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SUBCLASSES OF STARLIKE FUNCTIONS ASSOCIATED
WITH A FRACTIONAL CALCULUS OPERATOR

INVOLVING CAPUTO’S FRACTIONAL DIFFERENTIATION

G. MURUGUSUNDARAMOORTHY - K. THILAGAVATHI

In this paper, we introduce a new class of functions which are analytic
and univalent with negative coefficients defined by using certain fractional
operators described in the Caputo’s sense and obtain coefficient estimates,
extreme points, the radii of close to convexity, starlikeness and convexity
and neighborhood results for f ∈ T J η

µ(α,β ,γ,A,B). In particular, we
obtain modified Hadamard product results for the function f (z) belongs
to the class T J η

µ(α,β ,γ,A,B) in the unit disc.

1. Introduction

Let A denote the class of functions of the form

f (z) = z+
∞

∑
n=2

anzn (1)

which are analytic and univalent in the open disc U = {z : z ∈ C, |z|< 1}. Also
denote by T a subclass of A consisting of functions of the form

f (z) = z−
∞

∑
n=2
|an|zn, z ∈U, (2)
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introduced and studied by Silverman [18]. Also denote by ST (σ) the class of
starlike functions of order σ(0 ≤ σ < 1) such that ℜ

{
z f ′(z)
f (z)

}
> σ , and CV(σ)

is convex of order σ (0≤ σ < 1) satisfying the analytic criteria ℜ

{
1+ z f ′′(z)

f ′(z)

}
> σ .

For functions f ∈A given by (1) and g∈A given by g(z) = z+
∞

∑
n=2

bnzn, we

define the Hadamard product (or convolution ) of f and g by

( f ∗g)(z) = z+
∞

∑
n=2

anbnzn, z ∈U. (3)

Now, we recall the Caputo’s [4] definition which shall be used throughout the
paper. Caputo’s definition of the fractional-order derivative is defined as

Dα f (t) =
1

Γ(n−α)

t∫
a

f (n)(τ)
(t− τ)α+1−n (4)

where n− 1 < Re(α) ≤ n,n ∈ N, and the parameter α is allowed to be real or
even complex, a is the initial value of the function f .

We recall the following definitions [11].

Definition 1.1. Let the function f (z) be analytic in a simply - connected region
of the z− plane containing the origin. The fractional integral of f of order µ is
defined by

D−µ
z f (z) =

1
Γ(µ)

z∫
0

f (ξ )
(z−ξ )1−µ

dξ , µ > 0, (5)

where the multiplicity of (z− ξ )1−µ is removed by requiring log(z− ξ ) to be
real when z−ξ > 0.

Definition 1.2. The fractional derivatives of order µ, is defined, for a function
f (z), by

Dµ
z f (z) =

1
Γ(1−µ)

d
dz

z∫
0

f (ξ )
(z−ξ )µ

dξ , 0≤ µ < 1, (6)

where the function f (z) is constrained, and the multiplicity of the function (z−
ξ )−µ is removed as in Definition 1.1.

Definition 1.3. Under the hypothesis of Definition 1.1, the fractional derivative
of order n+µ is defined by

Dn+µ
z f (z) =

dn

dzn Dµ
z f (z), (0≤ µ < 1; n ∈ N0). (7)
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With the aid of the above definitions and the generalization operator of
Salagean[15] derivative operator and Libera integral operator [8], was given by
Owa [11] (their known extensions involving fractional derivative and fractional
integrals),

Ω
δ f (z) = Γ(2−δ )zδ Dδ

z f (z) = z+
∞

∑
n=2

Φ(n,δ )anzn (8)

where

Φ(n,δ ) =
Γ(n+1)Γ(2−δ )

Γ(n+1−δ )
. (9)

For f ∈ A and various choices of δ , we get different operators

Ω
0 f (z) := f (z) = z+

∞

∑
n=2

anzn (10)

Ω
1 f (z) := z f ′(z) = z+

∞

∑
n=2

nanzn (11)

