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HOPF MODULES IN THE BRAIDED
MONOIDAL CATEGORY LM

YANMIN YIN - MINGCHUAN ZHANG

Suppose that L is a quasitriangular weak Hopf algebra with a bijective
antipode and H is a weak Hopf algebra in the braided nonoidal category
LM. We prove that the fundamental theorem for right H-Hopf modules in
LM. Our results in this paper generalize previous fundamental theorem
for Hopf module on the Hopf algebras and weak Hopf algebras.

1. Introduction

Weak Hopf algebras have been proposed by G. Bohm, F. Nill and K.Szlachanyi
as a generalization of ordinary Hopf algebras in the following sense: the defin-
ing axioms are the same, but the multiplicativity of the counit and the comulti-
plicativity of the unit are replaced by weaker axioms. The initial motivation to
study weak Hopf algebras is their connection with the theory of algebra exten-
sion [1], and another important application of weak Hopf algebras is that they
provide a natural framework for the study of dynamical twists in Hopf algebras
[2].

In [5] a new theory of weak Hopf algebras has begun to be developed: that of
weak Hopf algebras in the monoidal categories. This is the theory with emphasis
in L

LYD, the Yetter-Drinfeld category over L, where L is a weak Hopf algebra.
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Our motivation to study quasitriangular weak Hopf algebras is the so-called
biproduct construction interpreted in terms of braided categories. More pre-
cisely, we are interested in a specific type of braided weak Hopf algebras.

In this paper, we prove the fundamental theorem for right H-Hopf modules
in the representations category Rep(L)= LM, where L is a quasitriangular weak
Hopf algebra. Since the matrix R gives rise to a natural braiding for LM and
L
LYD, We can show that if H is a weak Hopf algebra in LM, then H is also a
weak Hopf algebra in L

LYD.

2. Preliminaries

Throughout this paper we use Sweedler’s notation for comultiplication, writing
∆(h) = h1⊗ h2. Let k be a fixed field and all weak Hopf algebras and Hopf
algebras are finite dimensional.

Definition 2.1. A weak Hopf algebra is a vector space L with the structure
of an associative unital algebra (L, m, µ) with multiplication m : L⊗L −→ L
and unit 1 ∈ L and a coassociative coalgebra (L, ∆, ε) with comultiplication
∆ : L−→ L⊗L and counit ε : L−→ k such that
(i) The comultiplication ∆ is a (not necessarily unit-preserving) homomorphism
of algebras such that

(∆⊗ id)∆(1) = (∆(1)⊗1)(1⊗∆(1)) = (1⊗∆(1))(∆(1)⊗1). (2.1)

(ii) The counit satisfies the following identity

ε(kgl) = ε(kg1)ε(g2l) = ε(kg2)ε(g1l), ∀k, g, l ∈ L. (2.2)

(iii) There is a linear map SL : L−→ L called an antipode, such that, for all l ∈ L

m(id⊗SL)∆(l) = (ε⊗ id)(∆(1)(l⊗1)), (2.3)

m(SL⊗ id)∆(l) = (id⊗ ε)((1⊗ l)∆(1)), (2.4)

SL(l) = SL(l1)l2SL(l3). (2.5)

The linear map defined in (2.3) and (2.4) are called target and source counital
maps and denoted by εt and εs respectively:

εt(l) = ε(1(1)l)1(2) = ε(SL(l)1(1))1(2), (2.6)

εs(l) = 1(1)ε(l1(2)) = 1(1)ε(1(2)SL(l)). (2.7)

For all l ∈ L, we have

l1⊗ εt(l2) = 1(1)l⊗1(2), εs(l1)⊗ l2 = 1(1)⊗ l1(2), (2.8)

l1⊗ εs(l2) = l1(1)⊗SL(1(2)), εt(l1)⊗ l2 = SL(1(1))⊗1(2)l. (2.9)
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We will briefly recall the necessary definitions and notions on the weak Hopf
algebras.

