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PERIODIC SOLUTIONS OF THE FORCED PENDULUM :
CLASSICAL VS RELATIVISTIC

JEAN MAWHIN

The paper surveys and compares some results on the existence and
multiplicity of T-periodic solutions for the forced classical pendulum equ-
ation

u′′+Asinu = h(x),

the forced p-pendulum equation

(|u′|p−2u′)′+Asinu = h(x)

and the forced relativistic pendulum equation(
u′√

1−u′2

)′
+Asinu = h(x).

1. Introduction

The periodic solutions of the classical forced pendulum equation are the solu-
tions of the problem

u′′+Asinu = h(x), u(0) = u(T ), u′(0) = u′(T ) (1)

where A > 0, T > 0, h ∈ L1 := L1(0,T ) are given. We set ω := 2π/T. Notice
that the case where A < 0 is reduced to this one by considering v = u+π. The
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problem is to find conditions upon the data under which problem (1) has at least
one solution, and to discuss the possible multiplicity of the solutions.

Let us first look for necessary conditions for the existence of a solution to
(1). Given a vector subspace S of L1, we define

S̃ :=
{

v ∈ S | v :=
1
T

∫ T

0
v = 0

}
Assuming that problem (1) has a solution, integrating both members of the equa-
tion over [0,T ] and using the boundary conditions, we see that a necessary con-
dition for existence of a solution to (1) is that h ∈ [−A,A]. Consequently, a nec-
essary conditions for existence of a solution to problem (1) for all A > 0, and
all T > 0 is that h ∈ L̃1. A natural question is the sufficiency of this necessary
condition. We show in Section 2 that the answer is positive, recall the history of
the problem and the various methods used to solve it.

A natural generalization of problem (1) consists in replacing u′′ by the p-
Laplacian (|u′|p−2u′)′ with p > 2. We show in Section 3 that all the results
of Section 2 can be extended to this more general frame. Another generaliza-
tion consists is replacing (|u′|p−2u′)′, which is associated to the homeorphism

φ : R→ R with φ(s) = |s|p−2s, by the relativistic-type acceleration
(

u′√
1−u′2

)′
,

associated to the homeomorphism φ : (−1,1) → R with φ(s) = s√
1−s2 . We

describe in Section 4 some results recently obtained in this direction in collab-
oration with H. Brezis [3]. Finally, we mention that the problem where u′′ is

replaced by the curvature operator
(

u′√
1+u′2

)′
associated to the homeomorphism

φ : R→ (−1,1) with φ(s) = s√
1+s2 seems to be open.

2. The forced classical pendulum

The first important contribution to problem (1) was given in 1922 by G. Hamel
[9], in an issue of the Mathematische Annalen dedicated to Hilbert’s sixtieth
anniversary. In this paper, Hamel considered the special case of (1)

u′′+Asinu = Bcosωx, u(0) = u(T ), u′(0) = u′(T ) (2)

and observed that (2) is the Euler-Lagrange equation of the C1 action functional

IH(u) :=
∫ T

0
(
u′2

2
+Acosu+uBcosωx)dx

on the space

C1
# :=C1

# [0,T ] = {u ∈C1[0,T ] | u(0) = u(T )}.
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Using the direct method of the calculus of variations, Hamel showed that IH

has a minimum over C1
# , and hence that problem (2) has at least one solution

for all A > 0, and B ∈ R. It is easy to see that Hamel’s proof remains valid for
Bcosωx replaced by any h ∈ C̃0. Hamel’s result was rapidly forgotten.

