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ON THE UNIQUENESS OF LIMIT CYCLES FOR LIÉNARD
EQUATION: THE LEGACY OF G. SANSONE

M. SABATINI - G. VILLARI

We give an account of the results about limit cycle’s uniqueness for
Liénard equations, starting from Levinson-Smith’s one to the most re-
cent ones. We present a new uniqueness theorem in the line of Sansone-
Massera’s geometrical approach.

1. Introduction

The aim of this paper is to present some classical and more recent results con-
cerning the uniqueness of limit cycles for the Liénard equation

ẍ+ f (x)ẋ+g(x) = 0. (1)

Such an equation is without any doubt among the most investigated ones in
the qualitative theory of ordinary differential equations, for its applications in
mechanics and electric circuits theory. It may be considered the starting point
in the theory of limit cycles, becoming sort of a benchmark for new methods.
Its relationships with different classes of systems, as quadratic ones (which can
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be reduced to suitable Liénard systems) made it even more relevant in the study
of planar systems.

We do not intend to make a survey on this widely investigated area. Our at-
tempt is rather directed to focus on the results of Giovanni Sansone and to show
how in some sense those results were giving a crucial contribute for the devel-
opment of this field. After such equation was proposed by Liénard in 1928 [12],
who proved the first uniqueness theorem for limit cycles, it was necessary to
wait until 1942 to find another significant result in this direction, due to Levin-
son and Smith [11]. But it was only with the contribution of Sansone, starting
from his celebrated paper of 1949 [18], that the relevance of this problem was
recognized, not only from the Italian school. We just recall the famous paper
of Filippov [8], which was devoted to the problem of existence of limit cycles
and therefore will be not examined in this context. For the enormous contribu-
tion of the Chinese School, which for long time was not known out of China
for language problems, we refer to the monograph of Ye Yan Qian “Theory of
limit cycles” [23]. Finally, a survey updated until the 70’s is due to Staude [22].
Coming back to the work of Sansone, we believe that our, in some sense histor-
ical, approach will be of some interest, because it shows how deep results may
come out from simple geometrical ideas in a far to be easy field of research as
is the problem of uniqueness for periodic solutions. In particular, we would like
to describe the three approaches applied by Sansone in such a field: the energy
integral, the divergence integral and, implicitly, the rotation of the vector field
along rays. The first one was not new, since it appeared in the very first paper
about Liénard equation [12], which gave to such an equation its name. The sec-
ond one was probably used for the first time just by Sansone, as well as the third
one, even if this approach is usually credited to Massera for his geometrical idea
centered on the rotation of the vector field on rays.

In section 2 we give an account of the evolution of the theory starting from
Levinson-Smith paper. Some of the more recent developments in this direction
will be also presented. We know that not all the authors which deserve to be
quoted will appear and we apologize for this.

In section 3 we discuss some problems arising from the geometrical ap-
proach to uniqueness. We also present a new result in the light of the ideas of
Sansone and Massera. Such a result can be applied to a class of planar differen-
tial systems, not equivalent to second order differential equations. This extends
a recent result by Ciambellotti also based on Massera’s geometrical approach
[5].

In section 4 we point out that the field still uncovered by existing uniqueness
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theorems contains strikingly simple, but non-trivial equations. Lins-De Melo-
Pugh’s conjecture, still open but for special cases, resists to researchers’ efforts
since 1976.

2. Uniqueness theorems

Let us consider a Liénard equation in the phase plane,

ẋ = y, ẏ =−g(x)− f (x)y. (2)

We shall also consider the usual system, known as Liénard plane,

ẋ = y−F(x), ẏ =−g(x), (3)

where F(x) =
∫ x

0 f (s)ds. Throughout all of this paper we assume f (x) to be
continuous and g(x) to be locally lipschitzian on their common domain, so
to have existence and uniqueness of solutions. In the following we also write
G(x) =

∫ x
0 g(s)ds, referring to

E(x,y) = G(x)+
y2

2

as the energy function of both systems (2) and (3). Some of the basic properties
and techniques concerned with limit cycles’ existence and uniqueness appear
already in Liénard’s paper [12], which may be considered a milestone in this
field, but after this paper, the first relevant result concerning the uniqueness
of limit cycles is due to Levinson and Smith [11]. In particular, the authors
presented the following results. We write F(+∞) for

∫ +∞

0 f (x)dx. Similarly for
G.

