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COVERED BY LINES AND CONIC CONNECTED VARIETIES

S. MARCHESI - A. MASSARENTI - S. TAFAZOLIAN

We study some properties of an embedded variety covered by lines
and give a numerical criterion ensuring the existence of a singular conic
through two of its general points. We show that our criterion is sharp.
Conic-connected, covered by lines, QEL, LQEL, prime Fano, defective,
and dual defective varieties are closely related. We study some relations
between the above mentioned classes of objects using celebrated results
by Ein and Zak.
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Introduction

The study of rational curves on algebraic varieties is of fundamental importance
in algebraic geometry. Indeed the birational geometry of a smooth projective
variety is closely related to the rational curves it contains. Many tools have
been introduced for this purpose, such as Mori theory (see [12]) which has been
a great breakthrough in the theory of minimal models.

These issues naturally lead to the study of varieties covered by rational
curves and rationally connected varieties. Over an algebraically closed field
of characteristic zero a variety X is said to be uniruled if for x ∈ X general point
there exists a rational curve on X through x, while X is rationally connected if
two general points x,y ∈ X can be connected by a rational curve on X .

This subject can be explored in an abstract context, for instance by Hwang
and Kebekus in [7], or in an embedded setting, by Ionescu and Russo in [8]. An
intermediate point of view is to consider varieties polarized by ample divisors,
for instance by Lanteri and Palleschi in [11].

We shall place ourselves in an embedded context, that is considering the
variety X as a subvariety of a projective space PN and using techniques com-
ing from classical algebraic geometry. From this point of view the so called
variety of minimal rational tangents of X at a point x (see [6]) is simply the
variety Lx parameterizing lines contained in X through x. The simplest case of
rational connectedness to study, in the embedded setting, is the existence of a
line through two generic points; clearly this is not interesting because a variety
with this property is necessarily a linear space. A more interesting case is given
by considering the next one, i.e. when two general points can be connected by
a conic; varieties with this property are called conic-connected, CC for short.
Such property is mostly studied in the context of covered by lines, secant defec-
tive, QEL, and LQEL varieties.

Consider a smooth irreducible n-dimensional complex variety X ⊂ PN (we
will denote by c its codimension), its secant variety SX is the closure of the lo-
cus of its secant lines. The secant defect of X is the number δ (X) = 2n+ 1−
dim(SX); the variety is called secant defective if δ (X) ≥ 1. The locus deter-
mined on X by the cone of secant lines through a general point z ∈ SX is called
the entry locus of X and denoted by Ez, note that Ez is a purely δ -dimensional
subvariety of X . The variety X is said to be QEL (quadratic entry locus) if Ez is
a quadric, while X is a LQEL variety (local quadratic entry locus) if for x,y∈ X
general points there is a quadric Qx,y ⊂ X through x,y. These classes of varieties
have been widely studied by Ionescu and Russo in [13], [10] and [8].

In section 1 we will give preliminary notions and some notation and in sec-
tion 2 we will recall two basic theorems due to Zak and Ein, see [15] and [4].

In section 3 we concentrate on non trivial relations between these classes of



COVERED BY LINES AND CONIC CONNECTED VARIETIES 139

varieties, dual defective and prime Fano varieties, mainly using Zak’s Theorem
on tangencies, Ein’s classification of dual defective varieties and properties of
Lx. Indeed X inherits significant properties from the geometry of Lx; see [9] for
a discussion on this issue. In particular we show that if a ≥ n− c holds, where
a := dim(Lx), we also have a≤ n+c−3

2 . Moreover if the last bound is an equality,
well known varieties naturally arise such as the Grassmannian G(1,4) ⊂ P9

(lines in P4), and the Spinor variety S10 ⊂ P15. We highlight a relation between
varieties covered by lines such that a≥ n− c and the Hartshorne conjecture on
complete intersections (Conjecture 3.4). In section 4 we study conics on X and
get the following result (Theorem 4.3).

