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NEW STRONG COLOURINGS OF HYPERGRAPHS

SANDRO RAJOLA - MARIA SCAFATI TALLINI

We define a new colouring for a hypergraph, in particular for a graph.
Such a method is a partition of the vertex-set of a hypergraph, in partic-
ular of a graph. However, it is more intrinsically linked to the geometric
structure of the hypergraph and therefore enables us to obtain stronger
results than in the classical case. For instance, we prove theorems con-
cerning 3-colourings, 4-colourings and 5-colourings, while we have no
analogous results in the classical case. Moreover, we prove that there
are no semi-hamiltonian regular simple graphs admitting a hamiltonian
1-colouring. Finally, we characterize the above graphs admitting a hamil-
tonian 2-colouring and a hamiltonian 3-colouring.

1. Introduction

A hypergraph [2] is a pair (P,B) where P is a non-empty finite set whose
elements are called vertices and B is a non-empty family of non-empty subsets
of P, whose elements are called edges, such that 3 is a covering of S. We denote
by deg P, degree of P, the number of edges through the vertex P. A hypergraph
is also called geometric space. In this case, the vertices are called points and the
edges are called blocks.

Let |P|=v,|B| =b.

From now on we use the terminology of the geometric spaces, considering that
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everything can be couched using hypergraph-theoretic terminology.
Let

r=maxdegP, k=min|B|, k' =max|B|.
PeP BeB BeB

Let
Z=A{1,2,...,v}

and ¢ be a bijection
¢0:7T—7P.

A block B gives rise to the set

{07 PV} ey = {mimasimy}

with n; <ny < ...<n‘B|.

We call i-th point of B, i =1,2,...,|B]|, the point P € B such that ¢! (P) =

n;.
For every j=0,1,...,r and forevery i = 1,2,...,k’, we get the set

Io(j,i) = P € P : there are j blocks through P
A such that P is their i-th point

For any i, 1 <i <k, we get the set of indices
Jo(i) ={j, 0<j<r:Iy(j,i) #0}.

Obviously the family {/y(j,i) }jel¢(i) is a partition of P.

We call the pair

({I¢(j, D} jesn pr@)

strong colouring of base ¢ and index i of the geometric space (P,13) or simply
strong colouring of (P,3) and we denote it by ¢ (¢, 7). The indices j € Jy(i) are
called the colours of c(¢,i), hence every vertex of Iy (j,i) is said to have the
colour j.

Now let (P, B) be a graph G = (V(G),E(G)).
Then P =V(G), B=E(G),v=1|V(G)|,s =|E(G)|,k=k =2,ie {1,2}.
We call strong colouring of a graph G the colouring ¢ (¢,) just defined for the
geometric space. Thus, every bijection gives rise to two strong colourings, since
i={1,2}.
According to this definition, the colour of a vertex V, that is the number of edges
through V admitting V as i-th vertex, is determined by the geometric structure of
the graph around V and consequently we get deeper results than in the classical
case, where the colour of a vertex is arbitrarily assigned, with the only condition
that two vertices have different colours.
The following results hold.
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o If G is a simple graph, that is a graph without loops and multiedges, every
strong colouring of G has the colour j = 0.

e A simple graph G is strongly 1-colorable,if and only if, G is a null graph
(that is E(G) = 0).

e A regular simple graph is strongly 2-colorable if, and only if, G is a bi-
partite graph.

e If G is a regular simple graph, of degree r = 2p, p a prime, v = |G| even,
v < 2r, strong 3-colourings of G do not exist.

A graph G is called semi-hamiltonian, if it contains a path through all the
vertices of G, called semi-hamiltonian path. If the path is closed, the graph G is
called hamiltonian.

Consider the following semi-hamiltonian path

=V =V, — - =V,
We define the bijection
o :nel=A{12,....v} —V,eV(G).

For any i € {1,2} we get the strong colouring ¢ (¢y,i), which we call strong
hamiltonian colouring of index i associated with the path {.
Let G denote a semi-hamiltonian regular simple graph of positive degree. We
prove that the only graph G admitting a hamiltonian strong 2-colouring is Kj.
The only graphs G admitting a hamiltonian strong 3-colouring, are the circuit-
graphs.
If G has a hamiltonian strong 4-colouring, then r > 3 and the colours of ¢ (¢y,i),
are 0,1,r—1,r.

Moreover, the number of vertices of color 1 equals the number of vertices
of color r — 1, which is % — 1, hence v is even.

The following theorem holds:

Theorem 1.1 (cubic simple semi-hamiltonian graphs theorem).

