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A NOTE ON MONOTONE SOLUTIONS FOR A NONCONVEX
SECOND-ORDER FUNCTIONAL DIFFERENTIAL INCLUSION

AURELIAN CERNEA

The existence of monotone solutions for a second-order functional
differential inclusion with Carathéodory perturbation is obtained in the
case when the multifunction that defines the inclusion is upper semicon-
tinuous compact valued and contained in the Fréchet subdifferential of a
φ -convex function of order two.

1. Introduction

Functional differential inclusions, known also as differential inclusions with
memory, express the fact that the velocity of the system depends not only on
the state of the system at a given instant but depends upon the history of the
trajectory until this instant. The class of differential inclusions with memory
encompasses a large variety of differential inclusions and control systems. In
particular, this class covers the differential inclusions, the differential inclusions
with delay and the Volterra inclusions. A detailed discussion on this topic may
be found in [1].

Let Rn be the n-dimensional euclidean space with the norm ||.|| and the
scalar product 〈., .〉. Let σ > 0 and Cσ := C([−σ ,0],Rn) the Banach space of
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continuous functions from [−σ ,0] into Rn with the norm given by ||x(.)||σ :=
sup{||x(t)||; t ∈ [−σ ,0]}. For each t ∈ [0,τ], we define the operator T (t) :
C([−σ ,τ],Rn)→ Cσ as follows: (T (t)x)(s) := x(t + s), s ∈ [−σ ,0]. T (t)x rep-
resents the history of the state from the time t−σ to the present time t.

Let K ⊂ Rn be a closed set, Ω ⊂ Rn an open set and P a lower semicontin-
uous multifunction from K into the family of all nonempty subsets of K with
closed graph satisfying the following two conditions

∀ x ∈ K, x ∈ P(x),

∀ x,y ∈ K,y ∈ P(x) ⇒ P(y)⊆ P(x).

Under these conditions, a preorder (reflexive and transitive relation) on K is
defined by x� y iff y ∈ P(x).

Let K0 := {ϕ ∈ Cσ ;ϕ(0)∈K}, let F be a multifunction defined from K0×Ω

into the family of nonempty compact subsets of Rn, let f : R×K×Ω→ Rn be
a Carathéodory function and (ϕ0,y0) ∈ K0×Ω be given that define the second-
order functional differential inclusion

x′′ ∈ F(T (t)x,x′)+ f (t,x,x′) a.e. ([0,τ])
x(t) = ϕ0(t) ∀t ∈ [−σ ,0], x′(0) = y0,
x(t) ∈ P(x(t))⊂ K ∀t ∈ [0,τ], x(s)� x(t) ∀ 0≤ s≤ t ≤ τ.

(1.1)

The present note is motivated by a recent paper of Ibrahim and Aladsani
[10] where the existence of solutions of problem (1.1) is provided when F is an
upper semicontinuous multifunction contained in the subdifferential of a proper
convex function V .

The aim of the present paper is to relax the convexity assumption on the
function V that appears in [10], in the sense that we assume that F is contained
in the Fréchet subdifferential of a φ -convex function of order two. Since the
class of proper convex functions is strictly contained into the class of φ - convex
functions of order two, our result generalizes the one in [10].

On the other hand, the result in the present paper is an extension of the re-
sult in [5] obtained for differential inclusions without memory and without con-
straints. At the same time, our result is an extension of the result in [7] obtained
in the case of differential inclusions without memory, P(x) ≡ K and without
Carathéodory perturbation. Finally, our main result generalizes Theorem 3.1 in
[6] where a similar result is obtained for monotone solutions of a second-order
functional differential inclusion without Carathéodory perturbation.

One may consider that the result in the present paper extends and unifies all
the results quoted above. The proof follows the general ideas in [5] and [10].

For the motivation, discussion on existence results in the literature and a
consistent bibliography on this topic we refer to [10] and the references therein.
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The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel and in Section 3 we prove our main result.

2. Preliminaries

We denote by P(Rn) the set of all subsets of Rn, by cl(A) we denote the closure
of the set A ⊂ Rn and by co(A) we denote the convex hull of A. For x ∈ Rn

and r > 0 let B(x,r) := {y ∈ Rn; ||y− x|| < r} be the open ball centered at x
with radius r, and let B(x,r) be its closure. For ϕ ∈ Cσ let Bσ (ϕ,r) := {ψ ∈
Cσ ; ||ψ−ϕ||σ < r} and Bσ (ϕ,r) := {ψ ∈ Cσ ; ||ψ−ϕ||σ ≤ r}.