Ω
j f (z) := Ω(Ω j−1 f (z)) = z+

∞

∑
n=2

n janzn,( j = 1,2,3, ...) (12)

which is known as Salagean operator[15]. Also note that

Ω
−1 f (z) =

2
z

∫ z

0
f (t)dt := z+

∞

∑
n=2

(
2

n+1

)
anzn

and

Ω
− j f (z) := Ω

−1(Ω− j+1 f (z)) := z+
∞

∑
n=2

(
2

n+1

) j

anzn, ( j = 1,2,3, ...) (13)

called Libera integral operator [8]. We note that the Libera integral operator is
generalized as Bernardi integral operator given by Bernardi[3],

1+ν

zν

∫ z

0
tν−1 f (t)dt := z+

∞

∑
n=2

(
1+ν

n+1

)
anzn,(ν = 1,2,3, ...).

Making use of these results recently Salah and Darus [16] introduced the fol-
lowing operator

J η
µ f (z) =

Γ(2+η−µ)

Γ(η−µ)
zµ−η

∫ z

0

Ωη f (t)
(z− t)µ+1−η

dt (14)
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where η(real number) and (η − 1 < µ < η < 2). By simple calculations for
functions f (z) ∈ A, we get

J η
µ f (z) = z+

∞

∑
n=2

(Γ(n+1))2Γ(2+η−µ)Γ(2−η)

Γ(n+η−µ +1)Γ(n−η +1)
anzn (z ∈U), (15)

and for the sake of brevity we let

Cn(η ,µ) =
(Γ(n+1))2Γ(2+η−µ)Γ(2−η)

Γ(n+η−µ +1)Γ(n−η +1)
(16)

and

C2(η ,µ) =
4Γ(2+η−µ)Γ(2−η)

Γ(3+η−µ)Γ(1−η)
(17)

unless otherwise stated.
Further, note that J 0

0 f (z) = f (z) and J 1
1 f (z) = z f ′(z). In recent years, con-

siderable interest in fractional calculus operators has been stimulated due to
their applications in the theory of analytic functions. There are many definitions
of fractional integration and differentiation can be found in various books (see
[10, 14, 21] . In this paper, we introduce a new subclass of analytic functions
with negative coefficients and discuss some usual properties of the geometric
function theory of this generalized function class.

For fixed −1≤ A≤ B≤ 1 and 0 < B≤ 1,let SJ η
µ(α,β ,γ,A,B) denote the

subclass of A consisting of functions f (z) of the form (1) and satisfying the
condition∣∣∣∣∣∣∣

z(J η
µ f (z))′

J η
µ f (z)

−1

2γ(B−A)
(

z(J η
µ f (z))′

J η
µ f (z)

−α

)
−B

(
z(J η

µ f (z))′

J η
µ f (z)

−1
)
∣∣∣∣∣∣∣< β , z ∈U (18)

where J η
µ f (z) is given by (15), 0≤ α < 1, 0 < β ≤ 1,

B
2(B−A)

< γ ≤

{
B

2(B−A)α α 6= 0,

1 α = 0.

We also let T J η
µ(α,β ,γ,A,B) = SJ η

µ(α,β ,γ,A,B)∩T.
For convenience in entire paper we consider 0≤ α < 1, 0 < β ≤ 1,

B
2(B−A)

< γ ≤

{
B

2(B−A)α α 6= 0,

1 α = 0.

for fixed −1≤ A≤ B≤ 1 and 0 < B≤ 1, one or otherwise stated.
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By suitably specializing the values of A,B,α,β and γ the class
T J η

µ(α,β ,γ,A,B) leads to known subclasses studied in [1, 9] and [12] and
various new subclasses.

The main object of this paper is to determine the coefficient bound, extreme
points, radii of close to convexity, starlikeness and convexity for functions in
the class T J η

µ(α,β ,γ,A,B). Further, we obtain modified Hadamard product
and Neighbourhood results for aforementioned class.

2. Characterization Properties

We now obtain the characterization property for functions f (z) to belong to the
class T J η

µ(α,β ,γ,A,B) there by obtaining coefficient bounds.

Theorem 2.1. Let the function f (z) be defined by (2) is in the class
T J η

µ(α,β ,γ,A,B) if and only if
∞

∑
n=2

[2βγ(B−A)(n−α)+(1−Bβ )(n−1)]Cn(η ,µ)|an| ≤ 2βγ(1−α)(B−A),

(19)
where Cn(η ,µ) is given by (16).

