ON TWISTED ORDERED MONOID RINGS OVER QUASI-BAER RINGS

A. AGEEB - A. M. HASSANEIN - R. M. SALEM

In this paper we show that if M is an Ordered monoid then the twisted monoid ring $R^{T} M$ is (left principally) quasi-Baer if and only if R is (left principally) quasi-Baer. Also if R is (left principally) quasi-Baer and G is an ordered group acting on R we give a necessary and sufficient condition for the crossed product $R * G$ to be (left principally) quasi-Baer.

1. INTRODUCTION

Throughout this paper, R denotes an associative ring with identity. If S is a subset of $R, l_{R}(S)$ denotes the left annihilator of S in R. A ring R is called (left principally) quasi-Baer if the left annihilator of every (principal) left ideal of R is generated as a left ideal by an idempotent. A Baer ring is a ring in which the left annihilator of every subset is generated as a left ideal by an idempotent. A ring R is called left (right) P.P.-ring if the left (right) annihilator of an element of R is generated by an idempotent. Also a ring R is called P.P.-ring if it is both left and right P.P.-ring.

Baer rings were introduced by Kaplanasky [8] to abstract various properties of rings of operators of Hilbert space. Clark [6] introduced the quasi-Baer rings and characterized a finite dimensional quasi-Baer ring over an algebraically

[^0]closed field as a twisted matrix units semigroup algebra. Further work in quasiBaer rings appeared in [2], [3], [4] and [10]. Recently, Birkenmeier, Kim and Park [5] introduced principally quasi-Baer rings and used them to generalize many results on reduced P.P.-rings. In [5], it was proved that a ring R is a (left principally) quasi-Baer ring if and only if the polynomial ring $R[x]$ is a (left principally) quasi-Baer ring. In [11] Hirano generalized this result to ordered monoid rings. This paper is devoted to extend this result to twisted monoid rings.

Let R be a ring and M be a monoid then the twisted monoid ring $R^{T} M$ is an R-algebra whose elements are finite sum of the form $\sum r_{x} x, r_{x} \in R, x \in M$ with equality and addition defined component wise and multiplication defined distributively according to the relation $\left(r_{x} x\right)\left(r_{y} y\right)=r_{x} r_{y} f(x, y)(x y)$, where f : $M \times M \rightarrow U(R)$ is called a twisted function and $U(R)$ denotes the set of all units of R. Moreover, f must satisfy the following:

$$
f(y, z) f(x, y z)=f(x, y) f(x y, z), \quad f(1, x)=f(x, 1)=1 \text { for every } x \in M
$$

Let G be a group acting on R as antomorphism group of R. We denote by r^{g} the image of $r \in R$ under $g \in G$.

By a crossed product $R *_{f} G$ we understand the set of finite sums,

$$
R *_{f} G=\left\{\sum r_{g} g \mid r_{g} \in R, g \in G\right\}
$$

with a twisted function (factor system) $f: G \times G \rightarrow U(R)$ which satisfies
(i) $f^{g}(h, k) f(g, h k)=f(g, h) f(g h, k) \quad$ for every $g, h, k \in G$,
(ii) $f(1, g)=f(g, 1)=1 \quad$ for all $g \in G$.

Equality and addition are defined component wise and for $g, h \in G ; r \in R$ we have

$$
g . h=f(g, h) g h ; \quad g r=r^{g} g .
$$

For simplicity we write $R * G$ to denote the crossed product. If the action of G is trivial then $R * G$ is called a twisted group ring.

Note that R may be considered as a left $(R * G)$-module as follows: for any $a \in R$ and any $\sum_{g \in G} r_{g} g \in(R * G)$ define $\left(\sum_{g \in G} r_{g} g\right) a=\sum_{g \in G} r_{g} a^{g} \in R$. Now we can define the following

A ring R is called a G-quasi-Baer ring if for any $(R * G)$-submodule I of R the left annihilator of I in R is generated as a left ideal by an idempotent.

A ring R is called a G-left principally quasi-Baer ring if for an element $a \in R$, the left annihilator of $(R * G) a=\sum_{g \in G} R a^{g}$ is generated as a left ideal by an idempotent.

In [5] it was shown that if R is a left principally quasi-Baer ring, then the left annihilator of any finitely generated left ideal is generated as a left ideal by an idempotent.

Note also that if R is a G-left principally quasi-Baer ring, then for any finitely many elements $a_{1}, a_{2}, \ldots, a_{n} \in R$, the left annihilator of $(R * G) a_{1}+(R * G) a_{2}+$ $\cdots+(R * G) a_{n}$ is also generated by an idempotent. We frequently use these facts without mention.

When G is a cyclic group generated by g, a G-(left principally) quasi-Baer ring is simply called a g-(left principally) quasi-Baer ring.