Theorem 2.1. Assume that xg(x)> 0 for x 6= 0. If there exist δ− < 0 < δ+ such
that

• G(δ−) = G(δ+);

• f (x)< 0 in (δ−,δ+);

• f (x)≥ 0 in (−∞,δ−]∪ [δ+,+∞);

• G(±∞) = F(+∞) = +∞;

then the system (2) has exactly one limit cycle.
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Such a theorem is obtained as a special case of a more general one concern-
ing the system

ẋ = y, ẏ =−g(x)− f (x,y)y. (4)

Restricting to classical Liénard systems, the same paper contains also a re-
sult strongly depending on symmetry properties of f (x) and g(x). Even if it is
not explicitly stated as a corollary, we can summarize the containt of section 4
in [11] in the following statement.

Theorem 2.2. Assume f (x) even, g(x) odd, and xg(x)> 0 for x 6= 0. If

• there exists x0 > 0 such that F(x)< 0 in (0,x0);

• F(x)> 0 and increasing in (x0,+∞);

• G(+∞) = F(+∞) = +∞;

then (3) has exactly one limit cycle.

The proof did not introduce relevant novelties, being based on Liénard’s
approach. In fact, theorem (2.2), under the condition g(x) = x, was proved
by Liénard in his celebrated paper [12]. Both Liénard’s and Levinson-Smith’s
proofs are based on the fact that the energy’s derivative along the solutions of
(3) is Ė(x,y) = −F(x)g(x), so that the integral of −F(x)g(x) along a cycle is
zero. Splitting the integral in several steps, where the integration is performed
with respect to x or y, and comparing analogous sub-integrals of distinct cycles,
one proves that if γ1 and γ2 are two concentric cycles, with periods T1 and T2,

0 =
∫ T1

0
E(γ1(t))dt 6=

∫ T2

0
E(γ2(t))dt = 0,

so obtaining a contradiction.

A few years after Levinson and Smith, Sansone proved the following the-
orem, where the symmetry assumption on F(x) was replaced by a weaker one
[18].

Theorem 2.3. If g(x) = x and there exist δ− < 0 < δ+ such that

• f (x)< 0 for x ∈ (δ−,δ+);

• either f (x)> 0 in (δ+,+∞) or f (x)> 0 in (−∞,δ−);
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• there exists ∆ > 0 such that F(∆) = F(−∆) = 0;

• F(+∞) = +∞, or F(−∞) =−∞;

then the system (3) has exactly one limit cycle, which is stable.

In the same direction, for more general classes of systems, we can find the
recent results of Xiao and Zhang Zhi-fen [24], [25], Carletti and Villari [2],
Sabatini and Villari [17], Carletti [1].

Next theorem was based on a different principle [18].

Theorem 2.4. If g(x) = x, and

• there exists δ > 0 such that f (x)< 0 for x ∈ (−δ ,δ ),
f (x)> 0 in (−∞,−δ )∪ (δ ,+∞);

• F(+∞) = +∞, or F(−∞) =−∞;

then the system (2) has exactly one limit cycle, which is stable.

The above theorem, even if a special case of theorem 2.1, introduced a sta-
bility argument often re-used by several authors in successive papers. Sansone
proves that if a T -periodic limit cycle γ(t) exists, then it is attractive, since the
divergence integral

∫ T
0 div(γ(t))dt is negative. Then, since two adjacent con-

centric limit cycles cannot be both attractive, the uniqueness follows. Such a
theorem, even if not explicitly stated, proves also the cycle’s hyperbolicity, that
is an important feature in relation to perturbation problems.

An equally innovative result obtained by Sansone on limit cycle’s unique-
ness is virtually unknown to most researchers. It was exposed in a talk, together
some other results about Liénard equation, whose containt appeared in [19],
section 2. We report here the uniqueness theorem for Liénard equation.

Theorem 2.5. If g(x) = x and there exist δ− < 0 < δ+ such that

• f (x)< 0 for x ∈ (δ−,δ+);

• either f (x)> 0 in (δ+,+∞) or f (x)> 0 in (−∞,δ−);

• f (δ−) = f (δ+) = 0;
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• | f (x)|< 2;

• f (x) is non-increasing in (−∞,δ−) and non-decreasing in (δ+,+∞) ;

then the system (3) has exactly one limit cycle.

The proof was based first on the trasformation of the system (3) into polar
coordinates (r,θ), then on the study of the function

d
dθ

lnr(θ) =
f (r cosθ)sin2

θ

1+ f (r cosθ)sinθ cosθ
.

A generalization of Sansone’s result is due to Conti, who used the map

(x,y) 7→ (sign(x)
√

G(x),y)

known as Conti-Filippov transformation, to transform the system (2) or (3) into
a new system with g(x) replaced by x.