Proof. The proof of Theorem 2.1 is much akin to the proof of theorems on
coefficient bounds established in [6, 19], so we skip the details in this regard.

Corollary 2.2. Let the function f (z) defined by (2) be in the class

T J η
µ(α,β ,γ,A,B).

Then we have

an ≤
2βγ(1−α)(B−A)

[2βγ(B−A)(n−α)+(1−Bβ )(n−1)]Cn(η ,µ)
(20)

The equation (20) is attained for the function

f (z) = z− 2βγ(1−α)(B−A)
[2βγ(B−A)(n−α)+(1−Bβ )(n−1)]Cn(η ,µ)

zn (n≥ 2) (21)

where Cn(η ,µ) is given by (16).

For the sake of brevity, we let

Φn(α,β ,γ,A,B) = [2βγ(B−A)(n−α)+(1−Bβ )(n−1)] (22)

and
Φ2(α,β ,γ,A,B) = [1+2βγ(B−A)(2−α)−Bβ ] (23)

unless otherwise stated.
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Theorem 2.3. Let the function f (z) defined by (2) belong to TJ η
µ(α,β ,γ,A,

B). Then

| f (z)| ≥ |z|
{

1− 2βγ(1−α)(B−A)
[Φ2(α,β ,γ,A,B)]C2(η ,µ)

|z|
}

(24)

and

| f (z)| ≤ |z|
{

1+
2βγ(1−α)(B−A)

[Φ2(α,β ,γ,A,B)]C2(η ,µ)
|z|
}
, (25)

where C2(η ,µ) given by (17).

Proof. In the view of (19) and the fact that Cn(η ,µ) is non-decreasing for n≥ 2,
0≤ α < 1 we have

[2βγ(B−A)(2−α)+(1−Bβ )]C2(η ,µ)
∞

∑
n=2

an

≤
∞

∑
n=2

Φn(α,β ,γ,A,B)Cn(η ,µ)an

≤ 2βγ(1−α)(B−A)

which readily yields,

∞

∑
n=2

an ≤
2βγ(1−α)(B−A)

[1+2βγ(B−A)(2−α)−Bβ )]C2(η ,µ)
. (26)

Theorem 2.3 follows readily from (2) and (26).

Theorem 2.4. (Extreme Points ) Let f1(z) = z; fn(z) = z− 2βγ(1−α)(B−A)
Φn(α,β ,γ,A,B)Cn(η ,µ)z

n,

(n≥ 2) where Cn(η ,µ) is given by (16).
Then f (z) is in the class T J η

µ(α,β ,γ,A,B) if and only if it can be expressed in

the form f (z) =
∞

∑
n=1

ωn fn(z) where ωn ≥ 0 (n≥ 1) and
∞

∑
n=1

ωn = 1.

We shall prove the following results for the closure of functions in the class
T J η

µ(α,β ,γ,A,B). Let the functions f j(z)( j = 1,2) be defined by

f j(z) = z−
∞

∑
n=2

an, j zn for an, j ≥ 0, z ∈U. (27)

Theorem 2.5. (Closure Theorem) Let the functions f j(z)( j = 1,2, . . .m) de-
fined by (27) be in the classes T J η

µ(α j,β ,γ,A,B) ( j = 1,2, . . .m) respectively.

Then the function h(z) defined by h(z) = z− 1
m

∞

∑
n=2

(
m
∑
j=1

an, j

)
zn is in the class

T J η
µ(α,β ,γ,A,B), where α = min

1≤ j≤m
{α j} where 0≤ α j ≤ 1.
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Proof. Since f j ∈ T J η
µ(α j,β ,γ,A,B), ( j = 1,2, . . .m) by applying Theorem

2.1, to (27) we observe that

∞

∑
n=2

Φn(α,β ,γ,A,B)Cn(η ,µ)

(
1
m

m

∑
j=1

an, j

)

=
1
m

m

∑
j=1

(
∞

∑
n=2

Φn(α,β ,γ,A,B)Cn(η ,µ)an, j

)

≤ 1
m

m

∑
j=1

2βγ(1−α j)(B−A)≤ 2βγ(1−α)(B−A)

which in view of Theorem 2.1, again implies that h∈ T J η
µ(α,β ,γ,A,B) and so

the proof is complete.