Definition 2.2. An algebra H is a left L-module algebra if H is a left L-module
via l⊗ x 7−→ l −→ x such that

(1) l −→ xy = (l1 −→ x)(l2 −→ y),
(2) l −→ 1 = εt(l)−→ 1, ∀x, y ∈ H, l ∈ L.

The second equation is equivalent to εt(l)−→ x = (l −→ 1)x.

Definition 2.3. An algebra H is a left L-module coalgebra if H is a left L-module
via l⊗ x 7−→ l −→ x such that

(1) ∆(l −→ x) = (l −→ x)1⊗ (l −→ x)2 = (l1 −→ x1)⊗ (l2 −→ x2),
(2) εs(l)−→ x = x1ε(l −→ x2), ∀l ∈ L, x ∈ H.
the second equation is equivalent to

ε(lk−→ h)= ε(lk2)ε(k1−→ h), ε(εs(l)−→ h)= ε(l−→ h), l, k∈L, h∈H.

Definition 2.4. A quasitriangular weak Hopf algebra is a pair (L, R) where L is
a weak Hopf algebra and R∈∆op(1)(L⊗L)∆(1) (called the R-matrix) satisfying
the following conditions:

∆
op(l)R = R∆(1) (2.10)

for all l ∈ L, where ∆op denotes the conditions apposite to ∆,

(id⊗∆)(R) = R13R12, (2.11)

(∆⊗ id)(R) = R13R23. (2.12)

where R12 = R⊗ 1, R23 = 1⊗R, etc. as usual, and such that there exits R ∈
∆(1)(L⊗L)∆op(1) with

RR = ∆
op(1), RR = ∆(1)

Furthermore, (L, R) is called triangular if R = R21, where we write R =
R1⊗R2, then R21 = R2⊗R1.

Note that R is uniquely determined by R. R satisfies the quantum Yang-
Baxter equation. By [3], we can obtain that

Proposition 2.5. For any quasitriangular weak Hopf algebra (L, R), we have

(εs⊗ id)(R) =∆(1), (id⊗ εs)(R) = (S−1
L ⊗ id)∆op(1),

(εt ⊗ id)(R) =∆
op(1), (id⊗ εt(R) = (S−1

L ⊗ id)∆(1),

(SL⊗ id)(R) =(id⊗S−1
L )(R) = R, (SL⊗SL)(R) = R,

(ε⊗ id)(R) =(id⊗R) = 1.
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3. Weak Hopf Algebras in the Braided Monoidal Category

Let L be a quasitriangular weak Hopf algebra with a bijective antipode SL. We
recall that the category LM is the braided monoidal categories whose objects V
are left L-modules and satisfy the following conditions:

Proposition 3.1. The category Rep(L) = LM is a braided monoidal category.
The braiding τV,W : V ⊗W −→W ⊗V is defined by

τV, W (v⊗w) = (R2 −→ w)⊗ (R1 −→ v), ∀v ∈V, w ∈W

and the inverse of τV,W is given by

τ
−1
V,W (w⊗ v) = (R1 −→ v)⊗ (R2 −→ w).

In [5] Bing-liang et al introduces the definition of Weak Hopf algebra in
the braided monoidal category LM. Moreover they have showed that if H is a
finite-dimensional weak Hopf algebra in LM, then its dual H∗ is a weak Hopf
algebra in LM.

Definition 3.2. Let (L,R) be a quasitriangular weak Hopf algebra. An object
H ∈ LM is called a weak bialgebra in this category if it is both an algebra and
a coalgebra satisfying the following conditions:

(1) ∆ and ε are not necessarily unit-preserving, such that

∆(xy) =x1(R2 −→ y1)⊗ (R1 −→ x2)y2,

ε(xyz) =ε(xy1)ε(y2z),

ε(xyz) =ε(x(R2 −→ y2))ε((R1 −→ y1)z),

∆
2(1) =11⊗121′1⊗1′2,

∆
2(1) =11⊗ (R2 −→ 1′1)(R

1 −→ 12)⊗1′2.

