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NEW STRONG COLOURINGS OF HYPERGRAPHS

SANDRO RAJOLA - MARIA SCAFATI TALLINI

We define a new colouring for a hypergraph, in particular for a graph.
Such a method is a partition of the vertex-set of a hypergraph, in partic-
ular of a graph. However, it is more intrinsically linked to the geometric
structure of the hypergraph and therefore enables us to obtain stronger
results than in the classical case. For instance, we prove theorems con-
cerning 3-colourings, 4-colourings and 5-colourings, while we have no
analogous results in the classical case. Moreover, we prove that there
are no semi-hamiltonian regular simple graphs admitting a hamiltonian
1-colouring. Finally, we characterize the above graphs admitting a hamil-
tonian 2-colouring and a hamiltonian 3-colouring.

1. Introduction

A hypergraph [2] is a pair (P,B) where P is a non-empty finite set whose
elements are called vertices and B is a non-empty family of non-empty subsets
ofP , whose elements are called edges, such thatB is a covering of S . We denote
by degP, degree of P, the number of edges through the vertex P. A hypergraph
is also called geometric space. In this case, the vertices are called points and the
edges are called blocks.
Let |P|= v, |B|= b.
From now on we use the terminology of the geometric spaces, considering that
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everything can be couched using hypergraph-theoretic terminology.
Let

r = max
P∈P

degP , k = min
B∈B
|B| , k′ = max

B∈B
|B| .

Let
I = {1,2, . . . ,v}

and ϕ be a bijection
ϕ : I −→P.

A block B gives rise to the set{
ϕ
−1(P)

}
P∈B =

{
n1,n2, . . . ,n|B|

}
,

with n1 < n2 < .. . < n|B|.
We call i-th point of B, i = 1,2, . . . , |B|, the point P ∈ B such that ϕ−1(P) =

ni.
For every j = 0,1, . . . ,r and for every i = 1,2, . . . ,k′, we get the set

Iϕ( j, i) =
{

P ∈ P : there are j blocks through P
such that P is their i-th point

}
For any i, 1≤ i≤ k′, we get the set of indices

Jϕ(i) =
{

j, 0≤ j ≤ r : Iϕ( j, i) 6= /0
}
.

Obviously the family
{

Iϕ( j, i)
}

j∈Jϕ (i)
is a partition of P.

We call the pair ({
Iϕ( j, i)

}
j∈Jϕ (i)

,Jϕ(i)
)

strong colouring of base ϕ and index i of the geometric space (P,B) or simply
strong colouring of (P,B) and we denote it by c(ϕ, i). The indices j ∈ Jϕ(i) are
called the colours of c(ϕ, i), hence every vertex of Iϕ( j, i) is said to have the
colour j.

Now let (P,B) be a graph G = (V (G),E(G)).
Then P =V (G), B = E(G), v = |V (G)|, s = |E(G)|, k = k′ = 2, i ∈ {1,2}.
We call strong colouring of a graph G the colouring c(ϕ, i) just defined for the
geometric space. Thus, every bijection gives rise to two strong colourings, since
i = {1,2}.
According to this definition, the colour of a vertex V , that is the number of edges
through V admitting V as i-th vertex, is determined by the geometric structure of
the graph around V and consequently we get deeper results than in the classical
case, where the colour of a vertex is arbitrarily assigned, with the only condition
that two vertices have different colours.
The following results hold.



NEW STRONG COLOURINGS OF HYPERGRAPHS 37

• If G is a simple graph, that is a graph without loops and multiedges, every
strong colouring of G has the colour j = 0.

• A simple graph G is strongly 1-colorable,if and only if, G is a null graph
(that is E(G) = /0).

• A regular simple graph is strongly 2-colorable if, and only if, G is a bi-
partite graph.

• If G is a regular simple graph, of degree r = 2p, p a prime, v = |G| even,
v < 2r, strong 3-colourings of G do not exist.

A graph G is called semi-hamiltonian, if it contains a path through all the
vertices of G, called semi-hamiltonian path. If the path is closed, the graph G is
called hamiltonian.

Consider the following semi-hamiltonian path

`=V1→V2→ ·· · →Vv.

We define the bijection

ϕ` : n ∈ I = {1,2, . . . ,v} −→Vn ∈V (G).

