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ANALYTIC STUDY ON LINEAR SYSTEMS OF
DISTRIBUTED ORDER FRACTIONAL DIFFERENTIAL

EQUATIONS

A. REFAHI SHEIKHANI - H. SABERI NAJAFI
ALIREZA ANSARI - FARSHID MEHRDOUST

In this paper we introduce the distributed order fractional differen-
tial equations (DOFDE) with respect to the nonnegative density function.
We generalize the inertia and characteristics polynomial concepts of pair
(A,B) with respect to the nonnegative density function. We also give gen-
eralization of the invariant factors of a matrix and some inertia theorems
for analyzing the stability of the DOFDE systems.

1. Introduction

The idea of fractional derivative of distributed order was stated by Caputo [4]
and was developed by Caputo himself [5] and Bagley and Torvik [2] later.
Other researchers used this idea and appeared interesting reviews to describe
the related mathematical models of partial fractional differential equation of
distributed order.
For example, Diethelm et al. [8] used a numerical technique along with its er-
ror analysis to solve the distributed-order differential equation and analyze the
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physical phenomena and engineering problems, see references therein [1, 12,
13].
Based on fractional calculus, many fractional order dynamic systems in applied
science and engineering have been gaining increasing attention in research com-
munities [3, 11]. Also the stability results for fractional order differential equa-
tions (FODE) have been investigated in recent decades.
For example, Matignon considered the stability results of FODE system in con-
trol processing and Deng analyzed the stability of FODE system with multiple
time delays[7, 14, 20].
The typical differential equations ẋ(t) = Ax(t)+Bu(t), where A ∈ Rp×p, B ∈
Rp×q and u(t) is a control vector, is said to be stabilizable if and only if there
exist a linear feedback u(t) = Y x(t), with Y ∈ Rq×p, such that the system be-
comes stable, that is, the real parts of all the eigenvalues of A+BY are negative.
The characteristic polynomial of (A,B) is defined the product of the invariant
factors of

[xIp−A|B]. (1)

The eigenvalues of (A,B) are the roots of the characteristic polynomial of (A,B).
The inertia of pair (A,B) is the triplet In(A,B) = (π(A,B),ν(A,B),δ (A,B)),
where π(A,B),ν(A,B),δ (A,B) are denoted, respectively, the number of roots
of the characteristic polynomial of (A,B) with real positive part, real negative
part and real part equal to zero. Also (A,B) is stabilizable if and only if the roots
of the product of the invariant factors of (4-1) have negative real parts [9, 10].
The main purpose of the present paper is the generalization of the above results
in order to study the stabilization of the DOFDE system

C
doDα

t x(t) = A x(t)+Bu(t), x(0) = x0, 0 < α ≤ 1, (2)

where A ∈ Rp×p, B ∈ Rp×q, u(t) is a control vector and

C
doDα

t x(t) =
∫ 1

0
b(α) C

soDα
t x(t)dα,

is the Caputo fractional derivative operator of distributed order of x(t) respect
to order-density function b(α) ≥ 0. Also C

soDα
t = dα

dtα is the Caputo fractional
derivative of order α , where 0 < α ≤ 1.
Since the solution of the above system is much involved, similar to FODE sys-
tems the study of stability for DOFDE is a main task. Our main work in the
present paper is study the stability of two classes of DOFDE systems. At first,
we introduce a characteristic function of a matrix with respect to the distributed
function B(s) where B(s) =

∫ 1
0 b(α)sαdα. Then we establish a general theory

based on new inertia concept for analyzing the stability of distributed order frac-
tional differential equations. The concepts and theorems presented in this paper
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for DOFDE systems can be considered as generalizations of FODE and ODE
systems [6, 7, 15, 16].
In Section 2 we recall some basic definitions of the Caputo fractional deriva-
tive operator, the Mittag-Leffler function and their elementary properties used
in this paper. Section 3 contain the main definitions and Theorems for check-
ing the stability of DOFDE systems. In section 4, the convergence speed for
DOFDE system has been discussed near the asymptotic stable point. Finally the
conclusion are given in the last section.

2. Elementary Definitions and Theorems

The fractional derivative of single order of f (t) in the Caputo sense is defined
as [11]

C
soDα

t f (t) =
1

Γ(m−α)

∫ t

0

f (m)(τ)

(t− τ)α−m+1 dτ, (3)

for m−1 < α ≤ m,m ∈ N, t > 0.
Now, we generalize the above definition in the fractional derivative of dis-
tributed order in the Caputo sense with respect to order-density function b(α)≥
0 as follows

C
doDα

t f (t) =
∫ m

m−1
b(α) C

soDα
t f (t)dα, (4)

and the Laplace transform of the Caputo fractional derivative of distributed order
satisfies

L{CdoDα
t f (t)} =

∫ m

m−1
b(α)[sαF(s)−

m−1

∑
k=0

sα−1−k f (k)(0+)]dα

= B(s)F(s)−
m−1

∑
k=0

1
sk+1 B(s) f (k)(0+), (5)

where

B(s) =
∫ m

m−1
b(α)sαdα.