Let Ω ⊂ Rn be an open set and let V : Ω→ R∪{+∞} be a function with
domain D(V ) = {x ∈ Rn; V (x)<+∞}.

Definition 2.1. The multifunction ∂FV : Ω→P(Rn), defined as

∂FV (x) = {α ∈ Rn, liminf
y→x

V (y)−V (x)−< α,y− x >
||y− x||

≥ 0} ifV (x)<+∞

and ∂FV (x) = /0 if V (x) = +∞ is called the Fréchet subdifferential of V .

We also put D(∂FV ) = {x ∈ Rn;∂FV (x) 6= /0}.
According to [9] the values of ∂FV (.) are closed and convex.

Definition 2.2. Let V : Ω→ R∪ {+∞} be a lower semicontinuous function.
We say that V is a φ -convex of order 2 if there exists a continuous map φV :
(D(V ))2×R2 → R+ such that for every x,y ∈ D(∂FV ) and every α ∈ ∂FV (x)
we have

V (y)≥V (x)+< α,x− y >−φV (x,y,V (x),V (y))(1+ ||α||2)||x− y||2.

In [4], [9] there are several examples and properties of such maps. For
example, according to [4], if K ⊂ R2 is a closed and bounded domain, whose
boundary is a C2 regular Jordan curve, the indicator function of K

V (x) = IK(x) =
{

0, if x ∈ K
+∞, otherwise

is φ - convex of order 2.
The second-order contingent set of a closed subset C⊂Rn at (x,y)∈C×Rn

is defined by:

T 2
C (x,y) = {v ∈ Rn; liminf

h→0+

d(x+hy+ h2

2 v,C)

h2 = 0}.
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For properties of second-order contingent set see, for example, [2].
A multifunction F : K0→P(Rn) is upper semicontinuous at (ϕ,y) ∈ K0 if

for every ε > 0 there exists δ > 0 such that

F(ψ,z)⊂ F(ϕ,y)+B(0,ε), ∀(ψ,z) ∈ Bσ (ϕ,δ )×B(y,δ ).

We recall that a continuous function x(.) : [−σ ,τ]→Rn is said to be a solu-
tion of (1.1) if x(.) is absolutely continuous on [0,τ] with absolutely continuous
derivative x′(.), T (t)x ∈ K0,∀t ∈ [0,τ], x′(t) ∈Ω a.e. [0,τ] and (1.1) is satisfied.

Hypothesis. Let T > 0, K⊂Rn be a nonempty closed set, Ω⊂Rn be an open set
and P : K→P(K) a lower semicontinuous multifunction with nonempty closed
values satisfying ∀ x ∈ K, x ∈ P(x) and ∀ x,y ∈ K,y ∈ P(x) ⇒ P(y) ⊆
P(x). Let K0 := {ϕ ∈ Cσ ;ϕ(0) ∈ K}, F : K0×Ω→P(Rn) be upper semicon-
tinuous with nonempty compact values and f : R×K×Ω→ Rn that satisfy

i) For all (t,ϕ,y) ∈ [0,T ]×K0×Ω, there exists z ∈ F(ϕ,y) such that

liminf
h→0+

1
h2 d(ϕ(0)+hy+

h2

2
z+

∫ t+h

t
(t +h− s) f (s,ϕ(0),y)ds,P(ϕ(0))) = 0,

ii) f is a Carathéodory function, i.e., for each (x,y) ∈Ω, f (.,x,y) is measur-
able; for all t ∈ R, f (t, ., .) is continuous and there exists m(.) ∈ L2(R,R) such
that || f (t,x,y)|| ≤ m(t) ∀(t,x,y) ∈ R×K×Ω.

The next technical result is proved in [10] (Lemma 3.1).

Lemma 2.3. Assume that Hypothesis is satisfied, let (ϕ0,y0) ∈ K0 ×Ω and
there exist r,M ≥ 0 such that sup{||z||; z ∈ F(ψ,y)} ≤ M ∀(ψ,y) ∈ (K0 ∩
Bσ (ϕ0,r))×B(y0,r).