Theorem 0.1. Let X ⊂PN be a variety set theoretically defined by homogeneous
polynomials Gi of degree di, for i = 1, . . . ,m. If

m

∑
i=1

di ≤
N +m

2
,

then X is connected by singular conics.
Assume X to be smooth and the equations Gi’s to be scheme theoretical

equations for X and in decreasing order of degrees. If

c

∑
i=1

di ≤
N + c

2
,

where c = N−n, then X is conic-connected by smooth conics also.

This result is closely related to a result obtained by Bonavero and Höring in
[2], which gives a numerical criterion for conic-connectedness. However while
Bonavero and Höring only consider schematic smooth complete intersections
we allow X to be singular and give a condition ensuring the existence of a sin-
gular conic through two general points. Furthermore, in Remark 4.7, we show
that our inequality is sharp considering a smooth cubic hypersurface in P4.

1. Notation and Preliminaries

We work over the complex field. We mainly follow notation and definitions of
[9]. Throughout this paper we denote by X ⊂ PN a smooth irreducible variety of
dimension n≥ 1. We assume X to be non-degenerate of codimension c, so that
N = n+ c. If x ∈ X , we write TxX for the projective closure of the embedded
Zariski tangent space of X at x.
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The Secant Variety

Let X ⊂ PN be a closed, irreducible subvariety of dimension n. Consider the
following incidence variety, SX , called the abstract secant variety of X :

SX = {(x,x′, t)| x,x′ ∈ X ,x 6= x′, t ∈ 〈x,x′〉 ⊂ PN} ⊂ X×X×PN ,

with SX irreducible, of dimension 2n+1.

Definition 1.1. Let X ⊂ PN be an irreducible variety. Its secant variety, denoted
by SX , is the image of SX in PN via the natural projection. The dimension of SX
may be smaller than 2n+ 1. In this case we say that X is secant defective and
introduce the secant defect of X to be δ := 2n+1−dim(SX)≥ 0.

As SX ⊆PN , we have that dim(SX)≤N, which implies δ ≥ n−c+1, where
c is the codimension of X in PN .

QEL, LQEL, and CC Varieties

Let x,y ∈ X be two general points, and let z ∈ lx,y be a general point on the
secant line lx,y = 〈x,y〉. The trace on X of the closure of the locus of secants to
X passing through z is called the entry locus of X with respect to z, denoted by
Ez. We have that dim(Ez) = δ = 2n+1−dim(SX).

Definition 1.2. A secant defective variety X ⊂ PN of secant defect δ is called
a quadratic entry locus (QEL) variety if Ez = Qδ is a δ -dimensional quadric.
It is called a local quadratic entry locus (LQEL) variety if for x,y ∈ X general
points there exists a δ -dimensional quadric passing through x,y and contained
in X .

Finally we are interested in the first non trivial example of rational con-
nectedness in the embedded case, which occurs when two general points are
connected by a conic.

Definition 1.3. A variety X ⊂ PN is called conic-connected (CC) variety if for
x,y ∈ X general points there is a conic Cx,y passing through x,y and contained
in X .

If X is QEL and x,y ∈ X are general points, we can consider a point z on the
secant line lx,y; the entry locus Ez is a δ -dimensional quadric through x,y, so X is
LQEL. Furthermore if X is LQEL and Qδ

x,y is a quadric such that x,y∈Qδ
x,y ⊆ X ,

we can take a plane section Πx,y∩Qδ
x,y =Cx,y, where Πx,y is a plane containing

x,y. Clearly Cx,y is a conic such that x,y∈Cx,y ⊆ X . To summarize what we said

QEL =⇒ LQEL =⇒CC.

