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A CONJECTURE IMPLYING THE EXISTENCE
OF NON-CONVEX CHEBYSHEYV SETS IN
INFINITE-DIMENSIONAL HILBERT SPACES

BIAGIO RICCERI

In this paper, we propose the study of a conjecture whose positive
solution would provide an example of a non-convex Chebyshev set in an
infinite-dimensional real Hilbert space.

Here and in the sequel, (X, (-,-)) is a separable real Hilbert space, with norm
Il - |l A non-empty set C C X is said to be a Chebyshev set if, for each x € X,
there exists a unique y € C such that

—y||=inf|x—2z] .
[be = yll = inf flx — 2|

Clearly, each closed convex set is a Chebyshev one. A natural question is: must
any Chebyshev C C X be convex ? We refer to the surveys [1], [5] for a thorough
discussion of the subject. In particular, it is well-known that any sequentially
weakly closed Chebyshev set C C X is convex. Hence, if X is finite-dimensional,
the answer to the above question is “’yes”.

However, since [7], it is a quite common feeling that if X is infinite-dimen-
sional, then X contains some non-convex Chebyshev set (see also [6] for a recent
contribution in this direction). Maybe, this is the most important conjecture in
best approximation theory.
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A much more recent (and less known) problem is: if f: X — R is a lower
semicontinuous function such that, for each y € X and each A > 0, the function
x — ||x —y||*> + A f(x) has a unique global minimum, must f be convex ? For
this problem too, the answer is "yes” if X is finite-dimensional ([11], Corollary
3.8). See also Corollary 5.2 of [2] for another partial answer.

The aim of the present paper is to show that if the second problem has a
qualified negative answer, then the same happens for the first one.

In the sequel, L2(]0,1],X) is the usual space of all (equivalence classes of)
measurable functions u : [0, 1] — X such that [} ||u(z)||?dt < +oo, endowed with
the scalar product

)y = [ Gl v

The norm induced by (-,-);2 is denoted by |-l -
Let us start with the following

Definition 1. Let Y be a non-empty set and F a family of subsets of Y.
We say that F has the compactness-like property if every subfamily of F
satisfying the finite intersection property has a non-empty intersection.

We have the following characterization which is due to C. Costantini ([3]):

Proposition 2. Let Y be a non-empty set, let F be a family of subsets of Y and
let T be the topology on'Y generated by the family {Y \ C}cer.
Then, the following assertions are equivalent:

i) Each member of F is T-compact.
ii) The family F has the compactness-like property.
iii) The space Y is T-compact.

We then formulate the following

Conjecture 3. If X is infinite-dimensional, there exist a non-convex Borel func-
tion f: X — R, r €]infy f,supy f| and y €]0, 4o, with the following properties:

(a)
|f ()]

Sup ————= < +oo ;
vew 1+ 1|

(b) for each y € X and each A €]0, [, the function

x = [pe=yl* + A1 (x)
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has a unique global minimum in X, say £, 3 ; moreover, the map y — %,
is Borel and one has

[ 1l < e (T+yl)

where c; is independent of y ;

(c) if y < oo, for each y € £~ 1(]r,+oo[), the function

x= =y +7f(x)
has no global minima in X ;
(d) foreachv € L%(]0,1],X), with fol f(v(t))dt > r, the family
2 2
{ueL ([0,1], /|| (it HdH—)L/f }
A€l0.y],
peR
has the compactness-like property.
Our result reads as follows:

Theorem 4. Assume that Conjecture 3 is true and let f be a function satisfying

it.
Then,

{u€L201 /f dt<r}
is a non-convex Chebyshev set.

To prove Theorem 4, we need the following two results.

Theorem 5. Let Y be a non-empty set, 1 €]0,+0| and ¢,y : Y — R two func-
tions such that the function @ + Ay has a unique global minimum if A € [0,n],
while has no global minima if 1 < +e and A = 1. Moreover, if yq is the only
global minimum of ¢, assume that infy y < y(yo). Finally, assume that the
family

(Y eY:90)+Aw(y) <p}:2 €0.nl.p € R}

has the compactness-like property.
Then, for each p €]infy w, y(yo)[, the restriction of the function ¢ to w~'(p)
has a unique global minimum.