For any i ∈ {1,2} we get the strong colouring c(ϕ`, i) , which we call strong
hamiltonian colouring of index i associated with the path `.
Let G denote a semi-hamiltonian regular simple graph of positive degree. We
prove that the only graph G admitting a hamiltonian strong 2-colouring is K2.
The only graphs G admitting a hamiltonian strong 3-colouring, are the circuit-
graphs.
If G has a hamiltonian strong 4-colouring, then r≥ 3 and the colours of c(ϕ`, i) ,
are 0,1,r−1,r.

Moreover, the number of vertices of color 1 equals the number of vertices
of color r−1, which is

v
2
−1, hence v is even.

The following theorem holds:

Theorem 1.1 (cubic simple semi-hamiltonian graphs theorem).
If G is a simple regular semi-hamiltonian graph with degG = 3 and if c(ϕ`, i) is
a hamiltonian strong colouring of G, then c(ϕ`, i) is a strong 4-colouring with
colours 0,1,2,3. Moreover the number of vertices of colour 1 equals the number
of vertices of color 2, which is v/2−1. Hence v is even.
Finally if G has a hamiltonian strong 5-colouring, we get r ≥ 4 and the colours
of c(ϕ`, i) are 0,1, j,r−1,r, 1 < j < r−1.
The number of vertices of colour 1 and the number of vertices of colour r− 1
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are both less than
v
2
−1. If v is even, there are at least two vertices of colour j

and, if such vertices are two, we get j =
r
2

, hence r is even.
Moreover, the number of vertices of colour 1 and the number of vertices of
colour r−1 are both equal to

v
2
−2.

2. Strong colourings of a geometric space

Let (P,B) be a finite geometric space and c(ϕ, i) a strong colouring of (P , B),
that is the pair

({
Iϕ( j, i)

}
j∈Jϕ (i)

,Jϕ(i)
)

. The indices j ∈ Jϕ(i) are the colours
of c(ϕ, i). We say that j ∈ Jϕ(i) is the colour of Iϕ( j, i) and that P ∈ Iϕ( j, i) has
the colour j.
Obviously the number of colours

∣∣Jϕ(i)
∣∣ satisfies the condition 1≤

∣∣Jϕ(i)
∣∣≤ r+

1. For any integer k, 1≤ k ≤ r+1, we say that (P,B) is strongly k-colourable,
if there is a strong colouring c(ϕ, i) of (S,B) with k colours. Such c(ϕ, i) is
called strong k-colouring of (P,B).
Let t( j, i) =

∣∣Iϕ( j, i)
∣∣ . Obviously

r

∑
j=0

t( j, i) = v, i = 1,2, . . . ,k′. (1)

Moreover we get:
r

∑
j=0

jt( j, i) = b, ∀i = 1,2, . . . ,k. (2)

We remark that (1) and (2) hold for any bijection ϕ : I→P .

3. The strong colourings of a graph

Let us prove the following

Theorem 3.1. Let G be a simple graph, then every strong colouring of G has
the colour j = 0.

Proof. If G is the null graph, the theorem is obvious. Then assume that G is
not the null graph and then it has two distinct vertices. Let c(ϕ, i) be a strong
colouring of G. Let VM and Vm be the vertices such that ϕ−1(VM) = |G| = v,
ϕ−1(Vm) = 1. Such vertices are distinct, since |G| ≥ 2. If i = 1, there is no
edge through VM admitting VM as first vertex, therefore VM ∈ Iϕ(0,1) and so
Iϕ(0,1) 6= /0. It follows that j = 0 ∈ Jϕ(1). If i = 2, there is no edge through Vm

admitting Vm as second vertex, therefore Vm ∈ Iϕ(0,2) and so Iϕ(0,2) 6= /0. It
follows j = 0 ∈ Jϕ(2).
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Theorem 3.2. A simple graph G is strongly 1-colourable if, and only if, G is the
null graph.

Proof. Obviously, if G is the null graph, it is strongly 1-colourable, with the
colour j = 0. Conversely, let G be strongly 1-colorable and let c(ϕ, i) be a
strong 1-colouring of G. Then, by Theorem 3.1, the colour of c(ϕ, i) is j = 0.
Assume now G is not the null graph. Then in G there is an edge {V ′,V ′′}. In
this case either V ′, or V ′′ cannot have the colour 0, a contradiction.