Then there exists τ > 0 such that for any m ∈ N there exist lm ∈ N, a set
of points {tm

0 = 0 < tm
1 < ... < tm

lm−1 ≤ τ < tm
lm}, the points xm

p ,y
m
p ,z

m
p ∈ Rn,

p = 0,1, ..., lm− 1 with xm
0 = ϕ0(0) and ym

0 = y0, a continuous function xm(.) :
[−σ ,τ]→Rn with xm(t) = ϕ0(t) ∀t ∈ [−σ ,0] and with the following properties
for p = 0,1, ..., lm−1
(i) hm

p+1 := tm
p+1− tm

p < 1
m ,

(ii) zm
p = um

p +wm
p , with um

p ∈ F(T (tm
p )xm,ym

p ) and wm
p ∈ B(0, 1

m),
(iii) xm(t) = xm

p +(t− tm
p )y

m
p +

1
2(t− tm

p )
2zm

p +
∫ t

tm
p
(t− s) f (s,xm

p ,y
m
p )ds,

t ∈ [tm
p , t

m
p+1],

(iv) xm
p+1 = xm

p +hm
p+1ym

p +
1
2(h

m
p+1)

2zm
p +

∫ tm
p +hm

p+1
tm
p

(tm
p +hm

p+1− s) f (s,xm
p ,y

m
p )ds,

(v) xm
p+1 ∈ P(xm

p )∩B(ϕ0(0),r)⊂ K, ym
p+1 = ym

p +hm
p+1zm

p ∈ B(y0,r)⊂Ω,
(vi) T (tm

p+1)xm ∈ Bσ (ϕ0,r)∩K0.
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We note that in order to prove Lemma 2.3 is not necessary to assume that P
is lower semicontinuous as in Hypothesis.

On the other hand, in Lemma 3.1 in [10] it is used the assumption that
there exists a proper lower semicontinuous convex function V : Rn → R with
F(ϕ,y) ⊆ ∂V (y) ∀(ϕ,y) ∈ K0×Ω in order to deduce (via the fact that the set-
valued map ∂V (.) is bounded) that

sup{||z||; z ∈ F(ψ,y)} ≤M ∀(ψ,y) ∈ (K0∩Bσ (ϕ0,r))×B(y0,r). (2.1)

In our statement of Lemma 2.3 we assume directly that there exist r,M ≥ 0 such
that (2.1) is satisfied.

3. The main result

We are now able to prove our main result.

Theorem 3.1. Assume that Hypothesis is satisfied. In addition, assume that K0
is locally compact, P(.) has closed graph and there exists a proper lower semi-
continuous function φ - convex of order two V : Rn→ R∪{∞} with F(ϕ,y) ⊆
∂FV (y) ∀(ϕ,y) ∈ K0×Ω.

Then for any (ϕ0,y0) ∈ K0×Ω there exists τ > 0 and x(.) : [0,τ]→ K a
solution to problem (1.1).

Proof. Let (ϕ0,y0)∈K0×Ω. Since K0 is locally compact there exists r > 0 such
that K0 ∩Bσ (ϕ0,r) is compact and B(y0,r) ⊂ Ω. Using the fact that F(., .) is
upper semicontinuous with compact values, by Proposition 1.1.3 in [1], F((K0∩
Bσ (ϕ0,r))× B(y0,r)) is compact. Take M := sup{||z||;z ∈ F(ψ,y);(ψ,y) ∈
(K0∩Bσ (ϕ0,r))×B(y0,r)}.

Let φV the continuous function appearing in Definition 2.2. Since V (.) is
continuous on D(V ) (e.g. [9]), by possibly decreasing r one can assume that for
all y ∈ Br(y0)∩D(V ), |V (y)−V (y0)| ≤ 1. Set S := sup{φV (y1,y2,z1,z2);
yi ∈ Br(y0),zi ∈ [V (y0)−1,V (y0)+1], i = 1,2}.

One may apply Lemma 2.3 and according to the definition of xm for all
m≥ 1, all p = 0,1, ..., lm−1 and all t ∈ [tm

p , t
m
p+1] we have

x′m(t) = ym
p +(t− tm

p )z
m
p +

∫ t

tm
p

f (s,xm
p ,y

m
p )ds,

x′′m(t) = zm
p + f (t,xm

p ,y
m
p ).