For an extensive discussion on QEL, LQEL, and CC varieties see [13], [8], and
[10].
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Dual Defective Varieties

Given a variety X ⊂ PN as above, let us consider the conormal variety

C = {(x,H) | TxX ⊆ H
π1

zztttttttt
π2

$$IIIIII} ⊆ X× (PN)∗

X (PN)∗

Clearly the map π1 is surjective and its fibers are linear spaces of dimension
c−1. So dim(C) = n+c−1 = N−1. Let H ∈ (PN)∗ be a hyperplane. The fiber
π
−1
2 (H) consists of the couples (x,H) such that H ⊇ TxX , i.e. H is a contact

hyperplane at x to X . The image π2(C) = X∗ ⊆ (PN)∗ is called the dual variety
of X . Note that

- dim(X∗)≤ N−1,

- dim(X∗) = N−1 ⇐⇒ π2 is generically finite.

Definition 1.4. If k := N−1−dim(X∗)> 0 then X is called dual defective, and
k is called the dual defect of X .

2. Some results by Ein and Zak

In this section we recall two theorems by Zak and Ein respectively, which will
be fundamental in the proofs of some of our results. For details and complete
proofs we refer to [4] and [15]. The following result, due to Zak, gives a bound
on the dimension of the singular locus of a linear section of X .

Theorem 2.1. (Zak’s Theorem on tangencies) Let X ⊂ PN be a non-degenerate
variety of dimension n. Let L be an l-dimensional linear space in PN with l ≥ n.
Then

- dim(Sing(L∩X))≤ l−n. As a consequence,

- dim(X∗)≥ dim(X).

It is natural to try to classify equality cases in the second inequality from
Zak’s Theorem above. A partial answer to this question is given by the following
theorem by Ein. The answer is partial because condition n ≤ 2c is imposed. If
the Hartshorne Conjecture, which we will recall later, holds, the condition n ≤
2c would not be restrictive, since complete intersections are not dual defective.

Theorem 2.2. (Ein) Let X ⊂ PN be a non-degenerate variety of dimension n
and codimension c, such that n ≤ 2c. Suppose that dim(X∗) = dim(X). Then
one of the following holds:
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- X is a hypersurface in P2 or P3;

- X is projectively equivalent to the Segre variety P1×Pn−1 in P2n−1;

- X is projectively equivalent to the Grassmannian G(1,4) in P9;

- X is projectively equivalent to the 10-dimensional Spinor variety S10 in
P15.

3. Prime Fano varieties and varieties covered by lines

Let x ∈ X ⊂ PN be a general point. If L is an irreducible component of the
Hilbert scheme of lines of X , we denote byLx the variety of lines fromL passing
through x. Note that Lx is embedded in the space of tangent directions at x, that
is Lx ⊆ P(txX∗) = Pn−1, where txX denotes the affine embedded Zariski tangent
space at x.

We denote by a := dim(Lx). We say that X is covered by the lines in L if
Lx 6= /0 for x ∈ X general. It can be proved that a = deg(Nl/X), where l is a line
from L and Nl/X is its normal bundle. When a ≥ n−1

2 , Lx ⊂ Pn−1 is smooth
and irreducible; if, moreover, Pic(X) is cyclic, it is also non-degenerate, see [6].
Recall that X ⊂ PN is a prime Fano variety of index i(X) if its Picard group is
generated by the class H of a hyperplane section and −KX = i(X)H for some
positive integer i(X). By the work of Mori, see [12], if we have i(X)> n+1

2 then
X is covered by a family of lines.

In this section we derive an inequality involving the parameters n,c,a, and
then we classify the border cases.

Let us remark first that an interesting case is a ≥ n− c, because in such
situation each line from L is a contact line, which implies that the variety X is
not a complete intersection. Indeed, if a≥ n−c, then dim(〈

⋃
x∈l TxX〉)≤ N−1

for each line l ⊂ X , see [9, Proposition 2.5].

Proposition 3.1. Let X ⊂ PN be a variety covered by an irreducible family of
lines L. If a≥ n− c, then a≤ n+c−3

2 .