The following theorem holds

Theorem 3.3. Let G be a non-null simple graph and let c(ϕ, i) be a strong
colouring of G. Then there is at least a colour j 6= 0 of c(ϕ, i) such that

j ≤
∣∣Iϕ(0, i)

∣∣ .
Proof. By Theorems 3.1 and 3.2 it follows that the strong colouring c(ϕ, i) has
at least two distinct colours and one of them is j = 0. Then, there is a vertex
V1 of colour j 6= 0 and so V1 /∈ Iϕ(0, i). Assume that every colour j 6= 0 satisfies
the condition j >

∣∣Iϕ(0, i)
∣∣ . Then there is an edge {V1,V2} , with V2 /∈ Iϕ(0, i),

which admits V1 as i-th vertex. Since V2 has a colour different from zero, there
is an edge {V2,V3}, with V3 /∈ Iϕ(0, i), which admits V2 as i-th vertex. Moreover
we get V3 6=V1, since

ϕ
−1(V1)> ϕ

−1(V2)> ϕ
−1(V3), if i = 2,

ϕ
−1(V1)< ϕ

−1(V2)< ϕ
−1(V3), if i = 1.

Similarly, since V3 has a colour different from zero, there is an edge {V3,V4},
with V4 /∈ Iϕ(0, i), which admits V3 as i-th vertex and such that V4 6=V1,V4 6=V2,
V4 6= V3. This procedure continues indefinitely and so the set V (G)− Iϕ(0, i)
is not finite: a contradiction, since G is finite. The contradiction proves that
j >

∣∣Iϕ(0, i)
∣∣, for every colour j 6= 0 of c(ϕ, i) is impossible.

Now let G be a strongly 2-colourable graph and let c(ϕ, i) be a strong 2-
colouring of G with colours 0 and j, j≤ r. Obviously one of the two vertices of
an edge ` is the i-th vertex of `. It follows that ` cannot have both the vertices in
Iϕ(0, i) and that, if both the vertices of ` are in Iϕ( j, i), there is at least a vertex
of Iϕ( j, i) which is the i-th vertex of `. Let ` = {V ′,V ′′} with V ′ ∈ Iϕ( j, i) and
V ′′ ∈ Iϕ(0, i). Then V ′ is the i-th vertex of `, since there is no edge admitting
V ′′ as i-th vertex. It follows that for any such an edge ` of G, there is a vertex
V ∈ Iϕ( j, i), which is the i-th vertex of `. Then, any edge ` of G has a vertex
V ∈ Iϕ( j, i). Thus it follows that

s = j
∣∣Iϕ( j, i)

∣∣ ,
as it can be proved also by (2). So the following theorem holds
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Theorem 3.4. Let c(ϕ, i) be a strong 2-colouring of a simple graph G. Then
the colours of G are 0 and j, j > 0, and the following holds:

a) two distinct vertices of Iϕ(0, i) are not adjacent;

b) for any edge ` of G, there is a vertex of Iϕ( j, i) which is i-th vertex of `;

c)
∣∣Iϕ( j, i)

∣∣= s
j
, where s is the number of edges of G.

Example 3.5. We provide an example of a strongly 2-colourable graph whose
colours are j1 = 0 and j2 = 3.

CDE

4

5

2

B

1

A

3

Figure 1: Example 3.5

ϕ : (1,2,3,4,5)→ (A,B,C,D,E), Iϕ(0,2) = {A,B,C} , Iϕ(3,2) = {D,E} .

We remark that this strong colouring is not classical, since the two adja-
cent vertices D and E have both the colour 3. Moreover c(ϕ,1) is a strong
3-colouring of G with colours 0,1,2, since Iϕ(0,1) = {E,D}, Iϕ(1,1) = {C},
Iϕ(2,1) = {A,B}. This confirms that the strong colouring depends on i.

4. Strong colourings of regular simple graphs

A graph is regular if all its vertices have the same degree.
Here we consider the strong colourings c(ϕ, i) of a regular simple graph.

The following theorem holds
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Theorem 4.1. A strong colouring c(ϕ, i) of a regular simple graph G of positive
degree r has at least the colours j1 = 0 and j2 = r.

Proof. Let c(ϕ, i) be a strong colouring of a regular simple graph G of de-
gree r > 0. Let VM and Vm be the vertices of G such that ϕ−1(VM) = |G| = v,
ϕ−1(Vm) = 1. We remark that VM 6= Vm, since |G| ≥ 2 (we have |G| ≥ 2, since
r > 0). Then Iϕ(r,1) = Iϕ(0,2) 6= /0, since Vm ∈ Iϕ(r,1). Moreover Iϕ(0,1) =
Iϕ(r,2) 6= /0, since VM ∈ Iϕ(0,1). It follows that j1 = 0 and j2 = r are colours of
c(ϕ, i) .

Theorem 4.2. Let G be a regular simple graph of positive degree. Then G
is strongly 2-colorable if, and only if, G is a bipartite graph G(V1,V2) , with
|V1|= |V2|= |G|/2.