3. Stabilization of DOFDE Systems with Control Vector

Stability of linear distributed order fractional systems is one of the main interest
in control theory. In [14], Matignon introduced the stability properties for some
linear fractional order systems. In this section, we generalize the main stability
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properties for the linear system of distributed order fractional differential equa-
tions (6). In this section we consider the following linear system of distributed
fractional order differential equations,

C
doDα

t x(t) = A x(t)+Bu(t), x(0) = x0, 0 < α ≤ 1, (6)

where x ∈ Rn, the matrix A ∈ Rn×n and C
doDα

t =
∫ 1

0 b(α) C
soDα

t x(t)dα is the Ca-
puto fractional derivative operator of distributed order of x(t) respect to order-
density function b(α)≥ 0.

Theorem 3.1. The linear distributed order fractional system (6) is stabilizable
if and only if there exist a linear feedback u(t) = Y x(t), with Y ∈ Rq×p, such
that A+BY is stable respect to the order density function b(α)≥ 0.

Proof. By applying the Laplace transform on the above system and using the
initial condition and relations, we have

B(s)X(s) = AX(s)+
1
s

B(s)x(0)+BU(s), (7)

where X(s) is the Laplace transform of x(t), U(s) is the Laplace transform of
u(t) and B(s) =

∫ 1
0 b(α)sαdα. We can write (7) as follows:

[B(s)I−A]sX(s) = B(s)x(0)+ sBU(s) (8)

Now, we suppose that there exist a linear feedback u(t) =Y x(t), with Y ∈ Fq×p,
such that A+BY is stable respect to the order density function b(α)≥ 0. Thus
according to the (8), we have

[B(s)I− (A+BY )]sX(s) = B(s)x(0). (9)

Thus all roots of det[B(s)I− (A+BY )] = 0 have negative real parts. Then we
consider (3-4) in ℜ(s) ≥ 0. In this restricted area, (8) has a unique solution
sX(s). Since lims→0 B(s) = 0, so by using final-value theorem of Laplace trans-
form, we have

lim
t→∞

x(t) = lim
s→0,ℜ(s)≥0

sX(s) = 0.

The description of the possible characteristic function of A+BY , when Y
varies, presented in the Theorem 3-4. In this sense, we need the new concept
of invariant factor of a matrix with respect to a distributed function and some
preliminaries theorems.

Definition 3.2. Let square matrix A be equivalent to a ”Rational Canonical
Form”, that is, there exists an invertible matrix Q such that



ANALYTIC STUDY ON LINEAR SYSTEMS 7

Q−1AQ=


K(p1)

K(p1)
. . .

K(pr)

 ,

where K(p) is the companion matrix for the monic polynomial

p(s) = sn +an−1sn−1 + . . .+a1s+a0.

We define the functions pi(B(s)) the invariant factors of A with respect to the
distributed function B(s), where B(s) =

∫ 1
0 b(α)sαdα , and satisfy pi|pi+1 for

(i = 1,2, . . . ,r−1).

Lemma 3.3. Suppose A is the companion matrix of a monic polynomial

p(s) = sn +an−1sn−1 + . . .+a1s+a0.

Then det(B(s)I−A) = p(B(s)).

Now, by using Lemma 3.3, we can show that the characteristic function of
matrix A with respect to the distributed function B(s) is the product of the in-
variant factors of A with respect to the distributed function B(s). It immediately
follows the theorem below.

Theorem 3.4. Let A ∈ Rn×n be a square matrix and p1(B(s)), p2(B(s)), . . . ,
pr(B(s)) the invariant factors of A with respect to the distributed function B(s),
where B(s) =

∫ 1
0 b(α)sαdα . Then the matrix B(s)I−A is equivalent to the n×n-

diagonal matrix with entries p1(B(s)), p2(B(s)), . . . , pr(B(s)),1, . . . ,1, . . . ,1.

Proof. There is invertible Q such that Q−1AQ is in rational form with compan-
ion matrices K1, ..,Kr in block-diagonals. Thus

Q−1(B(s)I−A)Q=


B(s)I−K1

B(s)I−K2
. . .

B(s)I−Kr

 ,

Now, according to the Lemma 3.3, B(s)I−Ki is equivalent to a diagonal matrix
with entries piB(s),1, ,1. On the other hand there are invertible matrices M and
N such that

M(B(s)I−Ki)N=


pi(B(s))

1
. . .

1

 ,



8 A. REFAHI SHEIKHANI - H. SABERI NAJAFI - A. ANSARI - F. MEHRDOUST

rearrange to get the desired diagonal matrix.

Remark 3.5. Suppose A ∈ Rn×n, B ∈ Rn×m and B(s) is the distributed function
with respect to the density function b(α)≥ 0. Notice that(

In −B
0 Im

)(
B(s)In−A B

Y Im

)(
In 0
−Y Im

)
=

(
B(s)In− (A+BY ) 0

0 Im

)
,

hence (
B(s)In−A B

Y Im

)
and

(
B(s)In− (A+BY ) 0

0 Im

)
,

are equivalent characteristic function matrices, and so the invariant factors of(
B(s)In−A B

Y Im

)
,

with respect to the distributed function B(s), are those of A+BY and m invariant
factors equal to 1.