The weakness of last Sansone’s result is the assumption | f (x)| < 2 (which
avoids the denominator’s vanishing), clearly not satisfied by polynomials. In
Sansone’s approach it was not clear whether such an obstacle could be over-
come. Such an assumption was removed by Massera, when he was visiting Flo-
rence and working with Sansone. Actually, Massera’s main contribution con-
sisted in turning Sansone’s analytical approach into a geometrical one. Massera
observed that the monotonicity conditions on f (x) imply that the vector field
rotates clockwise, as r increases, along rays contained in the half-plane x > 0,
counter-clockwise, as r increases, along rays contained in the half-plane x < 0.
If γ is star-shaped, then ever curve γκ obtained from γ by a κ-dilation (homoth-
ety) is as well star-shaped. The family γk is a foliation of the punctured plane,
and can be assimilated to the family of level curves of a Liapunov function for
γ . The vector field rotation forces the orbits of (2) to enter such curves, ap-
proaching γ . This in turn allows to show that every limit cycle is attractive, so
preventing the co-existence of concentric limit cycles, by Sansone’s attractivity
argument. On the other hand, if the limit cycle is not star-shaped, the curves γk
can intersect with each other, and for values of κ close to 1 they even intersect
the limit cycle γ , so that proving γ’s attractivity is not immediate. It is amazing
to observe that in the original paper Massera deals with this point by just writing
Il faut remarquer que le raisonnement resterai valable mème si γ n’est pas étoilé
par rapport à l’origine: dans ce cas γ et γk pourraient avoir des intersections.

It is worth noticing that Sansone’s condition | f (x)|< 2 implies that for every
non-trivial orbit the angular speed does not vanish. In particular, this occurs at
cycles, which hence have to be star-shaped.
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It is also surprising to observe that the cycle’s star-shaped-ness could have
been easily proved by using the monotonicity conditions on f (x), as shown in
[27], p. 225. A more geometrical proof of the cycle’s star-shaped-ness was
developed by Villari, and appeared for the first time in [3]. A second objection
to Massera’s geometrical approach is that, in general, the vector field could
rotate up to reach a position opposite to the original one (tangent to γ) so that
the successive position would take the orbits to leave the external γk’s. This
cannot occur for second order equations, as will be shown in section 3.

We emphasize that the cycle’s star-shaped-ness does not imply that the an-
gular speed be of constant sign on every orbit. In fact, even for the simplest
example of Liénard equation with a limit cycle, i.e. Van der Pol’s equation,

ẍ+ ε(x2−1)ẋ+ x = 0,

infinitely many orbits passing through the second and fourth orthants change
angular speed. We may consider the information on the cycle’s star-shaped-
ness also as information about the cycle’s location: it is contained in the region
x2−xy f (x)+y2 > 0. Other extensions were given by Carletti, Rosati and Villari
[3] and Ciambellotti [5], but in both papers the geometrical idea of Massera is
not really modified.

At the end of this review, we cite a result that renews the divergence ap-
proach in a non-traditional way. In some recent papers new classes of so-
called stability operators were introduced, in order to study cycles’ hyperbol-
icity. Such operators are just functions Ψ(x,y) with the property that if γ is a
T -periodic cycle and ∫ T

0
Ψ(γ(t))dt 6= 0,

then γ is hyperbolic, the stability character being given by the sign of the above
integral. The divergence is clearly one of such operators. Other ones are the
curvature of the orthogonal vector field, or the function

ν =
[V,W ]∧V

V ∧W
, V ∧W 6= 0,

where [V,W ] is the Lie bracket of V and W , and V ∧W is the determinant of the
matrix having V and W as rows ([9], [10]). The function ν has the following
relevant property∫ T

0
(div V )(γ(t))dt =

∫ T

0

[V,W ]∧V
V ∧W

(γ(t)) dt,

In particular, if ν ≤ 0 in a domain (not identically vanishing on any cycle), then
such a domain cannot contain two concentric limit cycles, since they both should
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be attractive. This is just the original argument by Sansone, applied replacing
the divergence with ν . We emphasize that using ν allows also to prove the cy-
cle’s hyperbolicity, which is not a consequence of Sansone-Massera’s approach.