Proof. Let G be strongly 2-colourable and let c(ϕ, i) be a strong 2-colouring of
G. By Theorem 4.1 it follows that the colours of c(ϕ, i) are j1 = 0 and j2 = r.
Since the colours are two, we have Iϕ(r,1) = Iϕ(0,2), and Iϕ(0,1) = Iϕ(r,2).
By Theorem 3.4 it follows that two distinct vertices of Iϕ(r, i) are not adjacent.
By (1) and (2) and since in a regular graph of degree r it is s = vr/2, we have

t(r, i) = t(0, i) =
v
2
. (3)

Then by the previous arguments, it follows that G is a bipartite graph G(V1,V2) ,
with

|V1|= t(r, i) = |V2|= t(0, i) = v/2.

Converserly, let G = G(V1,V2) be a bipartite regular simple graph of degree
r > 0.

Let V1 = {V1,V2, . . . ,Vm}, V2 = {Vm+1,Vm+2, . . . ,Vv}. Let

ϕ : n ∈ {1,2, . . . ,v} 7−→Vn ∈ V1∪V2.

The strong colouring c(ϕ,1) is a strong 2-colouring of G. For, through any
vertex V ∈ V1 there are r edges admitting V as first vertex (and then all the
vertices of V1 have the colour r) and as a consequence through any vertex V ′ ∈
V2 there is no edge admitting V ′ as first vertex (and all the vertices of V2 have
the colour 0).

This theorem holds also for the classical colourings of graphs.

Example 4.3. An example of a strongly 2-colourable graph of degree 2 (the
colours are 0 and 2) is the following.
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CBA

3

56 4

21

F E D

Figure 2: Example 4.3

V (G) = {A,B,C,D,E,F},
E(G) = {{A,F},{A,E},{B,F},{B,D},{C,E},{C,D}},

ϕ : (1,2,3,4,5,6)−→ (A,B,C,D,E,F) ; i = 2,

Iϕ(0,2) = {A,B,C}, Iϕ(2,2) = {D,E,F}.

Example 4.4. An example of strongly 2-colourable graph of degree 3 (the
colours are 0 and 3) is the following.

V (G) = {A,B,C,D,E,F},
E(G) = {{A,F},{A,E},{A,D},{B,F},{B,E},{B,D},{C,F},

{C,E},{C,D}},
ϕ : (1,2,3,4,5,6)−→ (A,B,C,D,E,F) ; i = 2

Iϕ(0,2) = {A,B,C}, Iϕ(3,2) = {E,F,D}.

By the definition of complete graph and by definition of c(ϕ, i) the follow-
ing theorem holds

Theorem 4.5. Every strong colouring c(ϕ, i) of a complete graph Kn is a strong
n-colouring, that is distinct vertices of Kn have different colours.

This theorem holds also for the classical colourings. Let G be a strongly
3-colourable regular simple graph, of degree r > 0. Let c(ϕ, i) be a strong 3-
colouring of G. By Theorem 4.1, the colours of c(ϕ, i) are 0, j,r with 0 < j < r.



NEW STRONG COLOURINGS OF HYPERGRAPHS 43
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Figure 3: Example 4.4

It is
c(ϕ, i) =

({
Iϕ(0, i), Iϕ( j, i), Iϕ(r, i)

}
,{0, j,r}

)
.

Let us prove the following

Theorem 4.6. Let G be a regular simple graph of degree r > 0. Let c(ϕ, i) be a
strong 3-colouring of G. Then the following inequalities hold:

r−
∣∣Iϕ(r, i)

∣∣≤ j ≤
∣∣Iϕ(0, i)

∣∣ ,∣∣Iϕ(0, i)
∣∣+ ∣∣Iϕ(r, i)

∣∣≥ r,∣∣Iϕ( j, i)
∣∣≤ v− r.

If in the last inequality the equality holds, then

j =
∣∣Iϕ( j, i)

∣∣ .
Proof. Let us prove that j ≤

∣∣Iϕ(0, i)
∣∣ . If r ≤

∣∣Iϕ(0, i)
∣∣ , we get j <

∣∣Iϕ(0, i)
∣∣ .