If G is a simple regular semi-hamiltonian graph with deg G = 3 and if ¢ (@y,i) is
a hamiltonian strong colouring of G, then ¢ (@y,i) is a strong 4-colouring with
colours 0,1,2,3. Moreover the number of vertices of colour 1 equals the number
of vertices of color 2, which is v/2 — 1. Hence v is even.

Finally if G has a hamiltonian strong 5-colouring, we get r > 4 and the colours
of c(@g,i)are0,1,j,r—1,n1<j<r—1.

The number of vertices of colour 1 and the number of vertices of colour r — 1



38 SANDRO RAJOLA - MARIA SCAFATI TALLINI

1% . . .
are both less than 5~ 1. If v is even, there are at least two vertices of colour j

. . . r .
and, if such vertices are two, we get j = > hence r is even.
Moreover, the number of vertices of colour 1 and the number of vertices of
v
colour r — 1 are both equal to 3~ 2.

2. Strong colourings of a geometric space

Let (P, B) be a finite geometric space and ¢(¢,i) a strong colouring of (P, B),
that is the pair ({qu(j,i)}jejw(i) ,J(p(i)>. The indices j € Jy(i) are the colours
of ¢(¢,i). We say that j € J, (i) is the colour of I,(j,i) and that P € I(j,i) has
the colour j.

Obviously the number of colours |J, (i)| satisfies the condition 1 < [Jo(i)| < r+
1. For any integer k, 1 <k < r+ 1, we say that (P, B) is strongly k-colourable,
if there is a strong colouring ¢(¢@,i) of (S,B) with k colours. Such c(@,i) is
called strong k-colouring of (P,B).

Let1(j,i) = |I(p(j,i)| . Obviously

r

Y t(ji)=v, i=12,.. K. (1)
Jj=0

Moreover we get:
ij(j,i):l% Vi=1,2,...,k. 2)
Jj=0

We remark that (1) and (2) hold for any bijection ¢ : I — P.

3. The strong colourings of a graph

Let us prove the following

Theorem 3.1. Let G be a simple graph, then every strong colouring of G has
the colour j = 0.

Proof. If G is the null graph, the theorem is obvious. Then assume that G is
not the null graph and then it has two distinct vertices. Let ¢ (¢, i) be a strong
colouring of G. Let Vj; and V,, be the vertices such that ¢! (Vi) = |G| = v,
@' (V,y) = 1. Such vertices are distinct, since |G| > 2. If i = 1, there is no
edge through V), admitting V), as first vertex, therefore Vi € I»(0,1) and so
1,(0,1) # 0. It follows that j =0 € Jy(1). If i = 2, there is no edge through V,,
admitting V,, as second vertex, therefore V,, € I,(0,2) and so 1,(0,2) # 0. It
follows j =0 € Jy(2). O
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Theorem 3.2. A simple graph G is strongly 1-colourable if, and only if, G is the
null graph.

Proof. Obviously, if G is the null graph, it is strongly 1-colourable, with the
colour j = 0. Conversely, let G be strongly 1-colorable and let ¢ (¢,i) be a
strong 1-colouring of G. Then, by Theorem 3.1, the colour of ¢ (¢,i) is j = 0.
Assume now G is not the null graph. Then in G there is an edge {V’,V"}. In
this case either V’, or V' cannot have the colour 0, a contradiction. O

The following theorem holds

Theorem 3.3. Let G be a non-null simple graph and let ¢(@,i) be a strong
colouring of G. Then there is at least a colour j # 0 of ¢ (@,i) such that

J < |15(0,9)].

Proof. By Theorems 3.1 and 3.2 it follows that the strong colouring ¢ (¢, i) has
at least two distinct colours and one of them is j = 0. Then, there is a vertex
Vi of colour j # 0 and so V| ¢ I(0,i). Assume that every colour j # 0 satisfies
the condition j > |I(p(0,i)’ . Then there is an edge {V;,V»} , with V5 ¢ 15(0,1),
which admits V] as i-th vertex. Since V5 has a colour different from zero, there
is an edge {V»,V3}, with V3 ¢ 1, (0,7), which admits V> as i-th vertex. Moreover
we get V3 # V7, since

o '(Vi) >0 (Va) > 97! (V), ifi=2,

e 'V) <o ' (Vo) <o '(Va), ifi=1.
Similarly, since V3 has a colour different from zero, there is an edge {Va,V4},
with V4 ¢ I,(0,i), which admits V3 as i-th vertex and such that V4 # Vi, V4 # Va,
V4 # V3. This procedure continues indefinitely and so the set V(G) — I (0, i)

is not finite: a contradiction, since G is finite. The contradiction proves that
Jj > [15(0,i)|, for every colour j # 0 of ¢ (¢, i) is impossible. O