Let M be a multiplicative monoid and \leq be an order relation defind on M. The order relation \leq is said to be compatible if $a \leq b$ in M implies $a m \leq b m$ for all $m \in M$. Recall that the order relation \leq strictly ordered monoid if $a<b$ in M implies $a m<b m$ for all $m \in M$. Hence fourth, we assume that the relation is a strictly totally order relation.

2. RESULTS

Lemma 2.1. Let R be a left principally quasi-Baer ring, M be an ordered monoid and $R^{T} M$ be the twisted monoid ring. Suppose that

$$
\left(a_{0} x_{0}+a_{1} x_{1}+\cdots+a_{m} x_{m}\right) R^{T} M\left(b_{0} y_{0}+b_{1} y_{1}+\ldots+b_{n} y_{n}\right)=0
$$

with $a_{i}, b_{j} \in R$, and that $x_{i}, y_{j} \in M$ satisfies $x_{i}<x_{j}$ and $y_{i}<y_{j}$ if $i<j$.
Then $a_{i} R b_{j}=0$ for all i, j.
Proof. Let c be an arbitrary element of R. Then we have the following equation:

$$
\begin{align*}
\left(a_{0} x_{0}+\right. & \left.a_{1} x_{1}+\cdots+a_{m} x_{m}\right)\left(c 1_{M}\right)\left(b_{0} y_{0}+b_{1} y_{1}+\cdots+b_{n} y_{n}\right)=0 \\
& \\
& a_{0} c f\left(x_{0}, 1\right) b_{0} f\left(x_{0}, y_{0}\right) x_{0} y_{0}+\ldots \\
& +\left\{a_{m} c f\left(x_{m}, 1\right) b_{n-3} f\left(x_{m}, y_{n-3}\right) x_{m} y_{n-3}\right. \\
+ & a_{m-1} c f\left(x_{m-1}, 1\right) b_{n-2} f\left(x_{m-1}, y_{n-2}\right) x_{m-1} y_{n-2} \\
& +a_{m-2} c f\left(x_{m-2}, 1\right) b_{n-1} f\left(x_{m-2}, y_{n-1}\right) x_{m-2} y_{n-1} \\
& \left.+a_{m-3} c f\left(x_{m-3}, 1\right) b_{n} f\left(x_{m-3}, y_{n}\right) x_{m-3} y_{n}\right\} \tag{1}\\
& +\left\{a_{m} c f\left(x_{m}, 1\right) b_{n-2} f\left(x_{m}, y_{n-2}\right) x_{m} y_{n-2}\right. \\
& +a_{m-1} c f\left(x_{m-1}, 1\right) b_{n-1} f\left(x_{m-1}, y_{n-1}\right) x_{m-1} y_{n-1} \\
& \left.+a_{m-2} c f\left(x_{m-2}, 1\right) b_{n} f\left(x_{m-2}, y_{n}\right) x_{m-2} y_{n}\right\} \\
& +\left\{a_{m} c f\left(x_{m}, 1\right) b_{n-1} f\left(x_{m}, y_{n-1}\right) x_{m} y_{n-1}\right. \\
& \left.+a_{m-1} c f\left(x_{m-1}, 1\right) b_{n} f\left(x_{m-1}, y_{n}\right) x_{m-1} y_{n}\right\} \\
+ & a_{m} c f\left(x_{m}, 1\right) b_{n} f\left(x_{m}, y_{n}\right) x_{m} y_{n}=0
\end{align*}
$$

Since $x_{m} y_{n}$ is the element of highest order in $x_{i} y_{j}$'s, its coefficient equals zero, that is $a_{m} c f\left(x_{m}, 1\right) b_{n} f\left(x_{m}, y_{n}\right)=0$ so $a_{m} c f\left(x_{m}, 1\right) b_{n}=0$. Hence $a_{m} \in$ $l_{R}\left(R f\left(x_{m}, 1\right) b_{n}\right)=l_{R}\left(R b_{n}\right)$. Since R is left principally quasi-Baer, then we have $l_{R}\left(R b_{n}\right)=R e_{n}$ for some idempotent e_{n}. Replacing c by $c e_{n}$ in the Equation (1) we obtain

$$
\begin{aligned}
& 0=a_{0} c e_{n} f\left(x_{0}, 1\right) b_{0} f\left(x_{0}, y_{0}\right) x_{0} y_{0}+\ldots \\
+ & \left\{a_{m} c e_{n} f\left(x_{m}, 1\right) b_{n-2} f\left(x_{m}, y_{n-2}\right) x_{m} y_{n-2}\right. \\
+ & \left.a_{m-1} c e_{n} f\left(x_{m-1}, 1\right) b_{n-1} f\left(x_{m-1}, y_{n-1}\right) x_{m-1} y_{n-1}\right\} \\
+ & a_{m} c e_{n} f\left(x_{m}, 1\right) b_{n-1} f\left(x_{m}, y_{n-1}\right) x_{m} y_{n-1}
\end{aligned}
$$