If r >
∣∣Iϕ(0, i)

∣∣ , by Theorem 3.3 it immediately follows that j ≤
∣∣Iϕ(0, i)

∣∣ . The
strong colouring c(ϕ, i′) with i′ = {1,2}−{i}, has obviously the colours 0,r−
j,r. Therefore

c
(
ϕ, i′

)
=
({

Iϕ(0, i′), Iϕ(r− j, i′), Iϕ(r, i′)
}
,{0,r− j,r}

)
,

where

Iϕ(0, i′) = Iϕ(r, i),

Iϕ(r− j, i′) = Iϕ( j, i),

Iϕ(r, i′) = Iϕ(0, i).
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Applying to c(ϕ, i′) the arguments of c(ϕ, i) , we get

r− j ≤
∣∣Iϕ(0, i′)

∣∣= ∣∣Iϕ(r, i)
∣∣ . (4)

By (4) it follows
j ≥ r−

∣∣Iϕ(r, i)
∣∣ .

Thus
r−

∣∣Iϕ(r, i)
∣∣≤ j ≤

∣∣Iϕ(0, i)
∣∣ (5)

and so ∣∣Iϕ(0, i)
∣∣+ ∣∣Iϕ(r, i)

∣∣≥ r,

hence ∣∣Iϕ( j, i)
∣∣≤ v− r.

If Iϕ( j, i) = v− r we get
j =

∣∣Iϕ(0, i)
∣∣ .

Theorem 4.7. Let G be a regular simple graph of degree r, r an odd prime,
c(ϕ, i) a strong 3-colouring of G, then∣∣Iϕ( j, i)

∣∣≡ 0 mod r.

Proof. By (2) we get:

j
∣∣Iϕ( j, i)

∣∣+ r
∣∣Iϕ(r, i)

∣∣= vr
2
. (6)

By (6) and since r is odd, it follows

j
∣∣Iϕ( j, i)

∣∣≡ 0 mod r.

The integers j and r are coprime, since r is prime and 0 < j < r. It follows that∣∣Iϕ( j, i)
∣∣≡ 0 mod r and so the theorem is proved.

Theorem 4.8. Let G be a regular simple graph of degree r = ph, h ≥ 1, p
a prime, |G| = v even, v ≤ 2r. Let c(ϕ, i) be a strong 3-colouring of G with
colours 0, j,r, 0 < j < r. We get either:

i) v = 2r,
∣∣Iϕ( j, i)

∣∣= r, j =
∣∣Iϕ(0, i)

∣∣ ,
or

ii) j = ph′ , 1≤ h′ < h.

It follows that if h = 1, only i) occurs.
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Proof. By (2) it follows

j
∣∣Iϕ( j, i)

∣∣≡ 0 mod r. (7)

a)
∣∣Iϕ( j, i)

∣∣= kr, with k positive integer;

b)
∣∣Iϕ( j, i)

∣∣ 6= kr.

In the case a) we remark that k = 1. For, assume k ≥ 2. By (1), since∣∣Iϕ(0, i)
∣∣≥ 1,

∣∣Iϕ(r, i)
∣∣≥ 1, it follows

v≥ 2r+2,

a contradiction, since v≤ 2r. Therefore∣∣Iϕ( j, i)
∣∣= r. (8)

By (8) and by the third inequality of Theorem 4.6 we get r ≤ v− r, that is

v≥ 2r, (9)

hence
v = 2r. (10)

By (8) and (10) it follows ∣∣Iϕ( j, i)
∣∣= r = v− r. (11)

By (11) and Theorem 4.6 it follows j =
∣∣Iϕ(0, i)

∣∣ .
In the case b), by (7) it follows gcd( j,r) 6= 1, since both the integers j and r = ph

have at least the factor p in common. Then, since 0 < j < r, it follows j = ph′ ,
1≤ h′ < h.

Example 4.9. We provide some examples concerning Theorems 4.7 and 4.8.

V (G) = {A,B,C,D,E,F},
E(G) = {{A,D},{A,B},{A,C},{D,E},{D,F},

{F,E},{C,F},{B,E},{B,C}},
ϕ : (1,2,3,4,5,6)−→ (A,D,F,B,E,C) , i = 2.

The colouring c(ϕ,2) is a strong 3-colouring of G with colours 0,1,3. For,

Iϕ(0,2) = {A}, Iϕ(1,2) = {B,D,F}, Iϕ(3,2) = {C,E}.

This colouring is not classical, since the adjacent vertices D and E have the same
colour.
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Figure 4: Example 4.9
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Figure 5: Example 4.10
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Example 4.10. This graph G is the complete bipartite graph K3,3.

V (G) = {A,B,C,D,E,F},
E(G) = {{A,D},{A,E},{A,F},{B,D},{B,E},

{B,F},{C,D},{C,E},{C,F}},
ϕ : (1,2,3,4,5,6)−→ (A,B,D,E,F,C) , i = 1.

