NEW STRONG COLOURINGS OF HYPERGRAPHS

SANDRO RAJOLA - MARIA SCAFATI TALLINI

Abstract

We define a new colouring for a hypergraph, in particular for a graph. Such a method is a partition of the vertex-set of a hypergraph, in particular of a graph. However, it is more intrinsically linked to the geometric structure of the hypergraph and therefore enables us to obtain stronger results than in the classical case. For instance, we prove theorems concerning 3 -colourings, 4 -colourings and 5 -colourings, while we have no analogous results in the classical case. Moreover, we prove that there are no semi-hamiltonian regular simple graphs admitting a hamiltonian 1 -colouring. Finally, we characterize the above graphs admitting a hamiltonian 2-colouring and a hamiltonian 3-colouring.

1. Introduction

A hypergraph [2] is a pair $(\mathcal{P}, \mathcal{B})$ where \mathcal{P} is a non-empty finite set whose elements are called vertices and \mathcal{B} is a non-empty family of non-empty subsets of \mathcal{P}, whose elements are called edges, such that \mathcal{B} is a covering of \mathcal{S}. We denote by $\operatorname{deg} P$, degree of P, the number of edges through the vertex P. A hypergraph is also called geometric space. In this case, the vertices are called points and the edges are called blocks.
Let $|\mathcal{P}|=v,|\mathcal{B}|=b$.
From now on we use the terminology of the geometric spaces, considering that
Entrato in redazione: 7 gennaio 2011
AMS 2010 Subject Classification: 05C15
Keywords: Graph, Hypergraph, Colouring.
everything can be couched using hypergraph-theoretic terminology.
Let

$$
r=\max _{P \in \mathcal{P}} \operatorname{deg} P, \quad k=\min _{B \in \mathcal{B}}|B|, \quad k^{\prime}=\max _{B \in \mathcal{B}}|B|
$$

Let

$$
\mathcal{I}=\{1,2, \ldots, v\}
$$

and φ be a bijection

$$
\varphi: \mathcal{I} \longrightarrow \mathcal{P}
$$

A block B gives rise to the set

$$
\left\{\varphi^{-1}(P)\right\}_{P \in B}=\left\{n_{1}, n_{2}, \ldots, n_{|B|}\right\}
$$

with $n_{1}<n_{2}<\ldots<n_{|B|}$.
We call i-th point of $B, i=1,2, \ldots,|B|$, the point $P \in B$ such that $\varphi^{-1}(P)=$ n_{i}.

For every $j=0,1, \ldots, r$ and for every $i=1,2, \ldots, k^{\prime}$, we get the set

$$
I_{\varphi}(j, i)=\left\{\begin{array}{r}
P \in \mathcal{P}: \text { there are } j \text { blocks through } P \\
\text { such that } P \text { is their } i \text {-th point }
\end{array}\right\}
$$

For any $i, 1 \leq i \leq k^{\prime}$, we get the set of indices

$$
J_{\varphi}(i)=\left\{j, 0 \leq j \leq r: I_{\varphi}(j, i) \neq \emptyset\right\}
$$

Obviously the family $\left\{I_{\varphi}(j, i)\right\}_{j \in J_{\varphi}(i)}$ is a partition of \mathcal{P}.
We call the pair

$$
\left(\left\{I_{\varphi}(j, i)\right\}_{j \in J_{\varphi}(i)}, J_{\varphi}(i)\right)
$$

strong colouring of base φ and index i of the geometric space $(\mathcal{P}, \mathcal{B})$ or simply strong colouring of $(\mathcal{P}, \mathcal{B})$ and we denote it by $c(\varphi, i)$. The indices $j \in J_{\varphi}(i)$ are called the colours of $c(\varphi, i)$, hence every vertex of $I_{\varphi}(j, i)$ is said to have the colour j.

Now let $(\mathcal{P}, \mathcal{B})$ be a graph $G=(V(G), E(G))$.
Then $\mathcal{P}=V(G), \mathcal{B}=E(G), v=|V(G)|, s=|E(G)|, k=k^{\prime}=2, i \in\{1,2\}$.
We call strong colouring of a graph G the colouring $c(\varphi, i)$ just defined for the geometric space. Thus, every bijection gives rise to two strong colourings, since $i=\{1,2\}$.
According to this definition, the colour of a vertex V, that is the number of edges through V admitting V as i-th vertex, is determined by the geometric structure of the graph around V and consequently we get deeper results than in the classical case, where the colour of a vertex is arbitrarily assigned, with the only condition that two vertices have different colours.
The following results hold.

- If G is a simple graph, that is a graph without loops and multiedges, every strong colouring of G has the colour $j=0$.
- A simple graph G is strongly 1-colorable, if and only if, G is a null graph (that is $E(G)=\emptyset$).
- A regular simple graph is strongly 2-colorable if, and only if, G is a bipartite graph.
- If G is a regular simple graph, of degree $r=2 p, p$ a prime, $v=|G|$ even, $v<2 r$, strong 3-colourings of G do not exist.

A graph G is called semi-hamiltonian, if it contains a path through all the vertices of G, called semi-hamiltonian path. If the path is closed, the graph G is called hamiltonian.

Consider the following semi-hamiltonian path

$$
\ell=V_{1} \rightarrow V_{2} \rightarrow \cdots \rightarrow V_{v}
$$

We define the bijection

$$
\varphi_{\ell}: n \in \mathcal{I}=\{1,2, \ldots, v\} \longrightarrow V_{n} \in V(G)
$$

For any $i \in\{1,2\}$ we get the strong colouring $c\left(\varphi_{\ell}, i\right)$, which we call strong hamiltonian colouring of index i associated with the path ℓ.
Let G denote a semi-hamiltonian regular simple graph of positive degree. We prove that the only graph G admitting a hamiltonian strong 2 -colouring is K_{2}. The only graphs G admitting a hamiltonian strong 3-colouring, are the circuitgraphs.
If G has a hamiltonian strong 4-colouring, then $r \geq 3$ and the colours of $c\left(\varphi_{\ell}, i\right)$, are $0,1, r-1, r$.