Since $x_{m} y_{n-1}$ is the element of highest order in $\left\{x_{i} y_{j} \mid 1 \leq i \leq m, 1 \leq j \leq\right.$ $n\} \backslash\left\{x_{m-1} y_{n}, x_{m} y_{n}\right\}$, then $a_{m} c e_{n} f\left(x_{m}, 1\right) b_{n-1} f\left(x_{m}, y_{n-1}\right)=0$. Hence we have $a_{m} c e_{n} f\left(x_{m}, 1\right) b_{n-1}=0$. Since $R e_{n}$ is an ideal of R, and $e_{n} \in R e_{n}$, we have $e_{n} c \in$ $R e_{n}$. So $e_{n} c=e_{n} c e_{n}$ for any element $c \in R$. Also since $a_{m} \in l_{R}\left(R b_{n}\right)=R e_{n}$, then $a_{m}=a_{m} e_{n}$. Hence

$$
\begin{aligned}
a_{m} c f\left(x_{m}, 1\right) b_{n-1} & =a_{m} e_{n} c f\left(x_{m}, 1\right) b_{n-1} \\
=a_{m} e_{n} c e_{n} f\left(x_{m}, 1\right) b_{n-1} & =a_{m} c e_{n} f\left(x_{m}, 1\right) b_{n-1}=0
\end{aligned}
$$

therefore $a_{m} \in l_{R}\left(R f\left(x_{m}, 1\right) b_{n-1}\right)=l_{R}\left(R b_{n-1}\right)$. So $a_{m} \in l_{R}\left(R b_{n}+R b_{n-1}\right)$. Since R is left principally quasi-Baer, $l_{R}\left(R b_{n}+R b_{n-1}\right)=R e_{n-1}$ for some idempotent $e_{n-1} \in R$. Next, replacing c by $c e_{n-1}$ in the Equation (1), we obtain

$$
a_{m} c e_{n-1} f\left(x_{m}, 1\right) b_{n-2} f\left(x_{m}, y_{n-2}\right)=0
$$

in the same way as above. Hence we have $a_{m} \in l_{R}\left(R b_{n}+R b_{n-1}+R b_{n-2}\right)$. Continuing this process we obtain $a_{m} R b_{k}=0$ for all $k=0,1, \ldots, n$. Thus we get $\left(a_{0} x_{0}+a_{1} x_{1}+\ldots+a_{m-1} x_{m-1}\right) R^{T} M\left(b_{0} y_{0}+b_{1} y_{1}+\ldots+b_{n} y_{n}\right)=0$. Using induction on $m+n$ we obtain $a_{i} R b_{j}=0$ for all i, j.

Lemma 2.2. Let M be an ordered monoid and consider the twisted monoid ring $R^{T} M$. Let I be a (principal) left ideal of $R^{T} M$ and let I_{0} denote the set of all coefficients of elements of I, then
(i) I_{0} is a (finitely generated) ideal of R;
(ii) $l_{R}(I)=l_{R}\left(I_{0}\right)$;
(iii) If J is a left ideal of R, then $l_{R^{T} M}(J)=l_{R^{T} M}\left(\left(R^{T} M\right) J\right)$.

Proof. (i) The proof is clear.
(ii) Let $a \in l_{R}\left(I_{0}\right)$ then $a I=0$ and $a \in l_{R}(I)$. Hence, $l_{R}\left(I_{0}\right) \subset l_{R}(I)$. Conversely,
let $a \in l_{R}(I)$ then $a \sum_{x \in M} b_{x} x=\sum_{x \in M} a b_{x} x=0$ and $a b_{x}=0$, for each $x \in M$. Therefore $a \in l_{R}\left(I_{0}\right)$. Hence $l_{R}(I) \subset l_{R}\left(I_{0}\right)$.
(iii) Let J be a left ideal of R, since $J \subset\left(R^{T} M\right) J$ then $l_{R^{T} M}\left(\left(R^{T} M\right) J\right) \subset l_{R^{T} M}(J)$. Conversely, let $x \in l_{R^{T} M}(J)$ then $x\left(\left(R^{T} M\right) J\right)=x\left((R J)^{T} M\right)=x\left(J^{T} M\right)=0$. So $x \in l_{R^{T} M}\left(\left(R^{T} M\right) J\right)$ and $l_{R^{T} M}(J) \subset l_{R^{T} M}\left(\left(R^{T} M\right) J\right)$. Then we can conclude that $l_{R^{T} M}(J)=l_{R^{T} M}\left(\left(R^{T} M\right) J\right)$.