The strong colouring c(ϕ,1) is a strong 3-colouring of colours 0,1,3.

Iϕ(0,1) = {C}, Iϕ(1,1) = {D,E,F}, Iϕ(3,1) = {A,B}.

Example 4.11. Cubic Petersen Graph.

A B

F

IL

D

7

682 1

9

10 5

4 3

G H

E C

Figure 6: Example 4.11

V (G) = {A,B,C,D,E,F,G,H, I,L},
E(G) = {{A,B},{B,C},{C,D},{D,E},{E,A},{E,G},{A,L},{B, I},

{C,H},{D,F},{G, I},{G,H},{F,L},{F, I},{L,H}},
ϕ : (1,2,3,4,5,6,7,8,9,10)−→ (C,E, I,L,B,H,F,G,D,A) ; i = 2.
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The strong colouring c(ϕ,2) is a strong 3-colouring with colours 0,2,3, since

Iϕ(0,2) = {C,E,L, I},
Iϕ(2,2) = {B,F,H},
Iϕ(3,2) = {A,D,G}.

Example 4.12. Graph with 3-strong colourings of colours 0, 2, 3.
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Figure 7: Example 4.12

V (G) = {A,B,C,D,E,F},
E(G) = {{A,B},{B,C},{C,D},{D,E},{A,E},{E,F},

{C,F},{B,F},{A,F},{A,D},{B,D}},
ϕ : (1,2,3,4,5,6)−→ (A,C,B,E,F,D) ; i = 1.
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We have a 3-colouring of colours 0,2,3, with

Iϕ(0,1) = {D,F},
Iϕ(2,1) = {B,E},
Iϕ(3,1) = {A,C}.

This example satisfies the hypotheses of Theorem 4.8 and ii) holds, but not i).

Example 4.13. An example of a non-standard colouring.
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Figure 8: Example 4.13

V (G) = {A,B,C,D,E,F,G,H},
E(G) = {{A,B},{B,C},{C,D},{D,E},{E,F},{F,G},{G,H},{H,A},

{H,B},{B,D},{D,F},{F,H},{A,C},{C,E},{E,G},{G,A}},
ϕ : (1,2,3,4,5,6,7,8)−→ (G,D,F,H,B,C,A,E) ; i = 1,

Iϕ(0,1) = {A,E},
Iϕ(2,1) = {B,C,F,H},
Iϕ(3,1) = {D,G}.
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This graph satisfies the hypotheses of Theorem 4.8 and both i) and ii) hold.
Moreover this strong colouring is not classical, since the adjacent vertices B and
C have the same colour.

By Theorem 4.8 it follows

Theorem 4.14. Let G be a simple regular graph of degree r = p, p a prime,
|G|= v, v < 2r. Then strong 3-colourings of G do not exist.

Example 4.15. We provide an example of a graph satisfying the hypoteses of
Theorem 4.14 and therefore not admitting a strong 3-colouring.

A B C

ED F G

H

Figure 9: Example 4.15

V (G) = {A,B,C,D,E,F,G,H},
E(G) = {{A,H},{A,G},{A,F},{A,E},{B,H},{B,G},{B,F},

{B,E},{C,H},{C,G},{C,F},{C,E},{D,H},{D,G},
{D,F},{D,E},{A,B},{C,D},{F,E},{G,H}}.

5. Hamiltonian strong colourings of regular simple graphs

A path of a graph G is a finite sequence of edges such as

V1V2,V2V3, . . . ,VmVm+1,

denoted also
V1→V2→ ·· · →Vm→Vm+1,

where the edges and the vertices are distinct (may be, evenctually, V1 =Vm+1).
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A graph G is called semi-hamiltonian if there is a path through every vertex
of G. If the path is closed, G is called hamiltonian.
Let G be a simple semi-hamiltonian graph and ` be a path through every vertex
of G.

Let V be the set of vertices of G and let v = |V|. Let

`=V1→V2→ ·· · →Vv.

The following bijection arises

ϕ` : n ∈ I = {1,2, . . . ,v} 7−→Vn ∈ V.

For every i ∈ {1,2}, we get the strong colouring c(ϕ`, i) which is called hamil-
tonian strong colouring of index i associated with `.