Finally, we observe that Massera theorem is a special case of such a result,
obtained by taking W (x,y) = (x,y). In fact, as shown in Corollary 6 of [10],
given an arbitrary planar differential system

ẋ = P(x,y), ẏ = Q(x,y), (5)

taking W (x,y) = (x,y), gives, for Q 6= 0,

ν =
P(xQx + yQy)−Q(xPx + yPy)

yP− xQ
=

r
(

∂

∂ r
Q
P

)
yP− xQ

=
r

yẋ− xẏ

(
∂

∂ r
ẏ
ẋ

)
. (6)

In other words, if ν does not change sign, then the vector field rotates monoton-
ically along rays as r increases. Moreover, if

ẋ = P(x,y) = y, ẏ = Q(x,y) =−x− y f (x),

then

ν =−x f ′(x)
y2

x2 + xy f (x)+ y2 . (7)

Hence, if the denominator x2+xy f (x)+y2 does not vanish, ν’s sign is the same
as that of x f ′(x), re-finding Sansone-Massera’s condition.

3. A new result

Let us call radial angular monotonicity, RAM, the property of the vector field
to rotate monotonically along rays as r increases. An implicit assumption of
Massera-like theorems is the fact that limit cycles rotate clockwise around the
origin. This is a consequence of ẋ = y, which forces cycles cross the y-axis
rotating clockwise. If RAM holds, this gives the attractivity of every cycle,
hence its uniqueness. In fact, the same assumption on a cycle rotating counter-
clockwise generates repulsiveness, rather than attractiveness. This allows as
well to prove uniqueness, if RAM holds. On the other hand, the possible co-
existence of limit cycles rotating both clockwise and counter-clockwise does not
allow to prove uniqueness under the only RAM hypothesis. Counterexamples
with finitely many and infinitely many cycles have been given in [16]. We report
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here a polynomial system satisfying RAM, with two limit cycles rotating in
different ways. ẋ = y

(
x2 + y2− (x2 + y2)2

)
+ x
(

1−3(x2 + y2)+(x2 + y2)2
)

ẏ = −x
(

x2 + y2− (x2 + y2)2
)
+ y
(

1−3(x2 + y2)+(x2 + y2)2
) (8)

Such a system has two star-shaped limit cycles coinciding with the circles x2 +

y2 = 3−
√

5
2 and x2 +y2 = 3+

√
5

2 . The internal one is an attractor, the external one
is a repellor. The vector field rotates clockwise along every ray (see figure 1).

Figure 1: The system (8) has two limit cycles.

x
K1,5 K1,0 K0,5 0 0,5 1,0 1,5

y

K1,5

K1,0

K0,5

0,5

1,0

1,5

Hence, in order to prove a Massera-like theorem valid for systems, one has
to assume some additional hypothesis that prevents the coexistence of opposite
rotations. This does not necessarily have to hold in all of the plane. It is suffi-
cient, to prove that it occurs in a region containing all cycles, or, as in [15, 16],
in the region bounded by two adjacent limit cycles. In [15, 16], this was proved
for systems of the type

ẋ = y, ẏ =−x− yφ(x,y)

under the assumtpion that φ ’s level sets be star-shaped. This does not imply the
orbits’ star-shaped-ness.

We propose here some simple additional conditions that allow to prove
uniqueness if RAM holds. We state next theorem for a system defined on the
whole plane, but it can be easily adapted to an arbitrary star-shaped set contain-
ing the origin. We assume existence and uniqueness of solutions to (5). Let us
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set
α(x,y) = P(xQx + yQy)−Q(xPx + yPy). (9)

In next theorem, the interval (a,b) may be a half-line or even all of R.

Theorem 3.1. Assume that (5) to have a unique equilibrium point at the origin.
Assume α(x,y)≥ 0 in Ω. If one of the following conditions holds

(1) for all (x,y) ∈ R2, (x,y) 6= (0,0), for all τ > 0, the vectors V (τx,τy) and
V (x,y) are linearly independent;

(2) there exists a C1, open Jordan curve curve η : (a,b) → R2 such that
lims→a+ |η(s)|= 0, lims→b− |η(s)|=+∞, and θ̇(η(s))> 0 (< 0);

then the system (5) has at most one limit cycle in Ω.

Proof. According to (6), the sign of α is the sign of the radial derivative of
ẏ
ẋ

.
Working as in [3], one proves that every cycle is star-shaped The existence of a
single equilibrium point implies that all cycles are concentric. Then we work as
follows.