(2) H is both a left L-module algebra and L-module coalgebra.
(3) Furthermore, H is called a weak Hopf algebra in LM if there exists an

antipode S : H −→H (here S is left L-linear i.e., S is a morphism in the category
of LM ) satisfying

x1S(x2) = ε((R2 −→ 11)(R1 −→ x))12,

S(x1)x2 = 11ε((R2 −→ x)(R1 −→ 12)),

S(x1)x2S(x3) = S(x), ∀x ∈ H.

Similar to the notation of weak Hopf algebra, we denote

εt(x) = ε((R2 −→ 11)(R1 −→ x))12, (2.13)
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εs(x) = 11ε((R2 −→ x)(R1 −→ 12)). (2.14)

If x = 1 one can obtain εt(1) = εs(1) = 1. According to the definitions of εt , εs

one obtains explicit expressions for these coproducts

∆(εt(x)) = εt(x)11⊗12, ∆(ε(x)) = 11⊗12εs(x)

Furthermore, for x ∈ H

ε(εt(x)) =ε((R2 −→ 1)(R1 −→ x)),

=ε((εt(R2)−→ 1)(R1 −→ x)),

=ε((1(2) −→ 1)(S−1
L (1(1))−→ x)),

=ε((SL(1(1))−→ 1)(1(2) −→ x)),

=ε(εt(SL(1(1)))1(2) −→ x),

=ε(SL(εs(1(1)))1(2) −→ x),

=ε(εs(1)−→ x),

=ε(1).

In a similar way we can compute ε(εs(x)) = ε(x). Applying the 3.2 one
obtains immediately the following identities

ε(xεt(y)) =ε(xy1S(y2)) = ε(xy1)ε(y2S(y3)) = ε(xy),

ε(εs(x)y) =ε(S(x1)x2y) = ε(S(x1)x2)ε(x3y) = ε(xy).

As S is left L-linear, we can easily check that εt and εs are also left L-linear.
Moreover it is both an anti-algebra map and an anti-coalgebra map, that is

Sm =mτH,H(S⊗S), i.e.,S(xy) = (R2 −→ S(y))(R1 −→ S(x)), x, y ∈ H,

∆S =(S⊗S)τH,H∆, i.e.,∆(S(x)) = R2 −→ S(x2)⊗R1 −→ S(x1).

In this paper, we will always assume that the antipode S is bijective. The
composite-inverse S−1 satisfies

S−1m =m(S−1⊗S−1)τ−1, i.e.,

S−1(xy) =R1 −→ S−1(y)⊗R2 −→ S−1(x)),

∆S−1 =(S−1⊗S−1)τ−1
∆, i.e.,

∆(S−1(x)) =R1 −→ S−1(x2)⊗R2 −→ S−1(x1).

Proposition 3.3. Suppose H is a weak Hopf algebra in LM, the following iden-
tities hold

εt ◦S = S◦ εS, εs ◦S = S◦ εt .
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Proof. For x ∈ H we have

εt ◦S(x) =[S(x)]1S([S(x)]2) = (x−1
1 −→ S(x2))S(S(x0

1)),

=S(S(x1)x2) = S◦ εS(x).

In a similar way one can verify εs ◦S = S◦ εt .

As a preparation for the proposition below we notice that the definitions
(2.13)(2.14) have counterparts involving the antipode,

εt(x) = ε(S(x)11)12, εs(x) = 11ε(12S(x)).

As a matter of fact

εt(x) = ε(εt(x)11)12 = ε(x1S(x2)11)12 = ε(εs(x1)S(x2)11)12 = ε(S(x)11)12.