In a more modern and appropriate setting, problem (1) is the Euler-Lagrange
equation of the C1 action functional

I (u) =
∫ T

0
(
u′2

2
+Acosu+uh)dx

on the Sobolev space

H1
# = H1

# (0,T ) := {u ∈ H1(0,T ) | u(0) = u(T )}

Motivated by a question raised in 1979 by Fučik in [8], Castro [4] used in 1980
a variational Lyapunov-Schmidt reduction method to prove that problem (1) has
at least one solution for all 0 < A < ω2, and all h ∈ L̃2. Willem [18] in 1981 and
Dancer [6] in 1982 independently showed that for all A > 0, and all h ∈ L̃1, I
has a minimum over H1

# , by proving that I is weakly sequentially lower semi-
continuous and has a bounded minimizing sequence. Consequently, problem
(1) has at least one solution for all A > 0, and all h ∈ L̃1. All three authors were
not aware of the existence of Hamel’s paper [9].

The existence of a second geometrically distinct solution of (1) (i.e. of a
solution not differering by a multiple of 2π) was first proved in 1984 for all
h ∈ L̃1 [12], more than sixty years after Hamel’s first solution. The authors
showed that, for such h, I is bounded from below on H1

# , satisfies Palais-Smale
type conditions (PS)c and (BPS) [13] for all c ∈ R (so that I has a minimum
on H1

# at some u0), and has the geometry of a generalized mountain pass lemma
with respect to the two minimums u0 and u0 +2π . As a consequence, problem
(1) has at least two solutions for all A > 0, and all h ∈ L̃1. Notice that such
a multiplicity result is sharp because, for A ≤ ω2, and h ≡ 0, problem (1) has
exactly the two T-periodic solutions u0 ≡ π, and u1 ≡ 0.

Alternate proofs of this multiplicity results were given independently in
1988-89 by Rabinowitz [15], K.C. Chang [5], J. Franks [7] and the author [10]
(see also [13]). Franks’ proof is symplectic and based upon an generalized
Poincaré-Birkhoff theorem. The idea underlying the three other proofs is that
for all h∈ L̃1, and u∈H1

# , one has I (u+2π) =I (u), so that I can be viewed

as defined on S1× H̃1
# , where it is of class C1, bounded from below, and satisfies

the Palais-Smale condition [13]. By Palais’ generalization of the Lusternik-
Schnirel’man theorem [14], I has at least cat

S1×H̃1
#
(S1× H̃1

# ) critical points,
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where catM(M) denotes the Lusternik-Schnirel’man category of the manifold
M [13]. Now, one can show that

cat
S1×H̃1

#
(S1× H̃1

# ) = catS1(S1) = 2,

and the multiplicity result follows.

Remarks.

1. The function Asinu can be replaced by a Carathéodory function g(x,u)
periodic in u and such that

∫ 2π

0 g(x,u) du = 0 for a.e. x ∈ [0,T ].

2. Extensions have been made to systems, and in particular to the problem

u′′+∇uF(x,u) = h(x), u(0) = u(T ), u′(0) = u′(T )

where h ∈ (L̃1)n and F, besides of natural regularity assumptions, is Ti-
periodic in each component ui of u.

3. All known proofs of the results described in this Section are variational
or symplectic (Morse theory [13] can be used as well).

4. All known existence results based upon degree theory require restrictions
upon A and T , but cover situations where h can be different from 0.

For more informations and references, the reader can consult the recent sur-
vey [11].

3. The forced ‘p-pendulum’ (p > 1)

In order to describe with more details some of the techniques mentioned in
Section 2, let us consider the more general problem of the periodic solutions of
the forced ‘p-pendulum equation’

(|u′|p−2u′)′+Asinu = h(x), u(0) = u(T ), u′(0) = u′(T ), (3)

where p > 1, A > 0, T > 0, and h ∈ L1. A solution of (3) is a function u ∈C1
# ,

such that |u′|p−2u′ is absolutely continuous on [0,T ] and (3) is satisfied. Again,
a necessary condition for the existence of a solution to (3) is that h ∈ [−A,A], so
that a necessary condition for the existence of a solution for all A > 0, and all
T > 0 is that h∈ L̃1. We show that such a condition is sufficient for the existence
of at least two geometrically distinct solutions.
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It is standard to prove that problem (3) is the Euler-Lagrange equation of the
action functional

