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A CONJECTURE IMPLYING THE EXISTENCE
OF NON-CONVEX CHEBYSHEV SETS IN

INFINITE-DIMENSIONAL HILBERT SPACES

BIAGIO RICCERI

In this paper, we propose the study of a conjecture whose positive
solution would provide an example of a non-convex Chebyshev set in an
infinite-dimensional real Hilbert space.

Here and in the sequel, (X ,〈·, ·〉) is a separable real Hilbert space, with norm
‖ · ‖. A non-empty set C ⊂ X is said to be a Chebyshev set if, for each x ∈ X ,
there exists a unique y ∈C such that

‖x− y‖= inf
z∈C
‖x− z‖ .

Clearly, each closed convex set is a Chebyshev one. A natural question is: must
any Chebyshev C⊂X be convex ? We refer to the surveys [1], [5] for a thorough
discussion of the subject. In particular, it is well-known that any sequentially
weakly closed Chebyshev set C⊂X is convex. Hence, if X is finite-dimensional,
the answer to the above question is ”yes”.

However, since [7], it is a quite common feeling that if X is infinite-dimen-
sional, then X contains some non-convex Chebyshev set (see also [6] for a recent
contribution in this direction). Maybe, this is the most important conjecture in
best approximation theory.
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A much more recent (and less known) problem is: if f : X → R is a lower
semicontinuous function such that, for each y ∈ X and each λ > 0, the function
x→ ‖x− y‖2 +λ f (x) has a unique global minimum, must f be convex ? For
this problem too, the answer is ”yes” if X is finite-dimensional ([11], Corollary
3.8). See also Corollary 5.2 of [2] for another partial answer.

The aim of the present paper is to show that if the second problem has a
qualified negative answer, then the same happens for the first one.

In the sequel, L2([0,1],X) is the usual space of all (equivalence classes of)
measurable functions u : [0,1]→ X such that

∫ 1
0 ‖u(t)‖2dt <+∞, endowed with

the scalar product

〈u,v〉L2
X
=
∫ 1

0
〈u(t),v(t)〉dt

The norm induced by 〈·, ·〉L2
X

is denoted by ‖ · ‖L2
X
.

Let us start with the following

Definition 1. Let Y be a non-empty set and F a family of subsets of Y .
We say that F has the compactness-like property if every subfamily of F

satisfying the finite intersection property has a non-empty intersection.

We have the following characterization which is due to C. Costantini ([3]):

Proposition 2. Let Y be a non-empty set, let F be a family of subsets of Y and
let τ be the topology on Y generated by the family {Y \C}C∈F .
Then, the following assertions are equivalent:

i) Each member of F is τ-compact.

ii) The family F has the compactness-like property.

iii) The space Y is τ-compact.

We then formulate the following

Conjecture 3. If X is infinite-dimensional, there exist a non-convex Borel func-
tion f : X→R, r∈] infX f ,supX f [ and γ ∈]0,+∞], with the following properties:

(a)

sup
x∈X

| f (x)|
1+‖x‖2 <+∞ ;

(b) for each y ∈ X and each λ ∈]0,γ[, the function

x→‖x− y‖2 +λ f (x)
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has a unique global minimum in X , say x̂y,λ ; moreover, the map y→ x̂y,λ
is Borel and one has

‖x̂y,λ‖ ≤ cλ (1+‖y‖)

where cλ is independent of y ;

(c) if γ <+∞, for each y ∈ f−1(]r,+∞[), the function

x→‖x− y‖2 + γ f (x)

has no global minima in X ;

(d) for each v ∈ L2([0,1],X), with
∫ 1

0 f (v(t))dt > r, the family{
u ∈ L2([0,1],X) :

∫ 1

0
‖u(t)− v(t)‖2dt +λ

∫ 1

0
f (u(t))dt ≤ ρ

}
λ∈]0,γ[ ,

ρ∈R

has the compactness-like property.

Our result reads as follows:

Theorem 4. Assume that Conjecture 3 is true and let f be a function satisfying
it.
Then, {

u ∈ L2([0,1],X) :
∫ 1

0
f (u(t))dt ≤ r

}
is a non-convex Chebyshev set.

To prove Theorem 4, we need the following two results.

Theorem 5. Let Y be a non-empty set, η ∈]0,+∞] and ϕ,ψ : Y → R two func-
tions such that the function ϕ +λψ has a unique global minimum if λ ∈ [0,η [,
while has no global minima if η < +∞ and λ = η . Moreover, if y0 is the only
global minimum of ϕ , assume that infY ψ < ψ(y0). Finally, assume that the
family

{{y ∈ Y : ϕ(y)+λψ(y)≤ ρ} : λ ∈]0,η [, ρ ∈ R}

has the compactness-like property.
Then, for each ρ ∈] infY ψ,ψ(y0)[, the restriction of the function ϕ to ψ−1(ρ)
has a unique global minimum.