Therefore, from (ii) and (v) of Lemma 2.3 one has

||x′m(t)|| ≤ ||y0||+
3r
4
∀t ∈ [0,τ], (3.1)
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||x′′m(t)|| ≤M+1+m(t) a.e. ([0,τ]). (3.2)

Then the sequences {xm} and {x′m} are equicontinuous in C([0,τ],Rn). Ap-
plying Arzela-Ascoli theorem, there exists a subsequence (again denoted) {xm}
and an absolutely continuous function x(.) : [0,τ]→ Rn with absolutely contin-
uous derivative x′(.) such that xm(.) converges uniformly to x(.) on [0,τ], x′m(.)
converges uniformly to x′(.) on [0,τ] and x′′m(.) converges weakly to x′′(.) in
L2([0,τ],Rn). Furthermore, since all the functions xm(.) are equal with ϕ0(.) on
[−σ ,0], then xm(.) converges uniformly to x(.) on [−σ ,τ], where xm = ϕ0 on
[−σ ,0].

For each t ∈ [0,τ] and each m≥ 1 let δm(t) = tm
p , θm(t) = tm

p+1 if t ∈ (tm
p , t

m
p+1]

and δm(0) = θm(0) = 0. If t ∈ (tm
p , t

m
p+1] we get

x′′m(t) = zm
p + f (t,xm

p ,y
m
p ) ∈ F(T (tm

p )xm,ym
p )+B(0,

1
m
)+ f (t,xm

p ,y
m
p )

and for all m≥ 1 and a.e. on [0,τ]

x′′m(t) ∈ F(T (δm(t))xm,x′m(δm(t)))+B(0,
1
m
)+ f (t,xm

p ,y
m
p ).

Also for all m ≥ 1 and a.e. on [0,τ] T (θm(t))xm ∈ Bσ (ϕ0,r)∩K0, xm(t) ∈
B(ϕ0(0),r), xm(θm(t)) ∈ P(xm(δm(t))⊂ K.

As in the proof of Theorem 3.2 in [10] ∀t ∈ [0,τ], limm→∞ T (θm(t))xm =
T (t)x in Cσ and limm→∞ x′m(δm(t)) = x′(t).

Taking into account the upper semicontinuity of F(., .), Theorem 1.4.1 in
[1] and (3.1) one deduces

x′′(t) ∈ coF(T (t)x,x′(t))+ f (t,x(t),x′(t)) a.e. ([0,τ]),

which implies

x′′(t)− f (t,x(t),x′(t))⊂ ∂FV (x′(t)) a.e. ([0,τ]). (3.3)

The next step of the proof shows that x′′m(.) has a subsequence that converges
pointwise to x′′(.). From property (ii) of Lemma 2.3

zm
p −wm

p ∈ F(T (tm
p )xm,ym

p )⊂ ∂FV (ym
p ) = ∂FV (x′m(t

m
p ))

for p = 0,1,2, ..., lm−2.
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From the definition of the Fréchet subdifferential for p = 0,1,2, ..., lm− 2
one has

V (x′m(t
m
p+1))−V (x′m(t

m
p ))≥

〈zm
p −wm

p ,x
′
m(t

m
p+1)− x′m(t

m
p )〉−φV (x′m(t

m
p+1),x

′
m(t

m
p ),V (x′m(t

m
p+1)),V (x′m(t

m
p )))

·(1+ ||zm
p −wm

p ||2)||x′m(tm
p+1)− x′m(t

m
p )||2 ≥

〈x′′m(t)− f (t,xm(tm
p ),x

′
m(t

m
p ))−wm

p ,x
′
m(t

m
p+1)− x′m(t

m
p )〉

−φV (x′m(t
m
p+1),x

′
m(t

m
p ),V (x′m(t

m
p+1)),V (x′m(t

m
p )))(1+ ||zm

p −wm
p ||2)

·||x′m(tm
p+1)− x′m(t

m
p )||2 =

∫ tm
p+1

tm
p

||x′′m(t)||2dt−
∫ tm

p+1

tm
p

〈 f (t,xm(tm
p ),x

′
m(t

m
p )),x

′′
m(t)〉dt−

∫ tm
p+1

tm
p

〈x′′m(t),wm
p 〉dt

−φV (x′m(t
m
p+1),x

′
m(t

m
p ),V (x′m(t

m
p+1)),V (x′m(t

m
p )))(1+ ||zm

p −wm
p ||2)

·||x′m(tm
p+1)− x′m(t

m
p )||2

(3.4)
and

V (x′m(τ))−V (x′m(t
m
lm−1))≥

〈zm
p −wm

p ,x
′
m(τ)− x′m(t

m
lm−1)〉−φV (x′m(τ),x

′
m(t

m
lm−1),V (x′m(τ)),V (x′m(t

m
lm−1)))