Moreover, the number of vertices of color 1 equals the number of vertices of color $r-1$, which is $\frac{v}{2}-1$, hence v is even.

The following theorem holds:
Theorem 1.1 (cubic simple semi-hamiltonian graphs theorem).
If G is a simple regular semi-hamiltonian graph with $\operatorname{deg} G=3$ and if $c\left(\varphi_{\ell}, i\right)$ is a hamiltonian strong colouring of G, then $c\left(\varphi_{\ell}, i\right)$ is a strong 4-colouring with colours $0,1,2,3$. Moreover the number of vertices of colour 1 equals the number of vertices of color 2, which is v/2-1. Hence v is even.
Finally if G has a hamiltonian strong 5-colouring, we get $r \geq 4$ and the colours of $c\left(\varphi_{\ell}, i\right)$ are $0,1, j, r-1, r, 1<j<r-1$.
The number of vertices of colour 1 and the number of vertices of colour $r-1$
are both less than $\frac{v}{2}-1$. If v is even, there are at least two vertices of colour j and, if such vertices are two, we get $j=\frac{r}{2}$, hence r is even.
Moreover, the number of vertices of colour 1 and the number of vertices of colour $r-1$ are both equal to $\frac{v}{2}-2$.

2. Strong colourings of a geometric space

Let $(\mathcal{P}, \mathcal{B})$ be a finite geometric space and $c(\varphi, i)$ a strong colouring of $(\mathcal{P}, \mathcal{B})$, that is the pair $\left(\left\{I_{\varphi}(j, i)\right\}_{j \in J_{\varphi}(i)}, J_{\varphi}(i)\right)$. The indices $j \in J_{\varphi}(i)$ are the colours of $c(\varphi, i)$. We say that $j \in J_{\varphi}(i)$ is the colour of $I_{\varphi}(j, i)$ and that $P \in I_{\varphi}(j, i)$ has the colour j.
Obviously the number of colours $\left|J_{\varphi}(i)\right|$ satisfies the condition $1 \leq\left|J_{\varphi}(i)\right| \leq r+$ 1. For any integer $k, 1 \leq k \leq r+1$, we say that $(\mathcal{P}, \mathcal{B})$ is strongly k-colourable, if there is a strong colouring $c(\varphi, i)$ of $(\mathcal{S}, \mathcal{B})$ with k colours. Such $c(\varphi, i)$ is called strong k-colouring of $(\mathcal{P}, \mathcal{B})$.
Let $t(j, i)=\left|I_{\varphi}(j, i)\right|$. Obviously

$$
\begin{equation*}
\sum_{j=0}^{r} t(j, i)=v, \quad i=1,2, \ldots, k^{\prime} \tag{1}
\end{equation*}
$$

Moreover we get:

$$
\begin{equation*}
\sum_{j=0}^{r} j t(j, i)=b, \quad \forall i=1,2, \ldots, k \tag{2}
\end{equation*}
$$

We remark that (1) and (2) hold for any bijection $\varphi: I \rightarrow \mathcal{P}$.

3. The strong colourings of a graph

Let us prove the following
Theorem 3.1. Let G be a simple graph, then every strong colouring of G has the colour $j=0$.

Proof. If G is the null graph, the theorem is obvious. Then assume that G is not the null graph and then it has two distinct vertices. Let $c(\varphi, i)$ be a strong colouring of G. Let V_{M} and V_{m} be the vertices such that $\varphi^{-1}\left(V_{M}\right)=|G|=v$, $\varphi^{-1}\left(V_{m}\right)=1$. Such vertices are distinct, since $|G| \geq 2$. If $i=1$, there is no edge through V_{M} admitting V_{M} as first vertex, therefore $V_{M} \in I_{\varphi}(0,1)$ and so $I_{\varphi}(0,1) \neq \emptyset$. It follows that $j=0 \in J_{\varphi}(1)$. If $i=2$, there is no edge through V_{m} admitting V_{m} as second vertex, therefore $V_{m} \in I_{\varphi}(0,2)$ and so $I_{\varphi}(0,2) \neq \emptyset$. It follows $j=0 \in J_{\varphi}(2)$.

Theorem 3.2. A simple graph G is strongly 1-colourable if, and only if, G is the null graph.

Proof. Obviously, if G is the null graph, it is strongly 1-colourable, with the colour $j=0$. Conversely, let G be strongly 1 -colorable and let $c(\varphi, i)$ be a strong 1-colouring of G. Then, by Theorem 3.1, the colour of $c(\varphi, i)$ is $j=0$. Assume now G is not the null graph. Then in G there is an edge $\left\{V^{\prime}, V^{\prime \prime}\right\}$. In this case either V^{\prime}, or $V^{\prime \prime}$ cannot have the colour 0 , a contradiction.