Ip(u) :=
∫ T

0
(
|u′|p

p
+Acosu+uh)dx

It is easy to show that Ip is of class C1 on the Sobolev space

W 1,p
# :=W 1,p

# (0,T ) := {u ∈W 1,p(0,T ) | u(0) = u(T )}

and that, for all h ∈ L̃1, and all u ∈W 1,p
# , Ip(u+ 2π) = Ip(u). Hence, for all

h ∈ L̃1, Ip can be viewed as defined on S1×W̃ 1,p
# .

Lemma 3.1. Ip is bounded from below and satisfies the Palais-Smale condition

on S1×W̃ 1,p
# .

Proof. Writing u = u+ ũ ∈ S1×W̃ 1,p
# , we have, using Sobolev inequality

Ip(u) ≥
‖u′‖p

p

p
−AT −‖h‖1‖ũ‖∞

≥ ‖u′‖p
p

p
−AT −‖h‖1T

p−1
p ‖u′‖p

so that

Ip(u)→+∞ as ‖u′‖p→ ∞,

and hence is bounded from below.
Now let (un) be a sequence in S1×W̃ 1,p

# such that |Ip(un)| ≤ C for some
C > 0 and I ′

p(un)→ 0 as n→ ∞. By the first part of the proof, (u′n) is bounded

in Lp and so (un) is bounded in S1×W̃ 1,p
# . Hence, up to a subsequence, we can

assume that there exists u ∈ S1×W̃ 1,p
# such that

un→ u in C[0,T ], un ⇀ u in S1×W̃ 1,p
# .

Consequently,

〈I ′
p(un)−I ′

p(u),un−u〉 → as n→ ∞.

Now

〈I ′
p(un)−I ′

p(u),un−u〉

=
∫ T

0
(|u′n|p−2u′n−|u′|p−2u′)(u′n−u)dx

− A
∫ T

0
(sinun− sinu)(un−u)dx,
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so that

2AT‖un−u‖∞ + 〈I ′
p(un)−I ′

p(u),un−u〉

≥
∫ T

0
(|u′n|p−2u′n−|u′|p−2u′)(u′n−u)dx

≥ ‖u′n‖p
p−

∫ T

0
|u′n|p−1|u′|dx−

∫ T

0
|u′|p−1|u′n|dx+‖u′‖p

p

≥ ‖u′n‖p
p−‖u′n‖p−1

p ‖u′‖p−‖u′‖p−1
p ‖u′n‖p +‖u′‖p

p

= (‖u′n‖p−1
p −‖u′‖p−1

p )(‖u′n‖p−‖u′‖p)≥ 0.

Consequently, if n→∞, ‖u′n‖p→‖u′‖p and hence u′n→ u′ in Lp, so that un→ u

in S1×W̃ 1,p
# .

Theorem 3.2. For any h ∈ L̃1, problem (3) has at least two geometrically dis-
tinct solutions.

Proof. By Palais’ version of Lusternik-Schnirel’mann theorem, Ip has at least

cat
S1×W̃ 1,p

#

(S1×W̃ 1,p
# ) critical points. Now,

cat
S1×W̃ 1,p

#

(S1×W̃ 1,p
# ) = catS1(S1) = 2

and hence (3) has at least two solutions for all A > 0 and all h ∈ L̃1.

Remarks.

1. The function Asinu can be replaced by a Carathéodory function g(x,u)
periodic in u with

∫ 2π

0 g(x,u) du = 0 for a.e. x ∈ [0,T ].

2. Extensions can be given to systems of the form

(‖u′‖p−2u′)′+∇uF(x,u) = h(x), u(0) = u(T ), u′(0) = u′(T )

with F like in Section 2.

3. Existence and multiplicity results using fixed point theory and degree the-
ory have been given in [1] under some conditions upon A and T . They do
not contain Theorem 3.2.

