ ), u0 ∈ C1(Ω) (by regularity theory), and
u0 6= {û,0}.

Suppose that {0, û,u0} are the only critical points of ϕλ . From Proposition
3.7, we have

ck(ϕλ ,∞) = δk,dm−1Z for all k ≥ 0. (44)

Also since u0 is a local minimizer of ϕλ , we have

ck(ϕλ ,u0) = δk,0Z for all k ≥ 0. (45)

From (39), (40), (44), (45), and the Morse relation (1) with t = −1, we
obtain

(−1)0 +(−1)1 = (−1)dm−1

a contradiction. So, ϕλ has one more critical point y0 /∈ {0, û,u0}. Then y0
solves problem (Pλ ) and by regularity theory y0 ∈C1(Ω).
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Birkhäuser, Boston, 1993.

[3] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[4] F. de Paiva - E. Massa, Multiple solutions for some elliptic equations with a non-

linearity concave at the origin, Nonlinear Analysis 66 (2007), 2940–2946.
[5] C. Gupta, Perturbations of second order linear elliptic problems by unbounded

nonlinearities, Nonlinear Analysis 6 (1982), 919–933.
[6] R. Iannacci - M. Nkashama, Nonlinear boundary value problems at resonance,

Nonlinear Analysis 11 (1987), 455–473.
[7] R. Iannacci - M. Nkashama, Nonlinear two point boundary value problem at res-

onance without Landesman-Laser condition, Proceedings of AMS 106 (1989),
943–952.

[8] A. Iannizzotto - N. S. Papageorgiou, Existence of three nontrivial solutions for
nonlinear Neumann hemivariational inequalities, Nonlinear Analysis 70 (2009),
3285–3297.

[9] C. C. Kuo, On the solvability of a nonlinear second order elliptic equation at
resonance, Proceedings of AMS 124 (1996), 83–87.

[10] Z. Liang - J. Su, Multiple solutions for semilinear elliptic boundary value prob-
lems with double resonance, J. Math. Anal. Appl. 354 (2009), 147–158.

[11] C. Li - S. Li - J. Liu, Splitting theorem, Poincaré-Hopf theorem and jumping
nonlinear problems, J. Functional Analysis 221 (2005), 439–455.

[12] S. Li - S. Wu - H. Zhou, Solutions to semilinear elliptic problems with combined
nonlinearities, J. Differential Equations 185 (2002), 200–224.

[13] J. Mawhin, Semicoercive monotone variational problems, Acad. R. Belgique,
Bull. Cl. Sciences 73 (1987), 118–130.

[14] J. Mawhin - J. Ward - M. Willem, Variational methods and semi-linear elliptic
equations, Arch. Rational Mech. Anal. 95 (1988), 269–277.

[15] J. Mawhin - M. Willem, Critical Point Theory and Hamiltonian Systems, Springer,
New York, 1989.

[16] D. Motreanu - V. Motreanu - N. S. Papageorgiou, A degree theoretic approach for
multiple solutions of constant sign for nonlinear elliptic equations, Manuscripta
Math. 124 (2007), 507–531.

[17] D. Motreanu - V. Motreanu - N. S. Papageorgiou, Existence and multiplicity of
solutions for asymptotically linear noncoercive elliptic equations, Monatschäfte
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