The following theorem holds
Theorem 3.3. Let G be a non-null simple graph and let $c(\varphi, i)$ be a strong colouring of G. Then there is at least a colour $j \neq 0$ of $c(\varphi, i)$ such that

$$
j \leq\left|I_{\varphi}(0, i)\right|
$$

Proof. By Theorems 3.1 and 3.2 it follows that the strong colouring $c(\varphi, i)$ has at least two distinct colours and one of them is $j=0$. Then, there is a vertex V_{1} of colour $j \neq 0$ and so $V_{1} \notin I_{\varphi}(0, i)$. Assume that every colour $j \neq 0$ satisfies the condition $j>\left|I_{\varphi}(0, i)\right|$. Then there is an edge $\left\{V_{1}, V_{2}\right\}$, with $V_{2} \notin I_{\varphi}(0, i)$, which admits V_{1} as i-th vertex. Since V_{2} has a colour different from zero, there is an edge $\left\{V_{2}, V_{3}\right\}$, with $V_{3} \notin I_{\varphi}(0, i)$, which admits V_{2} as i-th vertex. Moreover we get $V_{3} \neq V_{1}$, since

$$
\begin{array}{ll}
\varphi^{-1}\left(V_{1}\right)>\varphi^{-1}\left(V_{2}\right)>\varphi^{-1}\left(V_{3}\right), & \text { if } i=2, \\
\varphi^{-1}\left(V_{1}\right)<\varphi^{-1}\left(V_{2}\right)<\varphi^{-1}\left(V_{3}\right), & \text { if } i=1 .
\end{array}
$$

Similarly, since V_{3} has a colour different from zero, there is an edge $\left\{V_{3}, V_{4}\right\}$, with $V_{4} \notin I_{\varphi}(0, i)$, which admits V_{3} as i-th vertex and such that $V_{4} \neq V_{1}, V_{4} \neq V_{2}$, $V_{4} \neq V_{3}$. This procedure continues indefinitely and so the set $V(G)-I_{\varphi}(0, i)$ is not finite: a contradiction, since G is finite. The contradiction proves that $j>\left|I_{\varphi}(0, i)\right|$, for every colour $j \neq 0$ of $c(\varphi, i)$ is impossible.

Now let G be a strongly 2 -colourable graph and let $c(\varphi, i)$ be a strong 2colouring of G with colours 0 and $j, j \leq r$. Obviously one of the two vertices of an edge ℓ is the i-th vertex of ℓ. It follows that ℓ cannot have both the vertices in $I_{\varphi}(0, i)$ and that, if both the vertices of ℓ are in $I_{\varphi}(j, i)$, there is at least a vertex of $I_{\varphi}(j, i)$ which is the i-th vertex of ℓ. Let $\ell=\left\{V^{\prime}, V^{\prime \prime}\right\}$ with $V^{\prime} \in I_{\varphi}(j, i)$ and $V^{\prime \prime} \in I_{\varphi}(0, i)$. Then V^{\prime} is the i-th vertex of ℓ, since there is no edge admitting $V^{\prime \prime}$ as i-th vertex. It follows that for any such an edge ℓ of G, there is a vertex $V \in I_{\varphi}(j, i)$, which is the i-th vertex of ℓ. Then, any edge ℓ of G has a vertex $V \in I_{\varphi}(j, i)$. Thus it follows that

$$
s=j\left|I_{\varphi}(j, i)\right|
$$

as it can be proved also by (2). So the following theorem holds

Theorem 3.4. Let $c(\varphi, i)$ be a strong 2-colouring of a simple graph G. Then the colours of G are 0 and $j, j>0$, and the following holds:
a) two distinct vertices of $I_{\varphi}(0, i)$ are not adjacent;
b) for any edge ℓ of G, there is a vertex of $I_{\varphi}(j, i)$ which is i-th vertex of ℓ;
c) $\left|I_{\varphi}(j, i)\right|=\frac{s}{j}$, where s is the number of edges of G.

Example 3.5. We provide an example of a strongly 2-colourable graph whose colours are $j_{1}=0$ and $j_{2}=3$.

Figure 1: Example 3.5
$\varphi:(1,2,3,4,5) \rightarrow(A, B, C, D, E), \quad I_{\varphi}(0,2)=\{A, B, C\}, \quad I_{\varphi}(3,2)=\{D, E\}$.
We remark that this strong colouring is not classical, since the two adjacent vertices D and E have both the colour 3. Moreover $c(\varphi, 1)$ is a strong 3-colouring of G with colours $0,1,2$, since $I_{\varphi}(0,1)=\{E, D\}, I_{\varphi}(1,1)=\{C\}$, $I_{\varphi}(2,1)=\{A, B\}$. This confirms that the strong colouring depends on i.

4. Strong colourings of regular simple graphs

A graph is regular if all its vertices have the same degree.
Here we consider the strong colourings $c(\varphi, i)$ of a regular simple graph. The following theorem holds

Theorem 4.1. A strong colouring $c(\varphi, i)$ of a regular simple graph G of positive degree r has at least the colours $j_{1}=0$ and $j_{2}=r$.

Proof. Let $c(\varphi, i)$ be a strong colouring of a regular simple graph G of degree $r>0$. Let V_{M} and V_{m} be the vertices of G such that $\varphi^{-1}\left(V_{M}\right)=|G|=v$, $\varphi^{-1}\left(V_{m}\right)=1$. We remark that $V_{M} \neq V_{m}$, since $|G| \geq 2$ (we have $|G| \geq 2$, since $r>0)$. Then $I_{\varphi}(r, 1)=I_{\varphi}(0,2) \neq \emptyset$, since $V_{m} \in I_{\varphi}(r, 1)$. Moreover $I_{\varphi}(0,1)=$ $I_{\varphi}(r, 2) \neq \emptyset$, since $V_{M} \in I_{\varphi}(0,1)$. It follows that $j_{1}=0$ and $j_{2}=r$ are colours of $c(\varphi, i)$.

Theorem 4.2. Let G be a regular simple graph of positive degree. Then G is strongly 2-colorable if, and only if, G is a bipartite graph $G\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$, with $\left|\mathcal{V}_{1}\right|=\left|\mathcal{V}_{2}\right|=|G| / 2$.