The second equation can be proven analogously. Applying Proposition 3.2 one
can verify

εs(x) =(S◦ εt ◦S−1)(x) = S(ε(x11)12) = ε(x11)S(12),

εt(x) =(S◦ εs ◦S−1)(x) = S(ε(12x)11) = ε(12x)S(11).

Proposition 3.4. Suppose H is a weak Hopf algebra in LM. For all x ∈ H we
have the identities

x1⊗ εs(x2) = x11⊗S(12), εt(x1)⊗ x2 = S(11)⊗12x.

Proof. Using εs(x) = ε(x11)S(12), εt(x) = ε(12x)S(11), one obtains

x1⊗ εs(x2) =x1⊗S(12)ε(x211),

=x1(R2 −→ 11′)ε((R1 −→ x2)12′11)⊗S(12),

=x1(R2 −→ 11)ε((R1 −→ x2)12)⊗S(13),

=(x11)1ε((x11)2)⊗S(12),

=x11⊗S(12).

εt(x1)⊗ x2 =S(11)ε(12x1)⊗ x2,

=S(11)ε(1211′(R2 −→ x1))⊗ (R1 −→ 12′)x2,

=S(11)ε(12(R2 −→ x1))⊗ (R2 −→ 13)x2,

=S(11)⊗ (12x)1ε((12x)2),

=S(11)⊗12x,

Applying the above proposition we obtain x1S(x2)x3 = x1εs(x2) = x.



HOPF MODULES IN THE BRAIDED MONOIDAL CATEGORY LM 87

4. Hopf Modules in the Yetter-Drinfeld Categories

Since a weak Hopf algebra H in the weak Yetter-Drinfeld categories LM is
both algebra and coalgebra, one can consider modules and comodules over H.
As in the theory of Hopf algebras, an H-Hopf module is an H-module which
is also an H-comodule such that these two structures are compatible (the action
”commutes” with coaction):

Definition 4.1. Let H be a weak Hopf algebra in LM. A right H-Hopf module
M in LM is an object M ∈ LM such that it is both a right H-module and a
right H-comodule via ρM : M −→M⊗H, ρM(m) = m0⊗m1 and the following
equations hold:

(1) ρM(mh) = m0(R2 −→ h1)⊗ (R1 −→ m1)h2,m ∈M, h ∈ H,

(2) l −→ (mh) = (l1 −→ m)(l2 −→ h), l ∈ L, m ∈M, h ∈ H,

(3) ρM(l −→ m) = (l1 −→ m0)(l2 −→ m1), l ∈ L, m ∈M.

We remark that M⊗t H is a right H-module by (m⊗h)x = m(R2 −→ x1)⊗
(R1 −→ h)x2 and a right H-comodule ρM⊗H(m⊗ h) = m0 ⊗ (R2 −→ h1)⊗
(R1 −→ m1)h2. The condition (1) means that the H-comodule structure ρM :
M −→ M⊗H is H-linear, or equivalently the H-module structure map ϕM :
M⊗H −→ M is H-colinear. Also, (2)⇐⇒ ϕM is L-linear; (3)⇐⇒ ρM is L-
linear.

Example 4.2. H itself is a right H-Hopf module (in LM) in the natural way. If
V is an object in LM, then so is V ⊗t H by l −→ (v⊗h) = (l1 −→ v)⊗(l2 −→ h)
It is also both a right H-module and a right H-comodule by (v⊗ h)x = v⊗ hx
and ρV⊗H(v⊗ h) = v⊗ h1⊗ h2. One easily checks that V ⊗t H is an H-Hopf
module.

Theorem 4.3. If H is a weak Hopf algebra in LM and M a right H-Hopf module
in LM, then

(1) McoH = {m∈M|ρM(m) =m11⊗12} is a L-submodule. So McoH ∈ LM.

(2) Let P(m) = m0S(m1), m ∈ M. Then P(m) ∈ McoH . If n ∈ McoH and
h ∈ H, Then ρM(nh) = nh1⊗h2 and P(nh) = nεt(h).