Proof. Let x ∈ X be a general point, and let l ⊆ X be a line through x. We may
consider the incidence variety

I = {(l,H) | H ⊇
⋃

y∈l
π1

yysssssss
π2

%%KKK
KKK

K
TyX} ⊆ Lx×TxX∗

Lx TxX∗

Let H be a hyperplane in PN . By Zak’s Theorem on tangencies, its contact locus
is of dimension at most c− 1. If H ∈ Im(π2), the contact locus of H contains
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the locus of lines from π
−1
2 (H). We get dim(π−1

2 (H)) ≤ c− 2. Furthermore,
dim(Im(π2))≤ dim(TxX∗) = c−1, so

dim(I)≤ 2c−3.

By [9, Proposition 2.5] we know that dim
(
〈
⋃

y∈l TyX〉
)
≤ 2n−a−1 for l ∈ Lx.

It follows that dim((π−1
1 )(l)) ≥ a− n+ c for l ∈ Lx. Since a ≥ n− c, any line

is contact and π1 is surjective. Then dim(I) ≥ 2a− n+ c, and combining the
inequalities

2a−n+ c≤ dim(I)≤ 2c−3,

we get a≤ n+c−3
2 .

The following remark gives some information about the case when the upper
bound in the above proposition does not hold.

Remark 3.2. If X ⊂ PN is covered by lines and a ≥ n+c−2
2 , then X is CC and

n≥ 3c; indeed for two general points, the two cones made by the locus of lines
of X passing through those points intersect (being of dimension at least half the
dimension of the ambient projective space). By Proposition 3.1, we know that
a≤ n− c−1, giving n≥ 3c.

As usual when one gets an inequality it is nice to classify cases for which
equality holds.

Proposition 3.3. Let X ⊂ PN be a variety covered by lines. Suppose a ≥ n− c
and a = n+c−3

2 . Then X is dual defective and dim(X) = dim(X∗). If in addition
we assume n≤ 2c, then

- X is projectively equivalent to the Segre embedding P1×Pn−1 in P2n−1,
n≥ 3, or

- X is projectively equivalent to the Grassmannian G(1,4) in P9, or

- X is projectively equivalent to the Spinor variety S10 in P15.

Proof. We refer to the previous proof and consider the inequalities 2a− n+
c ≤ dim(I) ≤ 2c− 3. From a = n+c−3

2 we get 2a− n+ c = 2c− 3 = dim(I).
Furthermore dim(Im(π2))≥ 2c−3− (c−2) = c−1, and since dim(Im(π2))≤
dim(TxX∗) = c− 1 we get dim(Im(π2)) = c− 1, i.e. π2 is surjective. This
last fact means that the general hyperplane tangent at x to X is tangent along
a positive dimensional subvariety; but x ∈ X is a general point, so a general
tangent hyperplane is tangent along a positive dimensional subvariety, in other
words X is dual defective. Moreover dim(π−1

2 (H)) = 2c− 3− (c− 1) = c− 2
for H ∈ TxX∗ general, so the dual defect of X is k ≥ (c−2)+1 = c−1. Hence
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the dimension of the dual variety is dim(X∗) = N−1− k ≤ n.
On the other hand by Theorem 2.1 we have dim(X∗) ≥ dim(X) = n, and then
dim(X∗) = dim(X). Since n ≤ 2c the hypothesis of Theorem 2.2 are satisfied.
Note that n = dim(X∗) = N− 1− k, so k = c− 1. Since X is dual defective,
it can not be a hypersurface. So we are left with the three cases listed in our
proposition. It is easy to see that, conversely, all the varieties listed satisfy our
hypotheses. To conclude, we remark that the conditions a = n+c−3

2 and n ≤ 2c
imply that a ≥ n− c, unless c ≤ 2. The cases c = 1 and c = 2 lead to only one
new case, the two-dimensional quadric in P3.

We have already noticed that since a≥ n−c the variety X is not a complete
intersection. Let us recall the Hartshorne Conjecture on complete intersections.
For details on this Conjecture we refer to [5].