Proof. Let G be strongly 2-colourable and let $c(\varphi, i)$ be a strong 2-colouring of G. By Theorem 4.1 it follows that the colours of $c(\varphi, i)$ are $j_{1}=0$ and $j_{2}=r$. Since the colours are two, we have $I_{\varphi}(r, 1)=I_{\varphi}(0,2)$, and $I_{\varphi}(0,1)=I_{\varphi}(r, 2)$. By Theorem 3.4 it follows that two distinct vertices of $I_{\varphi}(r, i)$ are not adjacent. By (1) and (2) and since in a regular graph of degree r it is $s=v r / 2$, we have

$$
\begin{equation*}
t(r, i)=t(0, i)=\frac{v}{2} \tag{3}
\end{equation*}
$$

Then by the previous arguments, it follows that G is a bipartite graph $G\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$, with

$$
\left|\mathcal{V}_{1}\right|=t(r, i)=\left|\mathcal{V}_{2}\right|=t(0, i)=v / 2 .
$$

Converserly, let $G=G\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ be a bipartite regular simple graph of degree $r>0$.

Let $\mathcal{V}_{1}=\left\{V_{1}, V_{2}, \ldots, V_{m}\right\}, \mathcal{V}_{2}=\left\{V_{m+1}, V_{m+2}, \ldots, V_{v}\right\}$. Let

$$
\varphi: n \in\{1,2, \ldots, v\} \longmapsto V_{n} \in \mathcal{V}_{1} \cup \mathcal{V}_{2}
$$

The strong colouring $c(\varphi, 1)$ is a strong 2 -colouring of G. For, through any vertex $V \in \mathcal{V}_{1}$ there are r edges admitting V as first vertex (and then all the vertices of \mathcal{V}_{1} have the colour r) and as a consequence through any vertex $V^{\prime} \in$ \mathcal{V}_{2} there is no edge admitting V^{\prime} as first vertex (and all the vertices of \mathcal{V}_{2} have the colour 0).

This theorem holds also for the classical colourings of graphs.
Example 4.3. An example of a strongly 2-colourable graph of degree 2 (the colours are 0 and 2) is the following.

Figure 2: Example 4.3

$$
\begin{aligned}
V(G) & =\{A, B, C, D, E, F\}, \\
E(G) & =\{\{A, F\},\{A, E\},\{B, F\},\{B, D\},\{C, E\},\{C, D\}\}, \\
\varphi & :(1,2,3,4,5,6) \longrightarrow(A, B, C, D, E, F) ; \quad i=2, \\
I_{\varphi}(0,2) & =\{A, B, C\}, \quad I_{\varphi}(2,2)=\{D, E, F\} .
\end{aligned}
$$

Example 4.4. An example of strongly 2-colourable graph of degree 3 (the colours are 0 and 3) is the following.

$$
\begin{aligned}
V(G)= & \{A, B, C, D, E, F\}, \\
E(G)= & \{\{A, F\},\{A, E\},\{A, D\},\{B, F\},\{B, E\},\{B, D\},\{C, F\}, \\
& \{C, E\},\{C, D\}\} \\
\varphi: & (1,2,3,4,5,6) \longrightarrow(A, B, C, D, E, F) ; \quad i=2 \\
I_{\varphi}(0,2)= & \{A, B, C\}, \quad I_{\varphi}(3,2)=\{E, F, D\} .
\end{aligned}
$$

By the definition of complete graph and by definition of $c(\varphi, i)$ the following theorem holds

Theorem 4.5. Every strong colouring $c(\varphi, i)$ of a complete graph K_{n} is a strong n-colouring, that is distinct vertices of K_{n} have different colours.

This theorem holds also for the classical colourings. Let G be a strongly 3-colourable regular simple graph, of degree $r>0$. Let $c(\varphi, i)$ be a strong 3colouring of G. By Theorem 4.1, the colours of $c(\varphi, i)$ are $0, j, r$ with $0<j<r$.

Figure 3: Example 4.4

It is

$$
c(\varphi, i)=\left(\left\{I_{\varphi}(0, i), I_{\varphi}(j, i), I_{\varphi}(r, i)\right\},\{0, j, r\}\right) .
$$

Let us prove the following
Theorem 4.6. Let G be a regular simple graph of degree $r>0$. Let $c(\varphi, i)$ be a strong 3-colouring of G. Then the following inequalities hold:

$$
\begin{aligned}
r-\left|I_{\varphi}(r, i)\right| & \leq j \leq\left|I_{\varphi}(0, i)\right|, \\
\left|I_{\varphi}(0, i)\right|+\left|I_{\varphi}(r, i)\right| & \geq r, \\
\left|I_{\varphi}(j, i)\right| & \leq v-r .
\end{aligned}
$$

If in the last inequality the equality holds, then

$$
j=\left|I_{\varphi}(j, i)\right|
$$

Proof. Let us prove that $j \leq\left|I_{\varphi}(0, i)\right|$. If $r \leq\left|I_{\varphi}(0, i)\right|$, we get $j<\left|I_{\varphi}(0, i)\right|$. If $r>\left|I_{\varphi}(0, i)\right|$, by Theorem 3.3 it immediately follows that $j \leq\left|I_{\varphi}(0, i)\right|$. The strong colouring $c\left(\varphi, i^{\prime}\right)$ with $i^{\prime}=\{1,2\}-\{i\}$, has obviously the colours $0, r-$ j, r. Therefore

$$
c\left(\varphi, i^{\prime}\right)=\left(\left\{I_{\varphi}\left(0, i^{\prime}\right), I_{\varphi}\left(r-j, i^{\prime}\right), I_{\varphi}\left(r, i^{\prime}\right)\right\},\{0, r-j, r\}\right),
$$

where

$$
\begin{aligned}
I_{\varphi}\left(0, i^{\prime}\right) & =I_{\varphi}(r, i), \\
I_{\varphi}\left(r-j, i^{\prime}\right) & =I_{\varphi}(j, i), \\
I_{\varphi}\left(r, i^{\prime}\right) & =I_{\varphi}(0, i) .
\end{aligned}
$$