By Theorem 4.1 we have that, if G is regular of degree r > 0, the strong
colouring c(ϕ`, i) has the colours 0 and r. If c(ϕ`, i) is a hamiltonian strong
colouring, the following theorem holds

Theorem 5.1. Let G be a semi-hamiltonian regular simple graph of positive
degree r and let c(ϕ`, i) a hamitonian strong colouring of G, with ` = V1 →
V2→ ··· → Vv, v = |G| . Then there is a unique vertex of colour 0, which is V1
and a unique vertex of colour r, which is Vr.

Proof. Let i = 1. Then V1 has the colour r, and Vv has the colour 0. Any vertex
Vn, 1 < n < v, has a colour which is neither 0, nor r. Therefore, V1 and Vv are
the only vertices with colours r and 0, respectively. The same result holds in the
case i = 2, but V1 has the colour 0. and Vv has the colour r.

Theorem 5.2. Semi-hamiltonan regular simple graphs of positive degree having
a hamiltonian strong 1-colouring do not exists.

Proof. This result follows by Theorem 3.2, since a hamltonian graph cannot be
the null graph.

Theorem 5.3. The only semi-hamiltonian regular simple graph of positive de-
gree admitting a hamiltonian strong 2-colouring is K2.

Proof. Let G be a regular simple graph of positive degree having a hamiltonian
strong 2-colouring c(ϕ`, i) and let ` = V1→ V2→ ··· → Vv, where v = |G|. By
Theorem 5.1 it follows

`=V1→V2

then G = K2. Conversely, K2 is a regular simple graph of degree 1 having a
hamiltonian strong 2-colouring with colours 0 and 1.
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Theorem 5.4. The only semi-hamiltonian regular simple graphs of positive de-
gree having a hamiltonian strong 3-colouring are the circuit-graphs.

Proof. Let G be a semi-hamiltonian regular simple graph of positive degree r
having a hamiltonian strong 3-colouring c(ϕ`, i), with `=V1→V2→ ·· · →Vv,
where v = |G|. We get r > 1, since r = 1 implies ` = V1→ V2 and then v = 2:
a contradiction, since G admits a strong 3-colouring, then r ≥ 2. By Theorem
5.1 it follows that

∣∣Iϕ(r, i)
∣∣= ∣∣Iϕ(0, i)

∣∣= 1. By Theorem 4.6 it follows that r ≤∣∣Iϕ(0, i)
∣∣+ ∣∣Iϕ(r, i)

∣∣= 2. Then r = 2 and G is a connected regular simple graph
of degree 2 and then a circuit-graph. The converse is obvious, since a simple
circuit-graph admits a hamiltonian strong 3-colouring with colours 0,1,2.

We remark that in the case of classical colourings there is no characterization
of strongly 3-colourable graphs.

Theorem 5.5. Let G, v = |G|, be a semi-hamiltonian regular simple graph of
positive degree r admitting a hamiltonian strong 4-colouring c(ϕ`, i). Then r≥ 3
and the colours of c(ϕ`, i) are 0,1,r−1,r. Moreover, the number of vertices with
colour 1 equals that of vertices of colour r−1. This number is v

2 −1, hence v is
even.

Proof. Let G be a semi-hamiltonian regular simple graph of degree r > 0 admit-
ting a hamiltonian strong 4-colouring c(ϕ`, i) and let ` = V1→ V2→ ··· → Vv,
where v = |G|. Obviously v ≥ 4. Let 0, j1, j2, r be the colours of c(ϕ`, i),
0 < j1 < j2 < r. It is r ≥ 3. By Theorem 5.1 it follows

∣∣Iϕ`
(0, i)

∣∣ = 1. By The-
orem 3.3 it follows the existence of a colour j 6= 0 such that j ≤

∣∣Iϕ`
(0, i)

∣∣= 1.
Therefore j1 = 1. Let us consider the strong colouring c(ϕ`, i′), i′= {1,2}−{i}.
The colours of c(ϕ`, i′) are 0,r− j2,r− j1 = r−1,r, with 0 < r− j2 < r− j1 =
r−1 < r. By Theorem 5.1 it follows

∣∣Iϕ`
(0, i′)

∣∣= 1. By Theorem 3.3 it follows
the existence of a colour j 6= 0 such that j≤

∣∣Iϕ`
(0, i′)

∣∣= 1. Therefore r− j2 = 1,
that is j2 = r− 1. So the colours of c(ϕ`, i) are 0,1,r− 1,r. By (1) and (2), we
get:

t(0, i)+ t(1, i)+ t(r−1, i)+ t(r, i) = v, (12)

t(1, i)+(r−1)t(r−1, i)+ rt(r, i) =
vr
2
.