Theorem 6. Let f : X → R be a Borel function such that

sup
x∈X

| f (x)|
1+‖x‖2 <+∞ .
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Assume that, for some ρ ∈] infX f ,supX f [, the set{
u ∈ L2([0,1],X) :

∫ 1

0
f (u(t))dt ≤ ρ

}
is weakly closed.
Then, f is convex.

Theorem 5, via Proposition 2, is a direct consequence of a variant of The-
orem 1 of [9] (see also the proof of Theorem 1 of [10]), while Theorem 6 has
been proved by R. Landes in [8].

Proof. (Theorem 4) Fix λ ∈]0,γ[, v ∈ L2([0,1],X), with
∫ 1

0 f (v(t))dt > r, and
put

ωv,λ (t) = x̂v(t),λ

for all t ∈ [0,1]. From (a) and (b), it clearly follows that the function ωv,λ
belongs to L2([0,1],X). If u ∈ L2([0,1],X) and u 6= ωv,λ , we have

‖ωv,λ (t)− v(t)‖2 +λ f (ωv,λ (t))≤ ‖u(t)− v(t)‖2 +λ f (u(t))

for all t ∈ [0,1], the inequality being strict in a subset of [0,1] with positive
measure. Then, by integrating, we get∫ 1

0
‖ωv,λ (t)− v(t)‖2dt +

∫ 1

0
λ f (ωv,λ (t))dt <

<
∫ 1

0
‖u(t)− v(t)‖2dt +λ

∫ 1

0
f (u(t))dt .

Therefore, ωv,λ is the only global minimum in L2([0,1],X) of the functional

u→
∫ 1

0
‖u(t)− v(t)‖2dt +λ

∫ 1

0
f (u(t))dt .

Now, assume that γ <+∞. Put

Av = {t ∈ [0,1] : f (v(t))> r} .

Since
∫ 1

0 f (v(t)dt > r, the measure of Av is positive. We show that the functional

u→
∫ 1

0
‖u(t)− v(t)‖2dt + γ

∫ 1

0
f (u(t))dt

has no global minima in L2([0,1],X). Indeed, fix u ∈ L2([0,1],X). It is easy to
check that the function

(t,x)→‖x− v(t)‖2 + γ f (x)
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is L([0,1])⊗B(X)-measurable, where L([0,1]) and B(X) denote the Lebesgue
and the Borel σ -algebras of subsets of [0,1] and X , respectively. So, by Theorem
2.6.40 of [4], the function t→ infx∈X(‖x−v(t)‖2 + f (x)) is measurable. On the
other hand, in view of (c), we have

inf
x∈X

(‖x− v(t)‖2 + γ f (x))< ‖u(t)− v(t)‖2 + γ f (u(t))

for all t ∈ Av. Consequently, we can apply Theorem 4.3.7 of [4] to get a mea-
surable function ξ : [0,1]→ X such that

‖ξ (t)− v(t)‖2 + γ f (ξ (t))< ‖u(t)− v(t)‖2 + γ f (u(t))

for all t ∈ Av. Finally, choose a set B ⊂ A with positive measure such that ξ is
bounded in B and put

w(t) =
{

ξ (t) if t ∈ B
u(t) if t ∈ [0,1]\B .

Clearly, w ∈ L2([0,1],X) and one has∫ 1

0
‖w(t)− v(t)‖2dt + γ

∫ 1

0
f (w(t))dt <

∫ 1

0
‖u(t)− v(t)‖2dt + γ

∫ 1

0
f (u(t))dt

which proves our claim.
At this point, we can apply Theorem 5 taking

Y = L2([0,1],X) , η = γ , ϕ(u) = ‖u− v‖2
L2

X

and

ψ(u) =
∫ 1

0
f (u(t))dt .

Then, there exists a unique u ∈ ψ−1(r) such that

‖v−u‖L2
X
= dist(v,ψ−1(r)) .

We now claim that such an u is the unique point of ψ−1(]−∞,r]) such that

‖v−u‖L2
X
= dist(v,ψ−1(]−∞,r])) .

This amounts to show that if w ∈ ψ−1(]−∞,r]) is such that

‖v−w‖L2
X
= dist(v,ψ−1(]−∞,r])) , (1)
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then ψ(w) = r. Arguing by contradiction, assume that ψ(w) < r. For each
measurable set A⊂ [0,1], put

hA(t) =
{

v(t) if t ∈ A
w(t) if t ∈ [0,1]\A .

Also, set
D = {hA : A⊂ [0,1], A measurable} .

It is not hard to check that D is decomposable ([4], p. 452). Moreover, it is clear
that v,w ∈ D and that

‖v−h‖L2
X
< ‖v−w‖L2

X
(2)

for all h ∈ D \ {v,w}. By Corollary 4.5.13 of [4], the set ψ(D) is an interval.
Consequently, there exists h ∈ D \ {v,w} such that ψ(h) = r. This implies a
contradiction, in view of (1) and (2). So, ψ−1(]−∞,r]) is a Chebyshev set
in L2([0,1],X). Finally, this set is not convex. Indeed, if it was convex, being
closed, it would be weakly closed. Then, by Theorem 6, the function f would
be convex, against the assumptions.
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