Now we will use these lemmas to prove the following theorem.
Theorem 2.3. Let M be an ordered monoid. Then the twisted monoid ring $R^{T} M$ is a (left principally) quasi-Baer ring if and only if R is a (left principally) quasi-Baer ring.

Proof. Suppose R is a (left principally) quasi-Baer. Let I be a (principal) left ideal of $R^{T} M$ and I_{0} denote the set of all coefficients of elements of I. Since R is (left principally) quasi-Baer, there exist an idempotent $e \in R$ such that $l_{R}(I)=$ $l_{R}\left(I_{0}\right)=R e$. Now it is sufficient to show that $l_{R^{T} M}(I) \subseteq\left(R^{T} M\right) e$. Let $\alpha=$ $\sum_{x \in M} a_{x} x \in l_{R^{T} M}(I)$ then $\alpha I=\left(\sum_{x \in M} a_{x} x\right) I=0$, by Lemma 2.1 we get $a_{x} I_{0}=0$ for all a_{x}. Therefore $a_{x} \in l_{R}\left(I_{0}\right)$ which implies that $a_{x}=a_{x} e$. Consequently $\alpha=\sum_{x \in M} a_{x} e x=\left(\sum_{x \in M} a_{x} x\right) e \in\left(R^{T} M\right) e$. Hence $l_{R^{T} M}(I)=\left(R^{T} M\right) e$ and $R^{T} M$ is (left principally) quasi-Baer.

Conversely assume that $R^{T} M$ is a (left principally) quasi-Baer ring. Let I be a (principal) left ideal of R, then $\left(R^{T} M\right) I$ is a left ideal of $R^{T} M$. By hypothesis there exists an idempotent $e \in R^{T} M$ such that $l_{R^{T} M}\left(\left(R^{T} M\right) I\right)=\left(R^{T} M\right) e$. We may write $e=a_{0} 1_{M}+a_{1} x_{1}+\cdots+a_{n} x_{n} \in R^{T} M$ where $a_{i} \in R$ and $1, x_{1}, \ldots, x_{n}$ are distinct elements of M. We show that $l_{R}(I)=R a_{0}$ where a_{0} is an idempotent of R. Since $l_{R^{T} M}(I)=\left(R^{T} M\right) e$, then $\left(a_{0} 1_{M}+a_{1} x_{1}+\ldots+a_{n} x_{n}\right) I=0$ and $a_{i} x_{i} \in l_{R^{T} M}(I)=\left(R^{T} M\right) e$ for each $i=0,1,2, \ldots, n, x_{0}=1$. In particular $a_{0} 1=\left(a_{0} 1\right) e=\left(a_{0} 1\right)\left(a_{0} 1_{M}+a_{1} x_{1}+\ldots+a_{n} x_{n}\right)=a_{0}^{2} f(1,1) 1+a_{0} a_{1} f\left(1, x_{1}\right) x_{1}+$ $\ldots+a_{0} a_{n} f\left(1, x_{n}\right) x_{n}$. Since $f(1,1)=1$ it follows that $a_{0}^{2}=a_{0}$ is an idempotent element of R. Obviously $R a_{0} \subset l_{R}(I)$. Now, let $a \in l_{R}(I)$, then $a 1 \in$ $l_{R^{T} M}(I)=\left(R^{T} M\right) e$ and we get $a 1=(a 1) e=(a 1)\left(a_{0} 1_{M}+a_{1} x_{1}+\ldots+a_{n} x_{n}\right)=$ $a a_{0} f(1,1) 1+a a_{1} f\left(1, x_{1}\right) x_{1}+\ldots+a a_{n} f\left(1, x_{n}\right) x_{n} . a=a a_{0} \in R a_{0}$. Consequently $R a_{0}=l_{R}(I)$ and R is a (left principally) quasi-Baer ring.

It is well-known that torsion-free groups and free groups are ordered groups (see [9, Lemma 13.1.6 and 13.2.8], [7, Theorem 3.1]). Hence the following corollary easily follows.

Corollary 2.4. Let M be a submonoid of a free group or a torsion-free group. Then the twisted monoid ring $R^{T} M$ is a (left principally) quasi-Baer ring if and only if R is a (left principally) quasi-Baer ring.

A ring R is called reduced if it has no nonzero nilpotent elements. In a reduced ring R left and right annihilators coincide for any subset S of R. Hence if R is a reduced ring, then R is a P.P.-ring (a Baer ring) if and only if R is a left principally quasi-Baer ring (a quasi-Baer ring). Hence we can deduce that the following corollary,

Corollary 2.5. Let R be a reduced ring and M be an ordered monoid; then the twisted monoid ring $R^{T} M$ is a P.P.-(Baer) ring if and only if R is a P.P.-(Baer) ring.