Now, we are ready to generalize the concept of inertia of the pair (A,B)
with respect to the distributed function B(s) in order to study stabilization of the
distributed order fractional system (6).

Definition 3.6. Let A∈ Rn×n, B∈ Rn×m and B(s) is the distributed function with
respect to the density function b(α) ≥ 0. The characteristic function of (A,B)
with respect to the distributed function B(s) is the product the invariant factors
of (10). The eigenvalues of (A,B) with respect to the distributed function B(s)
are the roots of characteristic function of (A,B).

Definition 3.7. Let A∈ Rn×n, B∈ Rn×m and B(s) is the distributed function with
respect to the density function b(α)≥ 0. The inertia of pair (A,B) with respect
to the distributed function B(s) is the triplet

InB(s)(A,B) = (πB(s)(A,B),νB(s)(A,B),δB(s)(A,B))

where πB(s)(A,B), νB(s)(A,B) and δB(s)(A,B) are, respectively, the number of
roots of characteristic function of (A,B) with positive, negative and zero real
parts.
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Theorem 3.8. The linear distributed order fractional system (6) is stabilizable
if and only if any of the following equivalent conditions holds:

1. The pair (A,B) is stabilizable with respect to the distributed function B(s)
where B(s) =

∫ 1
0 b(α)sαdα .

2. πB(s)(A,B) = δB(s)(A,B) = 0.

3. All roots s of the characteristic function of pair (A,B) with respect to the
distributed function B(s) satisfy |arg(s)|> π

2 .

Proof. According to the Theorem 3.1 and above definitions, the proof can be
easily obtained.

4. The Convergence Speed of DOFDE System

In this section we consider the convergence speed near stable point for a DOFDE
system. For this purpose, we use the final value theorem for the Laplace trans-
form for the function x1(t)

x2(t)

lim
t→∞

x1(t)
x2(t)

= lim
s→0

sX1(s)
sX2(s)

. (10)

Now, if we set b(α) = δ (α −α1) in the following homogeneous DOFDE
system

C
doDα

t x1(t) = A x1(t), x1(0) = x0, 0 < α ≤ 1, (11)

then, we arrive at the following fractional differential system

CDα1
t x1(t) = A x1(t), x(0) = x0. (12)

Also, if we set b(α) = δ (α − β1) in a sperate homogeneous DOFDE system,
we get

CDβ1
t x2(t) = A x2(t), x(0) = x0. (13)

It is obvious that, by applying the final value theorem (10), we obtain the value
of limit as

lim
t→∞

x1(t)
x2(t)

= lim
s→0

sα1

sα1 I−A
sβ1

sβ1 I−A

, (14)

which for α1 < β1, we deduce that

lim
s→0

sα1(sβ1I−A)
sβ1(sα1I−A)

= ∞. (15)
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Figure 1: The function x(t) = Eα (−tα ), α = 1
3 ,

1
2 ,1.

The above result shows that in the region of stability, the solution of system (12)
decreases much slower than the solution of system (13) near the stable point
x = 0. In similar way, we can show the solution of the following system

CDα
t x(t) = A x(t), x(0) = x0, 0 < α ≤ 1, (16)

decreases much slower than the solution of system x′ = Ax.
In general, next theorem compares the convergence speed of two DOFDE sys-
tem by setting the density function b(α) = ∑

n
i=0 δ (α −αi). The proof can be

easily written by the stated final value theorem.

Theorem 4.1. For α1 < β1, the convergence speed of the solution of fractional
differential system near x = 0

n

∑
i=0

CDαi
t x(t) = A x(t), x(0) = x0, 0 < αn < · · ·< α2 < α1 ≤ 1, (17)

much slower than the solution of fractional differential system

n

∑
i=0

CDβi
t x(t) = A x(t), x(0) = x0, 0 < βn < · · ·< β2 < β1 ≤ 1. (18)

Example 4.2. As a simple example for A1×1 = −1, we consider the following
fractional differential system

CDα
t x(t) =− x(t), x(0) = 1. (19)

If we set α = 1
3 ,

1
2 ,1 and plot the solution x(t) = Eα(−tα) for these values, we

see that the exponential function decreases much faster than other function near
origin. See Figure1.
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5. Conclusion and Future Works

In this paper we introduced the distributed order fractional differential equa-
tions with respect to a nonnegative density function.
Then the asymptotical stability for such systems has been investigated. Based
on the main theorem (Theorem 3.1) in this paper, several interesting stability cri-
terions were derived. Also, the convergence speed for these system was stated.

For future works, our attention will be focused on the generalization of the
numerical methods for computing the eigenvalues of a matrix with respect to
the distribute function. In this way the algorithms described in [17–19], which
have been used for computing the eigenvalues of a matrix, may be effective.
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