Applying to $c\left(\varphi, i^{\prime}\right)$ the arguments of $c(\varphi, i)$, we get

$$
\begin{equation*}
r-j \leq\left|I_{\varphi}\left(0, i^{\prime}\right)\right|=\left|I_{\varphi}(r, i)\right| \tag{4}
\end{equation*}
$$

By (4) it follows

$$
j \geq r-\left|I_{\varphi}(r, i)\right|
$$

Thus

$$
\begin{equation*}
r-\left|I_{\varphi}(r, i)\right| \leq j \leq\left|I_{\varphi}(0, i)\right| \tag{5}
\end{equation*}
$$

and so

$$
\left|I_{\varphi}(0, i)\right|+\left|I_{\varphi}(r, i)\right| \geq r
$$

hence

$$
\left|I_{\varphi}(j, i)\right| \leq v-r .
$$

If $I_{\varphi}(j, i)=v-r$ we get

$$
j=\left|I_{\varphi}(0, i)\right|
$$

Theorem 4.7. Let G be a regular simple graph of degree r, r an odd prime, $c(\varphi, i)$ a strong 3-colouring of G, then

$$
\left|I_{\varphi}(j, i)\right| \equiv 0 \quad \bmod r
$$

Proof. By (2) we get:

$$
\begin{equation*}
j\left|I_{\varphi}(j, i)\right|+r\left|I_{\varphi}(r, i)\right|=\frac{v r}{2} \tag{6}
\end{equation*}
$$

By (6) and since r is odd, it follows

$$
j\left|I_{\varphi}(j, i)\right| \equiv 0 \quad \bmod r
$$

The integers j and r are coprime, since r is prime and $0<j<r$. It follows that $\left|I_{\varphi}(j, i)\right| \equiv 0 \bmod r$ and so the theorem is proved.
Theorem 4.8. Let G be a regular simple graph of degree $r=p^{h}, h \geq 1, p$ a prime, $|G|=v$ even, $v \leq 2 r$. Let $c(\varphi, i)$ be a strong 3-colouring of G with colours $0, j, r, 0<j<r$. We get either:
i) $v=2 r,\left|I_{\varphi}(j, i)\right|=r, j=\left|I_{\varphi}(0, i)\right|$,
or
ii) $j=p^{h^{\prime}}, 1 \leq h^{\prime}<h$.

It follows that if $h=1$, only i) occurs.

Proof. By (2) it follows

$$
\begin{equation*}
j\left|I_{\varphi}(j, i)\right| \equiv 0 \quad \bmod r \tag{7}
\end{equation*}
$$

a) $\left|I_{\varphi}(j, i)\right|=k r$, with k positive integer;
b) $\left|I_{\varphi}(j, i)\right| \neq k r$.

In the case a) we remark that $k=1$. For, assume $k \geq 2$. By (1), since $\left|I_{\varphi}(0, i)\right| \geq 1,\left|I_{\varphi}(r, i)\right| \geq 1$, it follows

$$
v \geq 2 r+2
$$

a contradiction, since $v \leq 2 r$. Therefore

$$
\begin{equation*}
\left|I_{\varphi}(j, i)\right|=r . \tag{8}
\end{equation*}
$$

By (8) and by the third inequality of Theorem 4.6 we get $r \leq v-r$, that is

$$
\begin{equation*}
v \geq 2 r \tag{9}
\end{equation*}
$$

hence

$$
\begin{equation*}
v=2 r \tag{10}
\end{equation*}
$$

By (8) and (10) it follows

$$
\begin{equation*}
\left|I_{\varphi}(j, i)\right|=r=v-r \tag{11}
\end{equation*}
$$

By (11) and Theorem 4.6 it follows $j=\left|I_{\varphi}(0, i)\right|$.
In the case \mathbf{b}), by (7) it follows $\operatorname{gcd}(j, r) \neq 1$, since both the integers j and $r=p^{h}$ have at least the factor p in common. Then, since $0<j<r$, it follows $j=p^{h^{\prime}}$, $1 \leq h^{\prime}<h$.

Example 4.9. We provide some examples concerning Theorems 4.7 and 4.8.

$$
\begin{aligned}
V(G)= & \{A, B, C, D, E, F\} \\
E(G)= & \{\{A, D\},\{A, B\},\{A, C\},\{D, E\},\{D, F\} \\
& \{F, E\},\{C, F\},\{B, E\},\{B, C\}\} \\
\varphi: & (1,2,3,4,5,6) \longrightarrow(A, D, F, B, E, C), \quad i=2
\end{aligned}
$$

The colouring $c(\varphi, 2)$ is a strong 3 -colouring of G with colours $0,1,3$. For,

$$
I_{\varphi}(0,2)=\{A\}, \quad I_{\varphi}(1,2)=\{B, D, F\}, \quad I_{\varphi}(3,2)=\{C, E\} .
$$

This colouring is not classical, since the adjacent vertices D and E have the same colour.

Figure 4: Example 4.9

Figure 5: Example 4.10

Example 4.10. This graph G is the complete bipartite graph $K_{3,3}$.

$$
\begin{aligned}
V(G)= & \{A, B, C, D, E, F\} \\
E(G)= & \{\{A, D\},\{A, E\},\{A, F\},\{B, D\},\{B, E\} \\
& \{B, F\},\{C, D\},\{C, E\},\{C, F\}\} \\
\varphi: & (1,2,3,4,5,6) \longrightarrow(A, B, D, E, F, C), \quad i=1 .
\end{aligned}
$$

The strong colouring $c(\varphi, 1)$ is a strong 3 -colouring of colours $0,1,3$.

$$
I_{\varphi}(0,1)=\{C\}, \quad I_{\varphi}(1,1)=\{D, E, F\}, \quad I_{\varphi}(3,1)=\{A, B\}
$$

Example 4.11. Cubic Petersen Graph.