(3) The map F : McoH ⊗t H −→ M, F(n⊗ h) = nh is an isomorphism of
Hopf modules. The inverse map is given by G(m) = P(m0)m1.
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Proof. Let n ∈McoH . Then

ρM(l −→ n) = (l1 −→ n11)⊗ (l2 −→ 12),

= (l1 −→ n)(l2 −→ 11)⊗ (l3 −→ 12),

= [(l1 −→ n)⊗1]∆(εt(l2)−→ 1),

= ((1(1)l −→ n)⊗1)∆(1(2) −→ 1),

= [1(1) −→ (l −→ n)][1(2) −→ (1(1′) −→ 11)]⊗1(2′) −→ 12,

= (l −→ n)11⊗12.

Hence l −→ n ∈McoH . So MCoH ∈ LM.
(2) Applying (2.12) and x1⊗ εs(x2) = x11⊗S(12) we have

ρM(P(m)) =m0(R2 −→ [S(m2)]1)⊗ (R1 −→ m1)[S(m2)]2,

=m0(R2r2 −→ S(m3))⊗ (R1 −→ m1)(r1 −→ S(m2)),

=m0(R2 −→ S(m3))⊗ ((R1)1 −→ m1)((R1)2 −→ S(m2)),

=m0(R2 −→ S(m2))⊗R1 −→ εt(m1),

=m0(S(m1)1)⊗ [S−1 ◦ εs](S(m1)2),

=m0S(m1)11⊗12.

If n ∈McoH and h ∈ H, then

ρ(nh) =n11(R2 −→ h1)⊗ (R1 −→ 12)h2 = nh1⊗h2.

P(nh) =nh1S(h2) = nεt(h).

(2) Since

F(l −→ (n⊗h)) =F((l1 −→ n)⊗ (l2 −→ h)),

=(l1 −→ n)(l2 −→ h),

=l −→ nh,

=l −→ F(n⊗h).

Then F is a left H-linear map. It is also right H-colinear by (1). Now we have

GF(n⊗h) =P(nh1)⊗h2 = nεt(h1)⊗h2,

=n⊗ εt(h1)h2 = n⊗S(11)12h,

=n⊗h.
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FG(m) =m0S(m1)m2 = m0εs(m1),

=[m0εs(m1)]0ε([m0εs(m1)]1),

=m0(m−1
1 −→ 11)ε(m0

112εs(m2)),

=m0ε(m1εs(m2)),

=m0ε(m111S(12)),

=m0ε(m1) = m.

Example 4.4. Let H be a weak Hopf algebra in LM. M = H is defined as a
right H-Hopf module by ∆. Then MCoH = {εt(h)|h ∈ H}.

5. Application

Let V ∈ LM we have constructed a left L-coaction over V via

σV : V −→ L⊗V, v 7−→ v−1⊗ v0 = R2⊗R1 −→ v.

Applying (2.11) and (2.12) we can verify

(id⊗σV )◦σV (v) =(id⊗σV )(R2⊗ (R1 −→ v)),

=R2⊗ r2⊗ r1R1 −→ v,

=(R2)1⊗ (R2)2⊗R1 −→ v,

=(∆⊗ id)◦σV (v).

(ε⊗ id)◦σV (v) =ε(R2)R1 −→ v = v.

So V is a left L-comodule with σV .
Next we check the compatibility conditions for V . Since R = R1⊗R2 ∈

∆op(1)(L⊗L)∆(1) we immediately get σV (v)∈ L⊗t V = {1(1)l⊗1(2)−→ v|∀l ∈
L, v ∈V}. Using (2.10) one can obtain that

l1v−1⊗ l2 −→ v0 =l1R2⊗ l2R1 −→ v,

=R2l2⊗R1l1 −→ v,

=(l1 −→ v)−1l2⊗ (l1 −→ v)0.