Point (1). It is a modification of the original argument by Massera. If a
cycle γ exists, as in [14] we may consider the family of curves γκ obtained from
γ by means of κ-dilations (homotheties). In particular, γ = γ1. Without loss
of generality, we may assum γ1 to rotate clockwise. Then, the vector field’s
rotation along rays implies that, for small positive values of κ − 1, V points
towards the interior of γκ . Assume, by absurd, the existence of κ∗ and (x∗,y∗)
such that V (x∗,y∗) points outwards γκ∗ . Then, by continuity, there exists κ+ and
(x+,y+) such that V (x+,y+) is tangent to γκ+ . The rotation’s monotonicity along
rays implies that this occurs first at a point (x+,y+) where V (x+,y+) is parallel
and opposite to V (x1,y1), with (x1,y1) ∈ γ . This contradicts the hypothesis (1).
Internal attractivity can be proved in the same way.

Point (2). Assume, by absurd, the existence of two distinct cycles γi, γe,
with γi encircled by γe. Without loss of generality, we may assume them to be
adjacent. Since both are star-shaped, θ̇ does not change sign on any of them.
Moreover, since they both cross the curve η , both have to contain a point where
θ̇ > 0. Hence θ̇(γi) ≥ 0 and θ̇(γe) ≥ 0. The condition RAM implies that both
are attractive, which is a contradiction.

Both hypotheses (1) and (2) are satisfied by Liénard systems. Point (1) since
ẋ = y on the curve η(s) = (0,s), defined on (0,+∞).
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Next corollary extends Ciambellotti’s result [5]. Consider the following
family of systems

ẋ = k(y), ẏ =− f (x)l(y)−
n

∑
j=0

h j(x)m j(y). (10)

Corollary 3.2. Assume k(y), l(y), to be d-homogeneous functions, d ≥ n, h j(x)
j-homogeneous, m j(y) (d − j)-homogeneous, for j = 1, . . . ,n, f (x) differen-
tiable. If yk(y)> 0 and yl(y)> 0 for y 6= 0, x f ′(x)≥ 0 for x 6= 0, then the system
(10) has at most one limit cycle.

Proof. The system (10) satisfies the hypothesis (2) of theorem 3.1, taking η(s)
= (0,s), s ∈ (0,+∞). Let us compute the function α for the system (10):

α = k

[
−x f ′l− x

n

∑
j=0

h′jm j− y f l′− y
n

∑
j=0

h jm′j

]
+

[
f l +

n

∑
j=0

h jm j

]
yk′ =

=−x f ′lk− k
n

∑
j=0

xh′jm j− f yl′k− k
n

∑
j=0

h jym′j + f lyk′+ yk′
n

∑
j=0

h jm j =

=−x f ′lk− k
n

∑
j=0

jh jm j−d f lk− k
n

∑
j=0

h j(d− j)m j +d f lk+dk
n

∑
j=0

h jm j

=−x f ′lk+ k

[
−

n

∑
j=0

jh jm j−
n

∑
j=0

h j(d− j)m j +
n

∑
j=0

h jdm j

]
=−x f ′lk.

The sign of −x f ′(x)l(y)k(y) is the same as that of −x f ′(x), since both k(y) and
l(y) have the sign of y. Hence the sign of α is that of −x f ′(x), as in formula
(7).

An example is given by the system

ẋ = y3, ẏ = (5x2−1)y3− x3− xy2, (11)

illustrated in figure 2.
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Figure 2: The system (11) has a unique limit cycle.
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4. An open problem

At the end of this paper, after having listed several theorems of seemingly great
generality, we would like to point out a very simple problem still waiting for a
solution. Let us consider the Liénard equation with f (x) cubic polynomial,

ẍ+(ax3 +bx2 + cx+d)ẋ+ x = 0, a,b,c,d ∈ R.

Such an equation is clearly out of the reach of any of the above results. Proving
the limit cycle’s uniqueness for such a class of equations would give an answer
to Lins-De Melo-Pugh’s Conjecture when the degree deg( f ) of f (x) is 3 [13].
As it is well known, such a conjecture is part of the famous XVI Hilbert’s prob-
lem, re-proposed by Smale as one of the Mathematical problems for the next
century [21]. The conjecture for deg( f ) = 2 was proved by Lins-De Melo-Pugh
in their paper, but they were not aware of the fact that this problem was actually
already solved by Zhang-Zhifen in 1958. This is a very deep result, but the for
long time the proof was only in Chinese, until an English version appeared [26].
It is remarkable that such a problem has already been given a negative answer
for deg( f ) even, deg( f ) ≥ 6, by Dumortier, Panazzolo and Roussarie [7]. An-
other interesting recent result has been proved in [4] for deg( f ) odd. Caubergh
and Dumortier proved that the number of limit cycles is uniformly bounded, if
one restricts to some compact set of polynomials of degree exactly deg( f ).
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