Figure 6: Example 4.11

$$
\begin{aligned}
V(G)= & \{A, B, C, D, E, F, G, H, I, L\}, \\
E(G)= & \{\{A, B\},\{B, C\},\{C, D\},\{D, E\},\{E, A\},\{E, G\},\{A, L\},\{B, I\}, \\
& \{C, H\},\{D, F\},\{G, I\},\{G, H\},\{F, L\},\{F, I\},\{L, H\}\},
\end{aligned}
$$

$$
\varphi:(1,2,3,4,5,6,7,8,9,10) \longrightarrow(C, E, I, L, B, H, F, G, D, A) ; \quad i=2 .
$$

The strong colouring $c(\varphi, 2)$ is a strong 3-colouring with colours $0,2,3$, since

$$
\begin{aligned}
I_{\varphi}(0,2) & =\{C, E, L, I\} \\
I_{\varphi}(2,2) & =\{B, F, H\} \\
I_{\varphi}(3,2) & =\{A, D, G\}
\end{aligned}
$$

Example 4.12. Graph with 3-strong colourings of colours 0, 2, 3.

Figure 7: Example 4.12

$$
\begin{aligned}
V(G)= & \{A, B, C, D, E, F\}, \\
E(G)= & \{\{A, B\},\{B, C\},\{C, D\},\{D, E\},\{A, E\},\{E, F\}, \\
& \{C, F\},\{B, F\},\{A, F\},\{A, D\},\{B, D\}\}, \\
\varphi: & (1,2,3,4,5,6) \longrightarrow(A, C, B, E, F, D) ; \quad i=1 .
\end{aligned}
$$

We have a 3-colouring of colours $0,2,3$, with

$$
\begin{aligned}
I_{\varphi}(0,1) & =\{D, F\} \\
I_{\varphi}(2,1) & =\{B, E\} \\
I_{\varphi}(3,1) & =\{A, C\}
\end{aligned}
$$

This example satisfies the hypotheses of Theorem 4.8 and ii) holds, but not i).
Example 4.13. An example of a non-standard colouring.

Figure 8: Example 4.13

$$
\begin{aligned}
V(G)= & \{A, B, C, D, E, F, G, H\} \\
E(G)= & \{\{A, B\},\{B, C\},\{C, D\},\{D, E\},\{E, F\},\{F, G\},\{G, H\},\{H, A\}, \\
& \{H, B\},\{B, D\},\{D, F\},\{F, H\},\{A, C\},\{C, E\},\{E, G\},\{G, A\}\}, \\
\varphi: & (1,2,3,4,5,6,7,8) \longrightarrow(G, D, F, H, B, C, A, E) ; \quad i=1,
\end{aligned}
$$

$$
\begin{aligned}
I_{\varphi}(0,1) & =\{A, E\} \\
I_{\varphi}(2,1) & =\{B, C, F, H\} \\
I_{\varphi}(3,1) & =\{D, G\}
\end{aligned}
$$

This graph satisfies the hypotheses of Theorem 4.8 and both i) and ii) hold. Moreover this strong colouring is not classical, since the adjacent vertices B and C have the same colour.

By Theorem 4.8 it follows
Theorem 4.14. Let G be a simple regular graph of degree $r=p, p$ a prime, $|G|=v, v<2 r$. Then strong 3-colourings of G do not exist.

Example 4.15. We provide an example of a graph satisfying the hypoteses of Theorem 4.14 and therefore not admitting a strong 3-colouring.

Figure 9: Example 4.15

$$
\begin{aligned}
V(G)= & \{A, B, C, D, E, F, G, H\}, \\
E(G)= & \{\{A, H\},\{A, G\},\{A, F\},\{A, E\},\{B, H\},\{B, G\},\{B, F\}, \\
& \{B, E\},\{C, H\},\{C, G\},\{C, F\},\{C, E\},\{D, H\},\{D, G\}, \\
& \{D, F\},\{D, E\},\{A, B\},\{C, D\},\{F, E\},\{G, H\}\} .
\end{aligned}
$$

5. Hamiltonian strong colourings of regular simple graphs

A path of a graph G is a finite sequence of edges such as

$$
V_{1} V_{2}, V_{2} V_{3}, \ldots, V_{m} V_{m+1}
$$

denoted also

$$
V_{1} \rightarrow V_{2} \rightarrow \cdots \rightarrow V_{m} \rightarrow V_{m+1}
$$

where the edges and the vertices are distinct (may be, evenctually, $V_{1}=V_{m+1}$).

A graph G is called semi-hamiltonian if there is a path through every vertex of G. If the path is closed, G is called hamiltonian.
Let G be a simple semi-hamiltonian graph and ℓ be a path through every vertex of G.

Let \mathcal{V} be the set of vertices of G and let $v=|\mathcal{V}|$. Let

$$
\ell=V_{1} \rightarrow V_{2} \rightarrow \cdots \rightarrow V_{v} .
$$

The following bijection arises

$$
\varphi_{\ell}: n \in \mathcal{I}=\{1,2, \ldots, \nu\} \longmapsto V_{n} \in \mathcal{V} .
$$

For every $i \in\{1,2\}$, we get the strong colouring $c\left(\varphi_{\ell}, i\right)$ which is called hamiltonian strong colouring of index a associated with ℓ.

By Theorem 4.1 we have that, if G is regular of degree $r>0$, the strong colouring $c\left(\varphi_{\ell}, i\right)$ has the colours 0 and r. If $c\left(\varphi_{\ell}, i\right)$ is a hamiltonian strong colouring, the following theorem holds

Theorem 5.1. Let G be a semi-hamiltonian regular simple graph of positive degree r and let $c\left(\varphi_{\ell}, i\right)$ a hamitonian strong colouring of G, with $\ell=V_{1} \rightarrow$ $V_{2} \rightarrow \cdots \rightarrow V_{v}, v=|G|$. Then there is a unique vertex of colour 0 , which is V_{1} and a unique vertex of colour r, which is V_{r}.