Conjecture 3.4 (Hartshorne). Let X ⊆ PN be a non-degenerate smooth variety
such that n≥ 2c+1. Then X is a complete intersection.

Since complete intersections are not dual defective, the truth of the Hartshorne
Conjecture would make the condition n≤ 2c in the previous proposition super-
fluous. This argument also leads to the following conjecture:

Conjecture 3.5. Let X ⊂ PN be a non-degenerate variety covered by lines. If
a≥ n− c, then n≤ 2c.

As an application of Proposition 3.1, we have the following result, showing
that prime Fano varieties of high index are quite special.

Proposition 3.6. Let X ⊂ PN be a prime Fano variety covered by lines and let
i = i(X). If i≥ n+δ

2 then one of the following holds:

- X is a quadric, or

- c≥ 3 and n≤ 2c. Moreover:

- if X is a CC variety, then X is an LQEL variety;

- if n = 2c, then X 'G(1,4)⊂ P9 or X ' S10 ⊂ P15.

Proof. We know that for a prime Fano variety covered by lines we have i =
a+2, so our hypothesis becomes a ≥ n+δ−4

2 . Recalling that δ ≥ n− c+1, we
get a≥ 2n−c−3

2 . We would like to use Proposition 3.1. We have a≥ 2n−c−3
2 and

this is also greater or equal to n− c, unless c≤ 2.
Let us suppose n > 2c and consider the case c≥ 3. We know by Proposition

3.1 that a≤ n+c−3
2 and considering both inequalities, we get

n+ c−3
2

≥ a≥ 2n− c−3
2

,
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which gives us n ≤ 2c and a contradiction. Note also that the equality n = 2c
forces that a = n+c−3

2 .
If we suppose c = 2, we have that i≥ 2n−1

2 −
1
2 , giving us two possibilities:

- i, so X ' Qn ⊂ Pn+2. This leads to contradiction because we supposed X
to be non-degenerate.

- i+ 1, so X ' Pn ⊂ Pn+2. This also leads to contradiction for the same
reason.

Let us finally take c = 1, where we have i ≥ 2n−c+1
2 = 2n

2 = n. Also in this
case the two possibilities are i+ 1, that gives us a hyperplane of the projective
space PN , which is of course degenerate and leads to contradiction; or i, where
X ' Qn ⊂ Pn+1. This is the only possible case and we have completed the first
half of the classification.

Assume now that n ≤ 2c and c ≥ 3. If X is CC, using [10, Proposition 3.2]
we observe that n+1≤−KX ·C≤ n+δ , where C is a conic contained in X and
passing through two general points. We have −KX ·C = 2i, so n+1

2 ≤ i ≤ n+δ

2 .
In our case we find the equality i = n+δ

2 , whose consequence is that X is an
LQEL variety by [10, Proposition 3.2]. Let us consider, finally, the boundary
case n = 2c. As we already remarked above, this forces the equality n+c−3

2 = a
and we may apply Proposition 3.3. Note that the first case is excluded since it
is not a prime Fano variety, while the other two satisfy our assumptions.

4. Some results on Conic Connectedness

In this section X ⊂ PN will be a variety of dimension n set theoretically de-
fined by G1, . . . ,Gm, where Gi ∈ k[x0, . . . ,xN ]di is a homogeneous polynomial of
degree di. Our aim is to give a relation between the parameters n,c,m and di,
ensuring the conic connectedness of X .

Conic Connectedness

Let us begin by giving a weak result on conic connectedness, whose proof is
very simple and it prepares us for a stronger result.

Proposition 4.1. Let X ⊂ PN be a variety set theoretically defined by homoge-
neous polynomials Gi of degree di, for i = 1, . . . ,m. If

m

∑
i=1

di ≤
N
2
,

then X is connected by singular conics.
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Before proving the theorem, let’s observe the following fact.