By Theorem 5.1 it follows

t(0, i) = t(r, i) = 1. (13)

By (12) and (13) we get:

t(1, i)+ t(r−1, i) = v−2, (14)

t(1, i)+(r−1)t(r−1, i) =
vr
2
− r.
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By (14) we get

(r−2)t(r−1, i) =
v(r−2)

2
− (r−2).

Since r−2 6= 0 (it is r≥ 3), we get t(r−1, i) = v/2−1. By previous conditions
we get t(1, i) = v/2−1. Since

t( j, i) =
∣∣Iϕ`

( j, i)
∣∣ , j = 0,1, . . .r,

the Theorem is proved.

By Theorems 5.2, 5.3, 5.4, 5.5 it follows immediately

Theorem 5.6 (Theorem of cubic simple graphs). Let G be a semi-hamiltonian
regular simple graph of degree 3 and let c(ϕ`, i) be a hamiltonian strong colour-
ing of G. Then c(ϕ`, i) is a strong 4-colouring with colours 0,1,2,3. Moreover,
the number of vertices of colour 1 equals the number of vertices of colour 2.
This number is v

2 −1, hence v = |G| is even.

Example 5.7. This example is an explanation of Theorem 5.6.

Now let G be a semi-hamiltonian regular simple graph of degree r > 0 ad-
mitting a hamiltonian strong 5-colouring c(ϕ`, i). Like in Theorem 5.5, we prove
that r ≥ 4 and that the colours of c(ϕ`, i) are 0,1, j,r−1,r, with 1 < j < r−1.
By (1) and (2), we get:

t(0, i)+ t(1, i)+ t( j, i)+ t(r−1, i)+ t(r, i) = v, (15)

t(1, i) + jt( j, i)+(r−1)t(r−1, i)+ rt(r, i) =
vr
2
,

where v = |G|. By Theorem 5.1 it follows

t(0, i) = t(r, i) = 1. (16)

By (15) and (16) we have

t(1, i)+ t( j, i)+ t(r−1, i) = v−2, (17)

t(1, i) + jt( j, i)+(r−1)t(r−1, i) =
vr
2
− r.

By (17), we have:

j [t(1, i)+ t(r−1, i)− (v−2)] = t(1, i)+(r−1)t(r−1, i)− r
2
(v−2).

Since t(1, i)+ t(r−1, i)≤ v−3, the integer t(1, i)+ t(r−1, i)− (v−2) is neg-
ative, then we get

j =
t(1, i)+(r−1)t(r−1, i)− r

2(v−2)
t(1, i)+ t(r−1, i)− (v−2)

> 1. (18)
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Figure 10: Example 5.7

By (18), since r−2 > 0, we get

t(r−1, i)<
v
2
−1. (19)

We denote by c(ϕ`, i′) the hamiltonian strong 5-colouring, with i′= {1,2}−{i},
whose colours are 0,1,r− j,r− 1,r. Applying (19), to this strong colouring,
since t(r−1, i′) = t(1, i), we get

t(1, i)<
v
2
−1. (20)

Now assume v even. By (19) and (20) we have

t(r−1, i)≤ v
2
−2, (21)

t(1, i)≤ v
2
−2.

By the first of (17) and by (21) we get

v−2− t( j, i) = t(1, i)+ t(r−1, i)≤ v−4. (22)
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Then
t( j, i)≥ 2.

If t( j, i) = 2, by (21) and (22) we get

t(1, i) = t(r−1, i) =
v
2
−2. (23)

By (18) and (23) it follows
j =

r
2
.

Then the following theorem holds

Theorem 5.8. Let G be a semi-hamiltonian regular simple graph of positive
degree r admitting a hamiltonian strong 5-colouring c(ϕ`, i) and let v = |G|.
Then r ≥ 4, the colours of c(ϕ`, i) are 0,1, j,r− 1,r, with 1 < j < r− 1. The
number of the vertices of colour 1 and that of the vertices of colour r− 1 are
both less than v/2−1. If v is even, the number of vertices of colour j is greater
than or equal 2 and if this number equals 2, we get j = r/2. Therefore r is even
and the number of vertices of colour 1 and that of vertices of colour r− 1 are
both equal to v/2−2.

Example 5.9. This example provides a hamiltonian strong 5-colouring with
i = 1 of a regular simple graph of degree 4 with 6 vertices. The colours are
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Figure 11: Example 5.9

0,1,2,3,4 and j = 2 = r/2.
This strong colouring is not classical, since there are two adjacent vertices hav-
ing the same colour 2. We remark that in the case of classical colourings, we
have no result concerning 4-colourings and 5-colourings.
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