Proof. Let $R^{T} M$ be a reduced P.P.(Baer) ring which is equivalent to $R^{T} M$ is a left principally quasi-Baer(quasi-Baer) ring. Hence by using Theorem $2.3 R$ is a reduced left principally quasi-Baer (quasi-Baer) ring if and only if R is a reduced P.P.-(Baer) ring.

Theorem 2.6. Let R be a ring and G be an ordered group acting on R. If $R * G$ is a (left principally) quasi-Baer ring then R is a G-(left principally) quasi-Baer ring.

Proof. Suppose that $R * G$ is a (left principally) quasi-Baer ring, and that I is a (cyclic) $(R * G)$-submodule of R. First, we show that $I=I^{g}$, for all $g \in G$. Since I is a $R * G$-submodule of $R,(1 g) I \subset I$ for every $g \in G$. Hence $I^{g} \subset I$ for every $g \in G$. To prove the other inclusion, let $a \in I$; then for every $g \in G$ we have $a=r^{g}$ for some $r \in R$. Hence $r=a^{g^{-1}} \in I$, which implies that $a \in I^{g}$, and it follows that $I=I^{g}$, for all $g \in G$. Now we show that $l_{R}(I)$ is generated by an idempotent. By hypothesis there exists an idempotent $e \in R * G$ such that $l_{R * G}((R * G) I)=$ $(R * G) e$. We may write $e=a_{0} 1_{G}+a_{1} g_{1}+\ldots+a_{n} g_{n} \in R * G$, where $a_{i} \in R$ and $1, g_{1}, \ldots, g_{n}$ are distinct elements of G. Since $e \in l_{R * G}((R * G) I)$, then $\left(a_{0} 1_{G}+\right.$ $\left.a_{1} g_{1}+\ldots+a_{n} g_{n}\right) b 1=0$ for each $b \in I$. Hence $a_{0} b f(1,1) 1_{G}+a_{1} b^{g_{1}} f\left(g_{1}, 1\right) g_{1}+$ $\ldots+a_{n} b^{g_{n}} f\left(g_{n}, 1\right) g_{n}=0$ for all $b \in I$, which implies that $a_{i} \in l_{R}(I)$ for each $i=$ $1,2, \ldots, n$. Therefore $a_{i} 1 \in l_{R * G}(I(R * G))=l_{R * G}((R * G) I)=(R * G) e$, for each i. In particular, $a_{0} 1=\left(a_{0} 1\right) e=\left(a_{0} 1\right)\left(a_{0} 1_{G}+a_{1} g_{1}+\cdots+a_{n} g_{n}\right)=a_{0}^{2} f(1,1) 1+$ $a_{0} a_{1} f\left(1, g_{1}\right) g_{1}+\cdots+a_{0} a_{n} f\left(1, g_{n}\right) g_{n}$. So $a_{0}^{2}=a_{0}$ is an idempotent element of R. Obviously $R a_{0} \subset l_{R}(I)$. To prove the inverse inclusion, let $a \in l_{R}(I)$, then $a 1 \in$ $l_{R * G}(I(R * G))=(R * G) e$. So $a 1=(a 1) e=(a 1)\left(a_{0} 1_{G}+a_{1} g_{1}+\cdots+a_{n} g_{n}\right)=$ $a a_{0} f(1,1) 1+a a_{1} f\left(1, g_{1}\right) g_{1}+\ldots+a a_{n} f\left(1, g_{n}\right) g_{n}$. This implies that $a=a a_{0} \in$ $R a_{0}$. Thus we obtain $R a_{0}=l_{R}(I)$, and R is a G - (left principally) quasi-Baer ring.

The following example shows that there exists a crossed product $R * G$ which is Quasi-Baer while R is not Quasi-Baer .