Proof. Let $i=1$. Then V_{1} has the colour r, and V_{v} has the colour 0 . Any vertex $V_{n}, 1<n<v$, has a colour which is neither 0 , nor r. Therefore, V_{1} and V_{v} are the only vertices with colours r and 0 , respectively. The same result holds in the case $i=2$, but V_{1} has the colour 0 . and V_{v} has the colour r.

Theorem 5.2. Semi-hamiltonan regular simple graphs of positive degree having a hamiltonian strong 1-colouring do not exists.

Proof. This result follows by Theorem 3.2, since a hamltonian graph cannot be the null graph.

Theorem 5.3. The only semi-hamiltonian regular simple graph of positive degree admitting a hamiltonian strong 2 -colouring is K_{2}.

Proof. Let G be a regular simple graph of positive degree having a hamiltonian strong 2-colouring $c\left(\varphi_{\ell}, i\right)$ and let $\ell=V_{1} \rightarrow V_{2} \rightarrow \cdots \rightarrow V_{v}$, where $v=|G|$. By Theorem 5.1 it follows

$$
\ell=V_{1} \rightarrow V_{2}
$$

then $G=K_{2}$. Conversely, K_{2} is a regular simple graph of degree 1 having a hamiltonian strong 2 -colouring with colours 0 and 1 .

Theorem 5.4. The only semi-hamiltonian regular simple graphs of positive degree having a hamiltonian strong 3-colouring are the circuit-graphs.

Proof. Let G be a semi-hamiltonian regular simple graph of positive degree r having a hamiltonian strong 3-colouring $c\left(\varphi_{\ell}, i\right)$, with $\ell=V_{1} \rightarrow V_{2} \rightarrow \cdots \rightarrow V_{v}$, where $v=|G|$. We get $r>1$, since $r=1$ implies $\ell=V_{1} \rightarrow V_{2}$ and then $v=2$: a contradiction, since G admits a strong 3-colouring, then $r \geq 2$. By Theorem 5.1 it follows that $\left|I_{\varphi}(r, i)\right|=\left|I_{\varphi}(0, i)\right|=1$. By Theorem 4.6 it follows that $r \leq$ $\left|I_{\varphi}(0, i)\right|+\left|I_{\varphi}(r, i)\right|=2$. Then $r=2$ and G is a connected regular simple graph of degree 2 and then a circuit-graph. The converse is obvious, since a simple circuit-graph admits a hamiltonian strong 3-colouring with colours $0,1,2$.

We remark that in the case of classical colourings there is no characterization of strongly 3-colourable graphs.

Theorem 5.5. Let $G, v=|G|$, be a semi-hamiltonian regular simple graph of positive degree r admitting a hamiltonian strong 4-colouring $c\left(\varphi_{\ell}, i\right)$. Then $r \geq 3$ and the colours of $c\left(\varphi_{\ell}, i\right)$ are $0,1, r-1, r$. Moreover, the number of vertices with colour 1 equals that of vertices of colour $r-1$. This number is $\frac{v}{2}-1$, hence v is even.

Proof. Let G be a semi-hamiltonian regular simple graph of degree $r>0$ admitting a hamiltonian strong 4-colouring $c\left(\varphi_{\ell}, i\right)$ and let $\ell=V_{1} \rightarrow V_{2} \rightarrow \cdots \rightarrow V_{v}$, where $v=|G|$. Obviously $v \geq 4$. Let $0, j_{1}, j_{2}, r$ be the colours of $c\left(\varphi_{\ell}, i\right)$, $0<j_{1}<j_{2}<r$. It is $r \geq 3$. By Theorem 5.1 it follows $\left|I_{\varphi_{\ell}}(0, i)\right|=1$. By Theorem 3.3 it follows the existence of a colour $j \neq 0$ such that $j \leq\left|I_{\varphi_{\ell}}(0, i)\right|=1$. Therefore $j_{1}=1$. Let us consider the strong colouring $c\left(\varphi_{\ell}, i^{\prime}\right), i^{\prime}=\{1,2\}-\{i\}$. The colours of $c\left(\varphi_{\ell}, i^{\prime}\right)$ are $0, r-j_{2}, r-j_{1}=r-1, r$, with $0<r-j_{2}<r-j_{1}=$ $r-1<r$. By Theorem 5.1 it follows $\left|I_{\varphi_{\ell}}\left(0, i^{\prime}\right)\right|=1$. By Theorem 3.3 it follows the existence of a colour $j \neq 0$ such that $j \leq\left|I_{\varphi_{\ell}}\left(0, i^{\prime}\right)\right|=1$. Therefore $r-j_{2}=1$, that is $j_{2}=r-1$. So the colours of $c\left(\varphi_{\ell}, i\right)$ are $0,1, r-1, r$. By (1) and (2), we get:

$$
\begin{align*}
t(0, i)+t(1, i)+t(r-1, i)+t(r, i) & =v \tag{12}\\
t(1, i)+(r-1) t(r-1, i)+r t(r, i) & =\frac{v r}{2}
\end{align*}
$$

By Theorem 5.1 it follows

$$
\begin{equation*}
t(0, i)=t(r, i)=1 \tag{13}
\end{equation*}
$$

By (12) and (13) we get:

$$
\begin{align*}
t(1, i)+t(r-1, i) & =v-2 \tag{14}\\
t(1, i)+(r-1) t(r-1, i) & =\frac{v r}{2}-r
\end{align*}
$$

By (14) we get

$$
(r-2) t(r-1, i)=\frac{v(r-2)}{2}-(r-2)
$$

Since $r-2 \neq 0$ (it is $r \geq 3$), we get $t(r-1, i)=v / 2-1$. By previous conditions we get $t(1, i)=v / 2-1$. Since

$$
t(j, i)=\left|I_{\varphi_{\ell}}(j, i)\right|, \quad j=0,1, \ldots r
$$

the Theorem is proved.
By Theorems 5.2, 5.3, 5.4, 5.5 it follows immediately
Theorem 5.6 (Theorem of cubic simple graphs). Let G be a semi-hamiltonian regular simple graph of degree 3 and let $c\left(\varphi_{\ell}, i\right)$ be a hamiltonian strong colouring of G. Then $c\left(\varphi_{\ell}, i\right)$ is a strong 4 -colouring with colours $0,1,2,3$. Moreover, the number of vertices of colour 1 equals the number of vertices of colour 2. This number is $\frac{v}{2}-1$, hence $v=|G|$ is even.