·(1+ ||zm
p −wm

p ||2)||x′m(τ)− x′m(t
m
lm−1)||2 ≥

〈x′′m(t)− f (t,xm(tm
lm−1),x

′
m(t

m
lm−1))−wm

p ,x
′
m(τ)− x′m(t

m
lm−1)〉

−φV (x′m(τ),x
′
m(t

m
lm−1),V (x′m(τ)),V (x′m(t

m
lm−1)))(1+ ||zm

p −wm
p ||2)

·||x′m(τ)− x′m(t
m
lm−1)||2 =

∫
τ

tm
lm−1

||x′′m(t)||2dt−
∫

τ

tm
lm−1

〈 f (t,xm(tm
lm−1),x

′
m(t

m
lm−1)),x

′′
m(t)〉dt

−
∫

τ

tm
lm−1

〈x′′m(t),wm
p 〉dt−φV (x′m(τ),x

′
m(t

m
lm−1),V (x′m(τ)),V (x′m(t

m
lm−1)))

·(1+ ||zm
p −wm

p ||2)||x′m(τ)− x′m(t
m
lm−1)||2

(3.5)

By adding the lm− 1 inequalities from (3.4) and the inequality from (3.5),
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one has

V (x′m(τ))−V (x′m(0))≥
∫

τ

0 ||x′′m(t)||2dt−∑
lm−2
p=0

∫ tm
p+1

tm
p

< f (t,xm(tm
p ),x

′
m(t

m
p )),

x′′m(t)> dt−
∫

τ

tm
lm−1

< f (t,xm(tm
lm−1),x

′
m(t

m
lm−1)),x

′′
m(t)> dt +α(m)+β (m),

where

α(m) =−
lm−2

∑
p=0

< wm
p ,
∫ tm

p+1

tm
p

x′′m(t)dt >−< wm
lm−1,

∫
τ

tm
lm−1

x′′m(t)dt >,

β (m) =−
lm−2

∑
p=0

φV (x′m(t
m
p+1),x

′
m(t

m
p ),V (x′m(t

m
p+1)),V (x′m(t

m
p )))

· (1+ ||zm
p −wm

p ||2)||x′m(tm
p+1)− xk(tm

p )||2−φV (x′m(τ),x
′
m(t

m
lm−1),V (x′m(τ)),

V (x′m(t
m
lm−1)))(1+ ||zm

lm−1−wm
lm−1||2)||x′m(τ)− x′m(t

m
lm−1)||2.

As in the proof of Theorem 3.2 in [10] , since f is a Carathéodory map we
have that

lim
m→∞

[
lm−2

∑
p=0

∫ tm
p+1

tm
p

〈 f (t,xm(tm
p ),x

′
m(t

m
p )),x

′′
m(t)〉dt

+
∫

τ

tm
lm−1

〈 f (t,xm(tm
lm−1),x

′
m(t

m
lm−1)),x

′′
m(t)〉dt] =∫

τ

0
〈 f (t,x(t),x′(t)),x′′(t)〉dt.

One may write

|α(m)| ≤

(M+1)

[
lm−2

∑
p=0
||wm

p ||(tm
p+1− tm

p )+ ||wm
lm−1||(τ− tm

lm−1)

]
≤ τ(M+1)

m
,

|β (m)| ≤ S(1+M2)

[
lm−2

∑
p=0
||
∫ tm

p+1

tm
p

x′′m(t)dt||2 + ||
∫

τ

tm
lm−1

x′′m(t)dt||2
]
≤

S(1+M2)

[
lm−2

∑
p=0

1
m

∫ tm
p+1

tm
p

||x′′m(t)||2dt +
1
m

∫
τ

tm
lm−1

||x′′m(t)||2dt

]
≤

1
m

S(1+M2)
∫

τ

0
||x′′m(t)||2dt ≤ 1

m
S(1+M2)τ(M+1)2.
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Therefore, limm→∞ α(m) = limm→∞ β (m) = 0 and thus

V (x′m(τ))−V (y0)≥ limsup
m→∞

∫
τ

0
||x′′m(t)||2dt−

∫
τ

0
< f (t,x(t),x′(t)),x′′(t)> dt.