Next we obtain the radii of close-to-convexity, starlikeness and convexity
for the class T J η

µ(α,β ,γ,A,B).

Theorem 2.6. Let the function f (z) defined by (2) belong to the class T J η
µ(α ,

β ,γ,A,B). Then f (z) is close-to-convex of order σ (0 ≤ σ < 1) in the disc
|z|< r1, where

r1 := inf
[
(1−σ)Φn(α,β ,γ,A,B)Cn(η ,µ)

2nβγ(B−A)(1−α)

] 1
n−1

(n≥ 2), (28)

where Cn(η ,µ) is given by (16). The result is sharp, with extremal function f (z)
given by (2.4).

Proof. Given f ∈ T, and f is close-to-convex of order σ , we have

| f ′(z)−1|< 1−σ . (29)

For the left hand side of (29) we have | f ′(z)− 1| ≤
∞

∑
n=2

nan|z|n−1. The last ex-

pression is less than 1−σ if

∞

∑
n=2

n
1−σ

an|z|n−1 < 1,

that is, if
n

1−σ
|z|n−1 ≤ Φn(α,β ,γ,A,B)Cn(η ,µ)

2βγ(B−A)(1−α)
.

where we have made use of the assertion (19) of Theorem 2.1.The last in-
equality leads immediately to the disk |z| < r1 where r1 given by (28,which
completes the proof.
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Theorem 2.7. Let f ∈ T J η
µ(α,β ,γ,A,B). Then

(i) f is starlike of order σ(0≤ σ < 1) in the disc |z|< r2; where

r2 = inf
[(

1−σ

n−σ

)
Φn(α,β ,γ,A,B)Cn(η ,µ)

2βγ(B−A)(1−α)

] 1
n−1

(n≥ 2) (30)

(ii) f is convex of order σ (0≤ σ < 1) in the disc |z|< r3, where

r3 = inf
[(

1−σ

n(n−σ)

)
Φn(α,β ,γ,A,B)Cn(η ,µ)

2βγ(B−A)(1−α)

] 1
n−1

(n≥ 2) (31)

where Cn(η ,µ) is given by (16). Each of these results are sharp for the extremal
function f (z) given by (2.4).

Proof. Following the techniques employed in [19],we can easily prove (i)
(ii) Using the fact that f is convex if and only if z f ′ is starlike, we can

prove (ii).

3. Modified Hadamard Products

Let the functions f j(z)( j = 1,2) be defined by (27). The modified Hadamard
product of f1(z) and f2(z) is defined by

( f1 ∗ f2)(z) = z−
∞

∑
n=2

an,1an,2 zn.

Using the techniques of Schild and Silverman [17], we prove the following re-
sults.

Theorem 3.1. For functions f j(z) ( j = 1,2) defined by (27), let f1 ∈ T J η
µ(α ,

β ,γ,A,B) and f2 ∈ T J η
µ(δ ,β ,γ,A,B). Then ( f1 ∗ f2) ∈ T J η

µ(ξ ,β ,γ,A,B),
where

ξ = 1−
2βγ(B−A)(1−α)(1−δ )(1+2βγ(B−A)−Bβ )

Φ2(α,β ,γ,A,B)Φ2(δ ,β ,γ,A,B)C2(η ,µ)−4β 2γ2(B−A)2(1−α)(1−δ )
(32)

and Φ2(α,β ,γ,A,B) is given by (23), C2(η ,µ) is given by (17) and Φ2(δ ,β ,γ ,
A,B,2) = [2βγ(B−A)(2−δ )+(1−Bβ )] .
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Proof. In view of Theorem 2.1, it suffice to prove that

∞

∑
n=2

[2βγ(B−A)(n−ξ )+(1−Bβ )(n−1)]Cn(η ,µ)

2βγ(1−ξ )(B−A)
an,1an,2 ≤ 1, (0≤ ξ < 1)

where ξ is defined by (32). On the other hand, under the hypothesis, it follows
from (19) and the Cauchy’s-Schwarz inequality that