Example 5.7. This example is an explanation of Theorem 5.6.
Now let G be a semi-hamiltonian regular simple graph of degree $r>0$ admitting a hamiltonian strong 5-colouring $c\left(\varphi_{\ell}, i\right)$. Like in Theorem 5.5, we prove that $r \geq 4$ and that the colours of $c\left(\varphi_{\ell}, i\right)$ are $0,1, j, r-1, r$, with $1<j<r-1$. By (1) and (2), we get:

$$
\begin{align*}
t(0, i)+t(1, i)+t(j, i)+t(r-1, i)+t(r, i) & =v \tag{15}\\
t(1, i)+j t(j, i)+(r-1) t(r-1, i)+r t(r, i) & =\frac{v r}{2}
\end{align*}
$$

where $v=|G|$. By Theorem 5.1 it follows

$$
\begin{equation*}
t(0, i)=t(r, i)=1 \tag{16}
\end{equation*}
$$

By (15) and (16) we have

$$
\begin{align*}
t(1, i)+t(j, i)+t(r-1, i) & =v-2 \tag{17}\\
t(1, i)+j t(j, i)+(r-1) t(r-1, i) & =\frac{v r}{2}-r
\end{align*}
$$

By (17), we have:

$$
j[t(1, i)+t(r-1, i)-(v-2)]=t(1, i)+(r-1) t(r-1, i)-\frac{r}{2}(v-2)
$$

Since $t(1, i)+t(r-1, i) \leq v-3$, the integer $t(1, i)+t(r-1, i)-(v-2)$ is negative, then we get

$$
\begin{equation*}
j=\frac{t(1, i)+(r-1) t(r-1, i)-\frac{r}{2}(v-2)}{t(1, i)+t(r-1, i)-(v-2)}>1 \tag{18}
\end{equation*}
$$

Figure 10: Example 5.7

By (18), since $r-2>0$, we get

$$
\begin{equation*}
t(r-1, i)<\frac{v}{2}-1 \tag{19}
\end{equation*}
$$

We denote by $c\left(\varphi_{\ell}, i^{\prime}\right)$ the hamiltonian strong 5-colouring, with $i^{\prime}=\{1,2\}-\{i\}$, whose colours are $0,1, r-j, r-1, r$. Applying (19), to this strong colouring, since $t\left(r-1, i^{\prime}\right)=t(1, i)$, we get

$$
\begin{equation*}
t(1, i)<\frac{v}{2}-1 \tag{20}
\end{equation*}
$$

Now assume v even. By (19) and (20) we have

$$
\begin{align*}
t(r-1, i) & \leq \tag{21}\\
t(1, i) & \leq
\end{align*} \frac{\frac{v}{2}-2}{\frac{v}{2}-2}
$$

By the first of (17) and by (21) we get

$$
\begin{equation*}
v-2-t(j, i)=t(1, i)+t(r-1, i) \leq v-4 \tag{22}
\end{equation*}
$$

Then

$$
t(j, i) \geq 2
$$

If $t(j, i)=2$, by (21) and (22) we get

$$
\begin{equation*}
t(1, i)=t(r-1, i)=\frac{v}{2}-2 \tag{23}
\end{equation*}
$$

By (18) and (23) it follows

$$
j=\frac{r}{2}
$$

Then the following theorem holds
Theorem 5.8. Let G be a semi-hamiltonian regular simple graph of positive degree r admitting a hamiltonian strong 5-colouring $c\left(\varphi_{\ell}, i\right)$ and let $v=|G|$. Then $r \geq 4$, the colours of $c\left(\varphi_{\ell}, i\right)$ are $0,1, j, r-1, r$, with $1<j<r-1$. The number of the vertices of colour 1 and that of the vertices of colour $r-1$ are both less than $v / 2-1$. If v is even, the number of vertices of colour j is greater than or equal 2 and if this number equals 2 , we get $j=r / 2$. Therefore r is even and the number of vertices of colour 1 and that of vertices of colour $r-1$ are both equal to $v / 2-2$.

Example 5.9. This example provides a hamiltonian strong 5-colouring with $i=1$ of a regular simple graph of degree 4 with 6 vertices. The colours are

Figure 11: Example 5.9
$0,1,2,3,4$ and $j=2=r / 2$.
This strong colouring is not classical, since there are two adjacent vertices having the same colour 2 . We remark that in the case of classical colourings, we have no result concerning 4 -colourings and 5 -colourings.

REFERENCES

[1] O. Balakrishnan - R. Ranganathan, A textbook of graph theory, Springer, New York, 1999.
[2] C. Berge, Graphs, North Holland, 1989.
[3] R. J. Wilson, Introduction to graph theory, Longman, London, 1979.

SANDRO RAJOLA
Dipartimento di Matematica
Università degli Studi di Roma "La Sapienza"
Piazzale Aldo Moro, 2
00185 Roma
e-mail: tallini@mat.uniroma1.it
MARIA SCAFATI TALLINI
Dipartimento di Matematica
Università degli Studi di Roma "La Sapienza"
Piazzale Aldo Moro, 2
00185 Roma
e-mail: tallini@mat.uniroma1.it