Theorem 6. Let f: X — R be a Borel function such that

p L)

xex 1+ 1x]?

< +oo
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Assume that, for some p €]infx f,supy f/, the set

{ueL2 ([0, 1], /f dt<p}

is weakly closed.
Then, f is convex.

Theorem 5, via Proposition 2, is a direct consequence of a variant of The-
orem 1 of [9] (see also the proof of Theorem 1 of [10]), while Theorem 6 has
been proved by R. Landes in [8].

Proof. (Theorem 4) Fix A €]0,7], v € L*([0,1],X), with [} f(v(r))dt > r, and
put

0,2 (1) = Xy 2

for all r € [0,1]. From (a) and (b), it clearly follows that the function @,
belongs to L*([0,1],X). If u € L*([0,1],X) and u # ®,;, we have

leo (1) = V(D) [P+ A (@, () < u(t) = v(O)|* + A (u(r))

for all + € [0, 1], the inequality being strict in a subset of [0, 1] with positive
measure. Then, by integrating, we get

1 1
/ Ha)v,l(t)—v(t)szl—l-/ Af(o,,(t))dt <
0 0

< [t ~vlPar+ 2 [ ratea

Therefore, @, is the only global minimum in L?([0, 1],X) of the functional

s [ ute) o)A [ oy

Now, assume that y < +oco. Put

A, ={re0,1]: f(v(r)) >r}.

Since [, f(v(t)dt > r, the measure of A, is positive. We show that the functional

1 1
u— [ )=y Pde+y | fuo))a

has no global minima in L?([0, 1],X). Indeed, fix u € L*([0,1],X). It is easy to
check that the function

(£,2) = e = v(D) > + vf (x)
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is £([0,1]) ® B(X)-measurable, where £(]0, 1]) and B(X) denote the Lebesgue
and the Borel o-algebras of subsets of [0, 1] and X, respectively. So, by Theorem
2.6.40 of [4], the function t — infex (||x —v(¢)||* + f(x)) is measurable. On the
other hand, in view of (c), we have

inf (lx = (0|2 + 7£(0)) < lu(e) = v(e) >+ f ()

for all + € A,. Consequently, we can apply Theorem 4.3.7 of [4] to get a mea-
surable function & : [0, 1] — X such that

1) = v(@)II* + 7, (1)) < lfaalr) = v(e) > + 7S (u(r))

for all t € A,. Finally, choose a set B C A with positive measure such that £ is
bounded in B and put

E() ifreB
W(”:{ u(t) ifref0,1\B.

Clearly, w € L*([0,1],X) and one has

1 1 1 1
)=yl ey [ powde < [t —v)Pdi+y [ st

which proves our claim.
At this point, we can apply Theorem 5 taking

Y :L2([03 1]3X)’ n=vy, (P(I/t) = ||M—V||i§

and

v = [ ().
Then, there exists a unique u € y~' () such that
lv—ullz =dist(v, y~'(r)) .
We now claim that such an u is the unique point of y~!(] — oo, 7]) such that
v —ul = dist(v,y~" (| =0, 1])) -
This amounts to show that if w € y~!(] — oo, 7]) is such that

v =wllz = dist(v. ™' (] =0, 1])) , (1)
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then y(w) = r. Arguing by contradiction, assume that y(w) < r. For each
measurable set A C [0, 1], put

v(t) ifteA
hA(t)—{ w(t) ifre0,1\A.

Also, set
D={hy:AC|0,1], A measurable} .

It is not hard to check that D is decomposable ([4], p. 452). Moreover, it is clear
that v,w € D and that
v =l <lv—wlz (2)

for all h € D\ {v,w}. By Corollary 4.5.13 of [4], the set y(D) is an interval.
Consequently, there exists 4 € D\ {v,w} such that y(h) = r. This implies a
contradiction, in view of (1) and (2). So, y~!(] —oo,7]) is a Chebyshev set
in L2([0,1],X). Finally, this set is not convex. Indeed, if it was convex, being
closed, it would be weakly closed. Then, by Theorem 6, the function f would
be convex, against the assumptions. O
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