(3.6)
From (3.3) and Theorem 2.2 in [4] we deduce that there exists τ1 > 0 such

that the mapping t→V (x′(t)) is absolutely continuous on [0,min{τ,τ1}] and

(V (x′(t)))′ =< x′′(t),x′′(t)− f (t,x(t),x′(t))> a.e. ([0,min{τ,τ1}]).

Without loss of generality we may assume that τ = min{τ,τ1}. Hence,

V (x′(τ))−V (x′(0)) =
∫

τ

0
||x′′(t)||2dt−

∫
τ

0
< f (t,x(t),x′(t)),x′′(t)> dt;

therefore from (3.6) one has∫
τ

0
||x′′(t)||2dt ≥ limsup

m→∞

∫
τ

0
||x′′m(t)||2dt

and, since x′′m(.) converges weakly in L2([0,τ],Rm) to x′′(.), by the lower semi-
continuity of the norm in L2([0,τ],Rn) (e.g., Proposition III 30 in [3]), we ob-
tain that x′′m(.) converges strongly in L2([0,τ],Rm) to x′′(.), hence a subsequence
(again denote by) x′′m(.) converges pointwise a.e. to x′′(.).

Let t ∈ [0,τ]. By the above construction, there exists p such that t ∈ [tm
p , t

m
p+1)

and limm→∞ tm
p = t. Since for all m≥ 1 and a.e. t ∈ [0,τ]

x′′m(t) ∈ F(T (tm
p )xm,ym

p )+B(0,
1
m
)+ f (t,xm

p ,y
m
p ),

for each m ∈ N we have

x′′m(t)− f (t,xm(tm
p ),x

′
m(t

m
p )) ∈ F(T (tm

p )xm,x′m(t
m
p ))+B(0,

1
m
).

From the fact that f is a Catrathéodory function, F is upper semicontinuous,
limm→∞ T (θm(t))xm = T (t)x in Cσ and limm→∞ x′m(δm(t)) = x′(t) we infer that

x′′(t) ∈ F(T (t)x,x′(t))+ f (t,x(t),x′(t)) a.e. ([0,τ]).

It remains to prove that

(x(t),x′(t)) ∈ K×Ω, ∀t ∈ [0,τ],

x(s) ∈ P(x(t)) ∀t,s ∈ [0,τ], t ≤ s.
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First, from property (iii) of Lemma 2.3 it follows that xm(δm(t)) ∈
B(ϕ0(0),r) and x′m(δm(t)) ∈ B(y0,r)∩Ω. Since limm→∞ xm(δm(t)) = x(t) and
limm→∞ x′m(δm(t)) = x′(t) then x(t) ∈ B(ϕ0(0),r) and x′(t) ∈ B(y0,r)∩Ω.

Secondly, let t,s ∈ [0,τ], t ≤ s. For m large enough we can find p,q ∈
{0,1,2, ..., lm−2} such that p > q, t ∈ [tm

q , t
m
q+1], s ∈ [tm

p , t
m
p+1]. If j = p−q, then

property (v) of Lemma 2.3 gives

P(xm(tm
p ))⊆ P(xm(tm

p−1))⊆ P(xm(tm
p−2))⊆ ...⊆ P(xm(tm

q )).

This implies P(xm(δm(s)))⊆ P(xm(δm(t))) and since xm(δm(s)) ∈
P(xm(δm(s))) it follows xm(δm(s)) ∈ P(xm(δm(t))) which completes the proof.

Remark 3.2. If V (.) :Rn→R is a proper lower semicontinuous convex function
then (e.g. [9]) ∂FV (x) = ∂V (x), where ∂V (.) is the subdifferential in the sense
of convex analysis of V (.), and Theorem 3.1 yields the main result in [10]. On
the other hand, if P(x)≡K and T (t) = I then Theorem 3.1 yields the main result
in [5]. At the same time, if f ≡ 0 then the tangential condition i) in Hypothesis
becomes: for all (t,ϕ,y) ∈ [0,T ]×K0×Ω, there exists z ∈ F(ϕ,y) such that

liminf
h→0+

1
h2 d(ϕ(0)+hy+

h2

2
z,P(ϕ(0))) = 0,

which is equivalent with the fact that for all (t,ϕ,y) ∈ [0,T ]×K0×Ω, there
exists z∈ F(ϕ,y) such that F(ϕ,y)⊂ T 2

P(ϕ(0))(ϕ(0),y). Therefore, Theorem 3.1
generalizes to Carathéodory perturbation the result in [6].
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