∞

∑
n=2

[Φn(α,β ,γ,A,B)]1/2[Φn(δ ,β ,γ,A,B)]1/2√
(1−α)(1−δ )(Cn(η ,µ))−1

√
an,1an,2 ≤ 1, (33)

where Φn(α,β ,γ,A,B) is given by (22) and Φn(δ ,β ,γ,A,B,n) = [2βγ(B−
A)(n−δ )+(1−Bβ )(n−1)]. Thus we need to find the largest ξ such that

∞

∑
n=2

[Φn(ξ ,β ,γ,A,B)]Cn(η ,µ)

2βγ(1−ξ )(B−A)
an,1an,2

≤
∞

∑
n=2

[Φn(α,β ,γ,A,B)]1/2[Φn(δ ,β ,γ,A,B)]1/2√
(1−α)(1−δ )(Cn(η ,µ))−1

√
an,1an,2

or, equivalently that

√
an,1an,2 ≤ 1−ξ√

(1−α)(1−δ )

[Φn(α,β ,γ,A,B)]1/2[Φn(δ ,β ,γ,A,B)]1/2

[Φn(ξ ,β ,γ,A,B)]
, (n≥ 2)

where Φn(ξ ,β ,γ,A,B) = 2βγ(B−A)(n− ξ )+ (1−Bβ )(n− 1). By view of (33) it is
sufficient to find largest ξ such that

2βγ(B−A)
√

(1−α)(1−δ )(Cn(η ,µ))−1

[Φn(α,β ,γ,A,B)]1/2[Φn(δ ,β ,γ,A,B)]1/2

≤ 1−ξ√
(1−α)(1−δ )

[Φn(α,β ,γ,A,B)]1/2[Φn(δ ,β ,γ,A,B)]1/2

[2βγ(B−A)(n−ξ )+(1−Bβ )(n−1)]

which yields

ξ = Ψ(n) = 1−
2βγ(B−A)(1−α)(1−δ )(n−1)(1+2βγ(B−A)−Bβ )

[Φn(α,β ,γ,A,B)Φn(δ ,β ,γ,A,B)]Cn(η ,µ)−4β 2γ2(B−A)2(1−α)(1−δ )

(34)

for n ≥ 2 is an increasing function of n (n ≥ 2) and letting n = 2 in (34), we get the
desired result.

By using arguments similar to those in proof of Theorem 3.1, and employing
the techniques of [19] we can easily prove the following results, hence we state
the following theorems without proof.
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Theorem 3.2. Let the functions f j(z)( j = 1,2) defined by (27), be in the class
T J η

µ(α,β ,γ,A,B) then ( f1 ∗ f2) ∈ T J η
µ(ρ,β ,γ,A,B), where

ρ = 1− 2βγ(B−A)(1−α)2(1+2βγ(B−A)−Bβ )

[Φ2(α,β ,γ,A,B)]2C2(η ,µ)−4β 2γ2(B−A)2(1−α)2

and C2(η ,µ) is given by (17).

Proof. By taking δ = α, in the above theorem, the result follows.

Theorem 3.3. Let the function f (z) defined by (2) be in the class T J η
µ(α,β ,

γ,A,B). Also let g(z) = z−
∞

∑
n=2

bnzn for |bn| ≤ 1.

Then ( f ∗g) ∈ T J η
µ(α,β ,γ,A,B).

Theorem 3.4. Let the functions f j(z)( j = 1,2) defined by (27) be in the class

T J η
µ(α,β ,γ,A,B). Then the function h(z) defined by h(z) = z−

∞

∑
n=2

(a2
n,1 +

a2
n,2)z

n is in the class T J η
µ(ξ ,β ,γ,A,B), where

ξ = 1− 4βγ(1−α)2(B−A)
C2(η ,µ)[Φ2(α,β ,γ,A,B)]2−8β 2γ2(B−A)2(1−α)2

and C2(η ,µ) is given by (17).