Example 2.7. Consider the $\operatorname{ring} R=\{(a, b) \in \mathbb{Z} \oplus \mathbb{Z} \mid a \equiv b(\bmod 2)\}$. With the usual operations of component wise addition and multiplication R is clearly a commutative reduced ring and the only idempotents of R are $(0,0),(1,1)$. Let $G=\langle g\rangle$ be an infinite cyclic group and let the action of G be defined by $(a, b)^{g}=(b, a)$. Now we claim that $R * G$ is Quasi-Baer. To prove this claim, let I be a non Zero ideal of $R * G$, hence there exist a non zero element $x \in I$. Suppose $x=\sum_{j}\left(a_{j}, b_{j}\right) g^{j}$ and $g^{i}<g^{j}$ if $i<j$, let g^{i} be the smallest element with non zero coefficient $\left(a_{i}, b_{i}\right)$. Let $y=(1,1) f^{-1}(2 k-i, i) g^{2 k-i}$ and $Z=(1,1) f^{-1}(2 k-i+1, i) g^{2 k-i+1}$. Hence $y x \in I$ and $z x \in I$, clearly the smallest order with non zero coefficient in both of them is $2 k$ and one of them has the coefficient $\left(a_{i}, b_{i}\right)$ for the smallest term and the other has $\left(b_{i}, a_{i}\right)$. Suppose that $0 \neq$ $q=\sum_{s}\left(u_{s}, v_{s}\right) g^{s} \in l_{R * G}(I)$, with g^{j} be the smallest element with non zero coefficient $\left(u_{j}, v_{j}\right)$, Hence $q(y x)=0$ and $q(z x)=0$. The coefficients of the smallest term in both of them are $\left(u_{j}, v_{j}\right)\left(a_{i}, b_{i}\right) f\left(g^{j}, g^{2 k}\right)$ and $\left(u_{j}, v_{j}\right)\left(b_{i}, a_{i}\right) f\left(g^{j}, g^{2 k}\right)$. Therefore, we get $\left(u_{j} a_{i}, v_{j} b_{i}\right)=(0,0)$ and $\left(u_{j} b_{i}, v_{j} a_{i}\right)=(0,0)$, since $\left(a_{i}, b_{i}\right) \neq$ $(0,0)$ this means that a_{i} or b_{i} are non zero. Consequently, $\left(u_{j}, v_{j}\right)=(0,0)$ which is a contradiction. Therefore, $l_{R * G}(I)=\{(0,0)\}$ and $R * G$ is a Quasi-Baer.

Conversely, R is not Quasi-Baer ring. For $(2,0) \in R$, we get $l_{R}(\langle(2,0)\rangle)=$ $\{(0,2 n) \mid n \in \mathbb{Z}\}$. Consequently, $l_{R}((2,0))$ doesn't contain any non zero idempotent. Hence R is not Quasi-Baer.

Lemma 2.8. Let G be an ordered group acting on R and consider the crossed product $(R * G)$, then
(i) $\sum_{g \in G} R b^{g}$ is an invariant under the action of elements of G where $b \in R$;
(ii) I is a left $R * G$-submodule of R if and only if I is an invariant left ideal of R.

Proof. (i) Let h be an arbitrary element in G; then, $\left(\sum_{g \in G} R b^{g}\right)^{h}=\sum_{g \in G}\left(R b^{g}\right)^{h}=$ $\sum_{g \in G} R^{h}\left(b^{g}\right)^{h}=\sum_{g \in G} R b^{g h}=\left(\sum_{g^{\prime}=g h \in G} R b^{g^{\prime}}\right)=\left(\sum_{g \in G} R b^{g}\right)$. Hence $\sum_{g \in G} R b^{g}$ is an invariant under the action of elements of G.
(ii) Let I be a left $R * G$-submodule of R, then it is clear that I is an abelian group with addition. We will show that I is closed under multiplication by elements of R from the left; let $r \in R, i \in I$ we have $\left(r 1_{G}\right) i=r i^{1}=r i$, but I is a left $R * G$-submodule of R then $r i \in I$. Now we will prove that I is invariant. Since $\left(1_{R} g\right) i=1 i^{g} \in I$ then $I^{g} \subseteq I$. Therefore I an invariant left ideal of R.

On the other hand, let I be an invariant left ideal of R, then it is sufficient to show that I is closed under multiplication by elements of $R * G$ from the left, let
$\sum_{g \in G} a_{g} g \in R * G$, then $\left(\sum_{g \in G} a_{g} g\right) I=\sum_{g \in G} a_{g} I^{g} \subset \sum_{g \in G} a_{g} I \subset I$. Therefore I is a left $R * G$-submodule of R.

Remark 2.9. Using Lemma 2.8 (ii) we can deduce that a (left principally) quasiBaer ring is a G-(left principally) quasi-Baer ring.

Lemma 2.10. Let R be a G-left principally quasi-Baer ring, G be an ordered group acting on R and $(R * G)$ be the crossed product. If $\left(a_{0} g_{0}+a_{1} g_{1}+\ldots+\right.$ $\left.a_{m} g_{m}\right)(R * G)\left(b_{0} h_{0}+b_{1} h_{1}+\ldots+b_{n} h_{n}\right)=0$ with $a_{i}, b_{j} \in R, g_{i}, h_{j} \in G$ satisfying $g_{i}<g_{j}$ and $h_{i}<h_{j}$ if $i<j$, then $a_{i}\left(\sum_{g \in G} R b_{j}^{g}\right)=0$ for all i, j.