4. It should be possible replace the p-Laplacian
(
|u′|p−2u′

)′ by more general
operators (ϕ(u′))′ for suitable classes of homeomorphisms ϕ : R→ R.
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4. The forced ‘relativistic’ pendulum

A suitable approximation of the problem of periodic solutions of the forced
pendulum in special relativity is given by(

u′√
1−u′2

)′
+Asinu = h(x), u(0) = u(T ), u′(0) = u′(T ) (4)

where A > 0, T > 0, and h∈ L1. A solution of (4) is a function u∈C1
# [0,T ] such

that ‖u′‖∞ < 1, u′√
1−u′2

is absolutely continuous on [0,T ] and verifies (4).
Again, a necessary condition for the existence of a solution to (4) is that

h ∈ [−A,A], so that a necessary condition for existence for all A > 0, and all
T > 0 is that h ∈ L̃1. We describe the results of the recent work [3] showing that
this condition is sufficient for the existence of at least one solution.

The action functional associated to problem (4) is given by

Ir(u) :=
∫ T

0
(−
√

1−u′2 +Acosu+uh)dx.

To obtain the set where Ir is defined, let us introduce the space

Lip# := Lip#(0,T ) := {u : [0,T ]→ R | u Lipschitzian, u(0) = u(T )}.

If [u]0,1 := supx 6=y∈[0,T ]
|u(x)−u(y)|
| x−y| , then Lip# is Banach space with norm

‖u‖0,1 := ‖u‖∞ +[u]0,1.

Furthermore, if u ∈ Lip#, then u′ exists a.e., and ‖u′‖∞ = [u]0,1.
Ir is defined on the closed convex set

K = {u ∈ Lip# | [u]0,1 ≤ 1}= {u ∈ Lip# | ‖u′‖∞ ≤ 1}

and of class C1 on {u ∈ Lip# | ‖u′‖∞ < 1}.
With respect to the situations considered in Sections 2 and 3, one must notice

the following new features :

1. Lip# is not reflexive.

2. Ir is only defined on a closed convex subset of Lip#.

Consequently, (4) needs not a priori be the Euler-Lagrange equation of Ir, and
finding a critical point of Ir is not sufficient to have a solution of (4). It will be
the case if such a critical point satisfies the condition ‖u′‖∞ < 1.

We first consider the problem of minimizing Ir over K. The simple proof
of the following lemma can be found in [3].
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Lemma 4.1. For any sequence (u j) in K converging in C[0,T ] to some u ∈ K,
one has

liminf
j→∞

∫ T

0
(−
√

1−u′2j )dx≥
∫ T

0
(−
√

1−u′2 )dx.

Proposition 4.2. For any h ∈ L̃1, Ir has a minimum over K.

Proof. By the 2π-periodicity of Ir, it is equivalent to minimize Ir on the
bounded closed convex set

K̂ := {u ∈ Lip# | u ∈ [0,2π], ‖u′‖∞ ≤ 1}.

K̂ is equicontinuous and Ascoli-Arzelá’s theorem implies that, up to a subse-
quence, any minimizing sequence in K̂ converges uniformly to some u∗ ∈ K,
which, using Lemma 4.1, minimizes Ir on K.

We now show that any minimizer of Ir on K satisfies a variational inequal-
ity.

Proposition 4.3. If Ir(u) = minK Ir, then, for all v ∈ K, one has∫ T

0

[
−
√

1− v′2 +
√

1−u′2 +(−Asinu+h)(v−u)
]

dx≥ 0.

Proof. It consists in starting from the inequality

Ir(u)≤Ir[u+λ (v−u)]

for all v ∈ K and all λ ∈ (0,1], using the convexity of the function −
√

1− s2,
and letting λ → 0+.