4. Inclusion relations involving Nδ (e)

Following [7, 13], we define the δ− neighbourhood of function f ∈ T by

Nδ ( f ) :=

{
h ∈ T : h(z) = z−

∞

∑
n=2

dnzn and
∞

∑
n=2

n|an−dn| ≤ δ

}
. (35)

Particulary for the identity function e(z) = z, we have

Nδ (e) :=

{
h ∈ T : h(z) = z−

∞

∑
n=2

dnzn and
∞

∑
n=2

n|dn| ≤ δ

}
. (36)

Now we obtain inclusion relations of the class T J η
µ(α,β ,γ,A,B).

Theorem 4.1. If

δ :=
4βγ(1−α)(B−A)

[Φ2(α,β ,γ,A,B)]C2(η ,µ)
(37)

where C2(η ,µ) is given by (17). Then T J η
µ(α,β ,γ,A,B)⊂ Nδ (e).
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Proof. For f ∈ T J η
µ(α,β ,γ,A,B), Theorem 2.1 immediately yields

[Φ2(α,β ,γ,A,B)]C2(η ,µ)
∞

∑
n=2

an ≤ 2βγ(1−α)(B−A),

so that
∞

∑
n=2

an ≤
2βγ(1−α)(B−A)

[Φ2(α,β ,γ,A,B)]C2(η ,µ)
. (38)

On the other hand, from (19) and (38) that

[2βγ(B−A)+(1−Bβ )]C2(η ,µ)
∞

∑
n=2

nan

≤ 2βγ(1−α)(B−A)+ [2βγα(B−A)+(1−Bβ )]C2(η ,µ)

×
[

2βγ(1−α)(B−A)
[Φ2(α,β ,γ,A,B)]C2(η ,µ)

]
=

2[2βγ(1−α)(B−A)][2βγ(B−A)+(1−Bβ )]

[Φ2(α,β ,γ,A,B)]

that is
∞

∑
n=2

nan ≤
4βγ(1−α)(B−A)

[Φ2(α,β ,γ,A,B)]C2(η ,µ)
:= δ (39)

which, in view of the (36) which complete the proof of Theorem 4.1.

Next we determine the neighborhood for the class T J η
µ(ρ,α,β ,γ,A,B)

which we define as follows. A function f ∈ T is said to be in the class T J η
µ(ρ ,

α,β ,γ,A,B) if there exists a function h ∈ T J η
µ(ρ,α,β ,γ,A,B) such that∣∣∣∣ f (z)

h(z)
−1
∣∣∣∣< 1−ρ, (z ∈U, 0≤ ρ < 1).

Theorem 4.2. If h ∈ T J η
µ(ρ,α,β ,γ,A,B) and

ρ = 1− [Φ2(α,β ,γ,A,B)]δC2(η ,µ)

[2+4βγ(B−A)(2−α)−Bβ ]C2(η ,µ)−4βγ(1−α)(B−A)
(40)

then Nδ (h)⊂ T J
η
µ(ρ,α,β ,γ,A,B).

Proof. Suppose that f ∈ Nδ (g) we then find from (35) that
∞

∑
n=2

n|an − bn| ≤

δ which implies that the coefficient inequality
∞

∑
n=2
|an − bn| ≤ δ

2 . Since h ∈
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T J η
µ(α,β ,γ,A,B),

we have
∞

∑
n=2

bn ≤ 2βγ(1−α)(B−A)
[Φ2(α,β ,γ,A,B)]C2(η ,µ) so that

∣∣∣∣ f (z)
h(z)
−1
∣∣∣∣<

∞

∑
n=2
|an−bn|

1−
∞

∑
n=2

bn

≤
δ

2

1− 2βγ(1−α)(B−A)
[Φ2(α,β ,γ,A,B)]C2(η ,µ)

=
[Φ2(α,β ,γ,A,B)]δC2(η ,µ)

[2+4βγ(B−A)(2−α)−Bβ ]C2(η ,µ)−4βγ(1−α)(B−A)
= 1−ρ.

provided that ρ is given precisely by (40). Thus by definition, f ∈ T J η
µ(ρ,α ,

β ,γ,A,B) for ρ given by (40), which completes the proof.

Concluding Remarks: By suitably specializing the various parameters in-
volved in Theorem 2.1 to Theorem 4.2, one can state the corresponding results
for many relatively more familiar function classes.
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