Remark 4.2. From classical arguments of deformations of chains of rational
curves we have that a singular conic through two general points on a smooth va-
riety can be deformed into a smooth conic. However, the existence of a smooth
conic f : P1 → X through two general points on a projective variety does not
imply the existence of a singular conic, this is true if there are infinitely many
conics passing through two points ([3], Proposition 3.2). Let us underline the
fact that here we only ask for singular conics.

Proof. Let x ∈ X be a general point. Lines in PN through x are parametrized by
PN−1. Forcing such a line to be contained in the hypersurface {Gi = 0} gives di

equations for any i = 1, ...,m. So for the dimension of the variety of lines Lx we
have

dim(Lx)≥ N−1−
m

∑
i=1

di.

Then when ∑
m
i=1 di ≤ N − 1 the variety X is covered by lines. Let Locx be

the locus described on X by lines in X through x. From now on we consider
such locus in the ambient space PN in order to have nice intersection properties.
Moreover

dim(Locx)≥ N−
m

∑
i=1

di.

Let y ∈ X be another general point. Again we have dim(Ly) ≥ N−1−∑
m
i=1 di

and dim(Locy)≥ N−∑
m
i=1 di. Our numerical hypothesis yields

dim(Locx)+dim(Locy)−N ≥ 2(N−
m

∑
i=1

di)−N ≥ 0.

Then Locx∩Locy 6= /0 and x,y ∈ X can be connected by a singular conic.

We are now ready to prove a stronger result.

Theorem 4.3. Let X ⊂PN be a variety set theoretically defined by homogeneous
polynomials Gi of degree di, for i = 1, ..,m. If

m

∑
i=1

di ≤
N +m

2

then X is connected by singular conics. Assume X to be smooth and the equa-
tions Gi’s to be scheme theoretical equations for X and in decreasing order of
degrees. If

c

∑
i=1

di ≤
N + c

2
,

where c = N−n, then X is conic-connected by smooth conics also.
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Proof. Let x,y ∈ X be two general points; we can assume x = [1 : 0... : 0] and
y = [0 : ... : 0 : 1]. We write Gi = ∑ j0+···+ jN=di gi

j0,..., jN x j0
0 ...x jN

N . Since x,y lie
in X we get two conditions Gi(1,0, ...,0) = gi

di,0,...,0 = 0 and Gi(0, ...,0,1) =
gi

0,...,0,di
= 0 for i = 1, ...,m.

Let p = [x0, ...,xN ] be a point in PN . We parametrize lines through x by
ux+ vp = [u+ vx0, ...,vxN ], and lines through y by uy+ vp = [vx0, ...,u+ vxN ].
Now Gi(ux+vp) is a polynomial of degree di in u,v, it has di+1 coefficients, but
the coefficients of udi does not appear because x ∈ X . So from Gi(ux+ vp)≡ 0
we get di conditions and summing up on i = 1, ...,m we have ∑

m
i=1 di equations,

and we denote by Locx the corresponding locus. Similarly from Gi(uy+vp)≡ 0
with i = 1, ...,m we get ∑

m
i=1 di equations. Let Locy be the locus of lines in X

through y. Note that the systems of equations defining Locx and Locy have m
common equations which are exactly G1, ...,Gm, that can be found putting u = 0
and v = 1. So the intersection Locx ∩Locy is defined by at most 2∑

m
i=1 di−m

equations. Our numerical hypothesis ensures that this intersection is not empty.
Now assume X ⊆ PN to be smooth and scheme theoretically defined by equa-
tions of degree d1 ≥ ·· · ≥ dm. We use the same trick as in Theorem 2.4 from
[9]. By a result in [1], making a sort of liaison we can find gi ∈ H0(PN ,IX(di))
for i = 1, ...,c such that

Y := Z(g1, ...,gc) = X ∪X
′
,

and X
′
intersects X in a divisor when nonempty. If x∈X is a general point then a

line through x is contained in X if and only if it is contained in Y . This means that
Lx(X) and Lx(Y ) coincide set theoretically, and the same is true for the cones of
lines through x. By the first part of the proof we have if ∑

c
i=1 di ≤ N+c

2 then there
is a singular conic through two general points of X . But we are now assuming
X to be smooth, and by general smoothing arguments ([3], Proposition 4.24) a
singular conic through two general points x,y can be deformed into a smooth
conic containing x,y, so X is conic-connected.