Therefore V ∈ L
LYD. It is clearly that the matrix R give rise to a natural braiding

for LM to L
LYD. Applying (2.12), for ∀g, h ∈ H we have

g−1h−1⊗g0h0 =R2r2⊗ (R1 −→ g)(r1 −→ h),

=R2⊗ ((R1)1 −→ g)((R1)2 −→ h),

=R2⊗R1 −→ gh,

=(gh)−1⊗ (gh)0.
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Furthermore

εs(R2)⊗R1 −→ 1 =1(1)⊗S−1(1(2)),

=1(1)⊗ εt(S−1(1(2)))−→ 1,

=1(1)⊗S−1(εs(1(2)))−→ 1,

=1(1)⊗S−1(S(1(2)))−→ 1,

=1(1)⊗1(2) −→ 1,

=R2⊗ εt(R1)−→ 1,

=R2⊗R1 −→ 1,

=1−1⊗10.

therefore H is a left L-comodule algebra. For h ∈ H we do a calculation

h−1⊗ (h0)1⊗ (h0)2 =R2⊗ (R1 −→ h)1⊗ (R1 −→ h)2,

=R2⊗ (R1)1 −→ h1⊗ (R1)2 −→ h2,

=R2r2⊗R1 −→ h1⊗ r1 −→ h2,

=h−1
1 h−1

2 ⊗h0
1⊗h0

2.

ε(h0)εt(h−1) =ε(R1 −→ h)εt(R2),

=ε(S−1
L (1(1))−→ h)1(2),

=ε(εs(S−1
L (1(1)))−→ h)1(2),

=ε(S−1
L (εt(1(1)))−→ h)1(2),

=ε(1(1) −→ h)1(2),

=ε(εs(R1)−→ h)R2,

=ε(R1 −→ h)R2,

=ε(h0)h−1.

It is clearly that H is a left L-comodule coalgebra. By the above proof, we
conclude that

Proposition 5.1. Suppose H is a weak Hopf algebra in LM as above. H is also
a weak Hopf algebra in L

LYD with a left L-coaction via σH : H −→ L⊗H, h 7−→
h−1⊗h0 = R2⊗R1 −→ h.

In particular L is a quasitriangular Hopf algebra, similarly we can define
Hopf algebra in the braided category LM.

Definition 5.2. Let (L,R) be a quasitriangular Hopf algebra. An object H ∈
LM is called a bialgebra in this category if it is both a algebra and a coalgebra
satisfying the following conditions:
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(1) ∆ and ε are homomorphism of algebras such that

∆(xy) = x1(R2 −→ y1)⊗ (R1 −→ x2)y2, ∆(1) = 1⊗1, ε(xy) = ε(x)ε(y).

(2) H is a left L-module algebra. For ∀x,y ∈ H, l ∈ L

l −→ xy = l1 −→ x⊗ l2 −→ y, l −→ 1H = ε(l)1H .

(3) H is a left L-module coalgebra. For ∀h ∈ H, l ∈ L

∆(l −→ h) = l1 −→ h1⊗ l2 −→ h2, εH(l −→ h) = εL(l)εH(h).

(4) Furthermore, H is called a Hopf algebra in LM if there exist an antipode
S : H −→ H (here S is left L-linear i.e., S is a morphism in the category of LM
satisfying

x1S(x2) = S(x1)x2 = ε(x)1H , S(x1)x2S(x3) = S(x), ∀x ∈ H.

Furthermore we can prove the following theorem.

Theorem 5.3. Suppose L is a quasitriangular Hopf algebra and H is a Hopf
algebra in LM, then H is also a Hopf algebra in the Yetter-Drinfeld category
L
LYD. If M is a right H-Hopf module in LM, then

(1) McoH = {m ∈M|ρ(m) = m⊗1H}.
(2) The map F : McoH ⊗H −→ M, F(n⊗ h) = nh is an isomorphism of

Hopf modules, the inverse map is given by G(m) = m0S(m1)⊗m2.
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