Proof. Let x be an arbitrary element of $R * G$ and suppose that

$$
\begin{equation*}
\left(a_{0} g_{0}+a_{1} g_{1}+\ldots+a_{m} g_{m}\right) x\left(b_{0} h_{0}+b_{1} h_{1}+\ldots+b_{n} h_{n}\right)=0 \tag{2}
\end{equation*}
$$

Let c be an arbitrary element of R and g be an arbitrary element of G. Substitute $x=c g_{m}^{-1} g$ in (2) and consider the coefficient of the highest order $g_{m} h_{n}$ in the $g_{i} h_{j}$'s, i.e. the coefficient of the term

$$
\begin{aligned}
a_{m} g_{m}\left(c g_{m}^{-1} g\right) b_{n} h_{n} & =a_{m} c^{g_{m}} f\left(g_{m}, g_{m}^{-1} g\right)\left(g_{m} g_{m}^{-1} g\right) b_{n} h_{n} \\
& =a_{m} c^{g_{m}} f\left(g_{m}, g_{m}^{-1} g\right) b_{n}^{g} f\left(g, h_{n}\right) g h_{n}
\end{aligned}
$$

so we obtain $a_{m} c^{g_{m}} f\left(g_{m}, g_{m}^{-1} g\right) b_{n}^{g} f\left(g, h_{n}\right)=0$ then $a_{m} c^{g_{m}} f\left(g_{m}, g_{m}^{-1} g\right) b_{n}^{g}=0$. This implies $a_{m} R f\left(g_{m}, g_{m}^{-1} g\right) b_{n}^{g}=a_{m} R b_{n}^{g}=0$, so $a_{m} \in l_{R}\left(\sum_{g \in G} R b_{n}^{g}\right)$. Since $I=$ $\left(\sum_{g \in G} R b_{n}^{g}\right)$ is a left $R * G$-submodule of R. By hypothesis we have $l_{R}\left(\sum_{g \in G} R b_{n}^{g}\right)=$ $R e_{n}$ for some idempotent $e_{n} \in R$. We show that $R e_{n}=R e_{n}^{h}$, let $x \in R e_{n}^{h}$, therefore

$$
\begin{aligned}
& x\left(\sum_{g \in G} R b_{n}^{g}\right)=a e_{n}^{h}\left(\sum_{g \in G} R b_{n}^{g}\right)=\left[\left(a e_{n}^{h}\left(\sum_{g \in G} R b_{n}^{g}\right)\right)^{h^{-1}}\right]^{h} \\
& \quad=\left[a^{h^{-1}} e_{n} \sum_{g \in G}\left(R b_{n}^{g}\right)^{h^{-1}}\right]^{h}=\left[a^{h^{-1}} e_{n} \sum_{g \in G}\left(R b_{n}^{g}\right)\right]^{h}=0^{h}=0 .
\end{aligned}
$$

Hence $x \in l_{R}\left(\sum_{g \in G} R b_{n}^{g}\right)$, and $R e_{n}^{h} \subset R e_{n}$ for each $h \in G$. Now let $x \in R e_{n}$ so, $x=c e_{n}=c\left(e_{n}^{h^{-1}}\right)^{h}=c\left(r e_{n}\right)^{h}$ for some $c \in R$. Hence $x=c r^{h} e_{n}^{h}=c^{\prime} e_{n}^{h} \in R e_{n}^{h}$, then $R e_{n} \subset R e_{n}^{h}$ and we get $R e_{n}=R e_{n}^{h}$ for any $h \in G$. Note that $R e_{n}$ is an ideal of R. Hence substituting $x=c e_{n} g_{m}^{-1} g$ in (2) we have

$$
\begin{aligned}
& \left(a_{0} g_{0}+a_{1} g_{1}+\cdots+a_{m} g_{m}\right)\left(c e_{n} g_{m}^{-1} g\right)\left(b_{0} h_{0}+b_{1} h_{1}+\cdots+b_{n} h_{n}\right) \\
= & a_{0} c^{g_{0}} e_{n}^{g_{0}} f\left(g_{0}, g_{m}^{-1} g\right) b_{0}^{g_{0} g_{m}^{-1} g} f\left(g_{0} g_{m}^{-1} g, h_{0}\right) g_{0} g_{m}^{-1} g h_{0}+\ldots \\
+ & a_{m} c^{g m} e_{n}^{g_{m}} f\left(g_{m}, g_{m}^{-1} g\right) b_{n-1}^{g} f\left(g, h_{n-1}\right) g h_{n-1}=0 .
\end{aligned}
$$

Thus $a_{m} c^{g^{g}} e_{n}^{g_{m}} f\left(g_{m}, g_{m}^{-1} g\right) b_{n-1}^{g}=0$. But $a_{m}=a_{m} e_{n}$ and $e_{n} c^{g_{m}} e_{n}^{g_{m}}=e_{n} c^{g_{m}}$, therefore $a_{m} c^{g m} f\left(g_{m}, g_{m}^{-1} g\right) b_{n-1}^{g}=a_{m} c^{g m} e_{n}^{g_{m}} f\left(g_{m}, g_{m}^{-1} g\right) b_{n-1}^{g}=0$. Hence

$$
a_{m} R f\left(g_{m}, g_{m}^{-1} g\right) b_{n-1}^{g}=a_{m} R b_{n-1}^{g}=0,
$$