We report an example to clarify the steps of our proof.

Example 4.4. Consider the smooth quadric surface X ⊆ P3 defined by G :=
x0x3− x1x2 = 0, and the points x = [1 : 0 : 0 : 0], y = [0 : 0 : 0 : 1]. From G(ux+
vp)≡ 0 and G(uy+ vp)≡ 0 we get{

x0x3− x1x2 = 0;
x3 = 0;

{
x0x3− x1x2 = 0;
x0 = 0;

respectively. Computing their intersection we get two singular conics connect-
ing x and y, the conic {x2 = x3 = 0}∪{x0 = x2 = 0}, and the conic {x1 = x3 =
0}∪{x0 = x1 = 0}.
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Remark 4.5. In the range of Theorem 4.3 X is covered by lines. The usual
numerical condition to ensure that a variety is covered by lines is ∑

m
i=1 di < N.

Since X is non degenerate di ≥ 2 for any i = 1, ...,m. So under the numerical
hypothesis of Theorem 4.3 we have 2m≤ ∑

m
i=1 di ≤ N+m

2 which is equivalent to
3m≤ N. In particular we get m < N which implies

m

∑
i=1

di ≤
N +m

2
< N.

The inequality ∑
m
i=1 di < N forces X to be covered by lines.

In [2] Bonavero and Höring prove a similar fact using a different argument
and taking X to be a general scheme theoretical complete intersection. In the
case m = c, we get from Theorem 4.3 the following corollary, slightly weaker
than theirs.

Corollary 4.6. Let X ⊂ PN be a smooth complete intersection defined by homo-
geneous polynomials Gi of degree di, for i = 1, ..,c. If

c

∑
i=1

di ≤
n
2
+ c,

then X is conic-connected.

Furthermore, when the equality ∑
c
i=1 di =

n+1
2 + c holds, Bonavero and Höring

prove that the number of conics in X through two general points is finite, and
they compute this number.

Remark 4.7. The inequality ∑
m
i=1 di ≤ N+m

2 is sharp. Let X ⊂ P4 be a smooth
degree d = 3 hypersurface. Then X is Fano of index iX = 2, and d = 3≤ N−1
implies that X is covered by lines. Since d = 3≤ N+m+1

2 = 3 by the main result
of [2] we have that X is conic-connected. In general if X is a smooth, covered by
lines, conic-connected by smooth conics, Fano, projective variety of dimension
dim(X) = n, then X is not connected by singular conics if and only if iX = n+1

2 .
In our example iX = 2 = n+1

2 and a proof of this fact can be found in [14]. The
general cubic hypersurface in P4 is an example of a conic-connected variety
which is not connected by singular conics and it is at the limit of our inequality.

Remark 4.8. We want to highlight the role of the smoothness and of the singular
conics in our argument.

- Consider the cone over an elliptic cubic curve X = Z(x0x2
N−x3

1−x1x2
0)⊂

PN , clearly X is not “smooth conic”-connected for any N. However two
general points can be connected by a singular conic.
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- Consider the rational normal scroll X ⊂ P4. It is conic-connected, but if
one the two points is on the (−1)-curve on X we actually get a singular
conic but not a smooth one.

Remark 4.9. Suppose X to be smooth. If ∑
c
i=1 di ≤ N+c

2 , from 2c ≤ ∑
c
i=1 di ≤

N+c
2 , we get 2c≤ n. We are in the range of the Hartshorne Conjecture unless X

is quadratic. So if the Hartshorne Conjecture is true 4.3 follows from the main
theorem of [2], and the case when X is quadratic is covered by the main theorem
of [9].
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