To show that ‖u′‖∞ < 1 for any minimizer, we introduce the following aux-
iliary problem(

u′√
1−u′2

)′
−u = f (x), u(0) = u(T ), u′(0) = u′(T ), (5)

where f ∈ L1.

Lemma 4.4. For any f ∈ L1, problem (5) has a unique solution û f , and

‖û′f ‖∞ < 1.

Proof. Existence is a special case of a result in [2] based upon fixed point theory
and degree arguments, and the uniqueness is proved in a standard way.
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A direct consequence of Lemma 4.4 is the following

Corollary 4.5. For any f ∈ L1, û f ∈ K and, for all v ∈ K, one has∫ T

0

[
−
√

1− v′2 +
√

1− û′2f +(û f + f )(v− û f )
]

dx≥ 0.

One can now state and proof the existence result for (4).

Theorem 4.6. For any h ∈ L̃1, and for any A > 0 problem (4) has at least one
solution minimizing Ir over K.

Proof. Let u∈K be a minimizer of Ir over K. Writing the differential equation
in (4) in the form(

u′√
1−u′2

)′
−u =−Asinu−u+h(x), u(0) = u(T ), u′(0) = u′(T )

and letting, for any w ∈ K, fw := −Asinw−w + h ∈ L1, we see that u is a
solution of the variational inequality∫ T

0

[
−
√

1− v′2 +
√

1−u′2 +(u+ fu)(v−u)
]

dx≥ 0

for all v ∈ K. Now, for any w ∈ K, the unique solution û fw of(
u′√

1−u′2

)′
−u = fw, u(0) = u(T ), u′(0) = u′(T )

satisfies the variational inequality∫ T

0

[
−
√

1− v′2 +
√

1− û′2fw
+(û fw + fw)(v− û fw)

]
dx≥ 0

for all v ∈ K. This easily implies u = û fu and hence that ‖u′‖∞ < 1.

Remarks.

1. Asinu can be replaced by any Carathéodory function g(x,u) periodic in u
and such that

∫ 2π

0 g(x,u) du = 0.

2. −
√

1−u′2 can be replaced by Φ(u′) with Φ∈C[−a,a]∩C1(−a,a) strict-
ly convex and such that φ = Φ′ : (−a,a)→ R is a homeomorphism with
φ(0) = 0.
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3. The problem of finding a pure variational proof of Theorem 4.6 is open,
as well as that of the existence of a second geometrically distinct solution.

4. Existence and multiplicity results have been obtained by fixed point the-
ory and degree techniques for h possibly different from zero, but under
restrictions upon A and T , for the more general equation(

u′√
1−u′2

)′
+ f (u)u′+Asinu = h(x)

(see [1, 16, 17]). They do not contain Theorem 4.6.

A ‘dual’ problem of (4) consists in the study of the T-periodic solutions of
the forced ‘curvature’ pendulum equation(

u′√
1+u′2

)′
+Asinu = h(x), u(0) = u(T ), u′(0) = u′(T ). (6)

The corresponding action functional, given by

Ic(u) =
∫ T

0
(
√

1+u′2 +Acosu+uh)dx,

is defined over W 1,1
# := W 1,1

# (0,T ) := {u ∈W 1,1(0,T ) | u(0) = u(T )}, and its
critical points are the solutions of (6). It is easy to see that Ic is coercive for
all h ∈ L̃1 such that ‖H‖∞ < 1, where H ′ = h, and H = 0. Because of the
non-reflexivity of W 1,1

# , this does not imply the existence of a minimum of Ic

over W 1,1
# , and the problem of the existence of a solution of (6) under those

restrictions remains open.
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[8] S. Fučik, Solvability of Nonlinear Equations and Boundary Value Problems, Rei-
del, Dordrecht, 1980.

[9] G. Hamel, Ueber erzwungene Schingungen bei endlischen Amplituden, Math.
Ann. 86 (1922), 1–13.

[10] J. Mawhin, Forced second order conservative systems with periodic nonlinearity,
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