so that $a_{m} \in l_{R}\left(\sum_{g \in G} R b_{n}^{g}\right) \cap l_{R}\left(\sum_{g \in G} R b_{n-1}^{g}\right)$. Continuing this process, we obtain $a_{m} \in \bigcap_{i=1}^{n} l_{R}\left(\sum_{g \in G} R b_{i}^{g}\right)$. Therefore $\left(a_{0} g_{0}+a_{1} g_{1}+\ldots+a_{m-1} g_{m-1}\right)(R * G)\left(b_{0} h_{0}+\right.$ $\left.b_{1} h_{1}+\ldots+b_{n} h_{n}\right)=0$. Using induction on $m+n$, we can complete the proof of this lemma.

Now we will use the proceding lemmas to prove the following without mention.

Theorem 2.11. Let R be a ring and G be an ordered group acting on R. If R is a G-(left principally) quasi-Baer ring, then $R * G$ is a (left principally) quasi-Baer ring.

Proof. Suppose that R is a G-(left principally) quasi-Baer ring, and that I is a (principal) left ideal of $R * G$. Let I_{0} denote the set of all coefficients of elements of I then, I_{0} is a left ideal of R, hence I_{0} is a left $(R * G)$-submodule of R. But R is G-(left principally) quasi-Baer then, there exists an idempotent $e \in R$ such that $l_{R}(I)=l_{R}\left(I_{0}\right)=R e$ then by Lemma 2.10 we deduce that $l_{R * G}(I)=(R * G) e$. Therefore $R * G$ is (left principally) quasi-Baer.

Corollary 2.12. Let R be a ring such that every ideal of R is a G-invariant ideal and G be an ordered group acting on R, then $R * G$ is a (left principally) quasi-Baer ring if and only if R is a G-(left principally) quasi-Baer ring.

Corollary 2.13. (Similar to Corollary 2.5) Let R be a ring and G be an ordered group acting on R. Then the crossed product $R * G$ is a reduced P.P.-(Baer) ring if and only if R is a reduced G-left principally quasi-Baer (G - quasi-Baer) ring.

Proof. Since $R * G$ is a reduced P.P.- (Baer) ring if and only if $R * G$ is left principally quasi-Baer (a quasi-Baer) ring which using Corollary 2.12 is equivalent to say that R is a reduced G-left principally quasi-Baer (G-quasi-Baer) ring \Longleftrightarrow R is a reduced P.P.-(Baer) ring.

3. Acknowledgements

We would like to express our deepest gratitude to Professor M. H. Fahmy for his sincere help and valuable remarks during the preparation of this paper.

REFERENCES

[1] E. P. Armendariz, A note on extension of Baer and P.P.-rings, Australian Math. soc. 18 (1974), 470-473.
[2] G. F. Birkenmeier, Baer rings and quasi continuous rings have a MDSL, Pacific J. Math 97 (1981), 283-292.
[3] G. F. Birkenmeier, Decompositions of Baer-like rings, Acta Math. Hung. 59 (1992), 319-326.
[4] A. M. Hassanein - R. M. Salem - M. Farahat, Quasi Baer and Quasi Baer * of Hurwitz series rings, Proc. of Math. \& Phys. of Egypt (2006).
[5] G. F. Birkenmeier - J. Y. Kim - J. K. Park, Principally quasi-Baer rings, Comm. in Alg. 29 (2) (2001), 639-660.
[6] W.E. Clark, Twisted matrix units semi group algebras, Duke Math. J. 34 (1967), 417-424.
[7] R. Gilmer, Commutative Semigroup Rings, The University of Chicago Press, 1984.
[8] I. Kaplansky, Rings of Operators, Math Lecture Notes Series, Benjamin, New York, 1965.
[9] D. S. Passman, The Algebraic Structure of Group Rings, John Wiley \& Sons Ltd., 1977.
[10] P. Pollingher - A. Zaks, On Baer and quasi-Baer rings, Duke Math. J. 37 (1970), 127-138.
[11] Y. Hirano, On ordered monoid rings over a quasi-Baer ring, Comm. in Alg. 29 (5) (2001), 2089-2095.
A. AGEEB

Math. Dept. Fac. of Sci.
Al-Azhar University
Nasr city (11884), Cairo, Egypt.
e-mail: Ahmadageb@yahoo.com
A. M. HASSANEIN

Math. Dept. Fac. of Sci.
Al-Azhar University
Nasr city (11884), Cairo, Egypt.
e-mail: mhassanein_05@yahoo.com
R. M. SALEM

Math. Dept. Fac. of Sci. Al-Azhar University
Nasr city (11884), Cairo, Egypt. e-mail: rsalem_02@hotmail.com

[^0]: Entrato in redazione: 13 luglio 2009