Now let G be a strongly 2-colourable graph and let ¢ (¢,i) be a strong 2-
colouring of G with colours 0 and j, j < r. Obviously one of the two vertices of
an edge /£ is the i-th vertex of £. It follows that ¢ cannot have both the vertices in
1,(0,i) and that, if both the vertices of £ are in I (j,i), there is at least a vertex
of I,(j,i) which is the i-th vertex of £. Let £ = {V',V"} with V' € I(j,i) and
V" € 15(0,i). Then V' is the i-th vertex of ¢, since there is no edge admitting
V' as i-th vertex. It follows that for any such an edge ¢ of G, there is a vertex
V € I,(j,i), which is the i-th vertex of /. Then, any edge ¢ of G has a vertex
V € Iy(j,i). Thus it follows that

s=Jjlle(j:0)],
as it can be proved also by (2). So the following theorem holds
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Theorem 3.4. Let ¢(¢,i) be a strong 2-colouring of a simple graph G. Then
the colours of G are 0 and j, j > 0, and the following holds:

a) two distinct vertices of I(0,i) are not adjacent;
b) for any edge { of G, there is a vertex of I (j,i) which is i-th vertex of ¢;

c) ‘Iq, (J, l)} = ;, where s is the number of edges of G.

Example 3.5. We provide an example of a strongly 2-colourable graph whose
colours are j; =0 and j, = 3.

A B

Figure 1: Example 3.5

¢:(1,2,3,4,5 = (A,B,C,D,E), 14(0,2)={A,B,C}, 1,(3,2)={D,E}.

We remark that this strong colouring is not classical, since the two adja-
cent vertices D and E have both the colour 3. Moreover ¢ (@, 1) is a strong
3-colouring of G with colours 0,1,2, since I,(0,1) = {E,D}, Iy(1,1) = {C},
Iy(2,1) = {A,B}. This confirms that the strong colouring depends on i.

4. Strong colourings of regular simple graphs

A graph is regular if all its vertices have the same degree.
Here we consider the strong colourings ¢ (¢,i) of a regular simple graph.
The following theorem holds
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Theorem 4.1. A strong colouring c (@,i) of a regular simple graph G of positive
degree r has at least the colours j1 =0 and j, =r.

Proof. Let c(¢@,i) be a strong colouring of a regular simple graph G of de-
gree r > 0. Let Vjy and V,, be the vertices of G such that ¢! (Vi) = |G| = v,
@' (V;y) = 1. We remark that Vy; # V,,, since |G| > 2 (we have |G| > 2, since
r > 0). Then Iy(r,1) =15(0,2) # 0, since V,, € Iy(r,1). Moreover I,(0,1) =
Iy(r,2) # 0, since Vi € I(0,1). It follows that j; = 0 and j, = r are colours of
c(@,i). O

Theorem 4.2. Let G be a regular simple graph of positive degree. Then G
is strongly 2-colorable if, and only if, G is a bipartite graph G (V1,V), with
Vil =2l =1Gl/2.

Proof. Let G be strongly 2-colourable and let ¢ (¢, i) be a strong 2-colouring of
G. By Theorem 4.1 it follows that the colours of ¢ (¢,i) are j; =0 and j, =r.
Since the colours are two, we have Iy (1) = 15(0,2), and I (0,1) = Iy(r,2).
By Theorem 3.4 it follows that two distinct vertices of I, (7, i) are not adjacent.
By (1) and (2) and since in a regular graph of degree r it is s = vr/2, we have

v

t(ryi) =1(0,i) = 5

(3)
Then by the previous arguments, it follows that G is a bipartite graph G (Vy,)V»),
with

Vil =1(r,i) = Vo] =1(0,i) = v/2.

Converserly, let G = G (Vy,)») be a bipartite regular simple graph of degree
r>0.
Let Vl = {VI)V27 s 7Vm}’ VZ = {Verl,Ver% s 7VV}' Let

o:ne{l,2,... v}+—V, ViUV,

The strong colouring ¢ (@, 1) is a strong 2-colouring of G. For, through any
vertex V € V; there are r edges admitting V' as first vertex (and then all the
vertices of V; have the colour r) and as a consequence through any vertex V' €
V), there is no edge admitting V' as first vertex (and all the vertices of 1, have
the colour 0). O

This theorem holds also for the classical colourings of graphs.

Example 4.3. An example of a strongly 2-colourable graph of degree 2 (the
colours are 0 and 2) is the following.
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F E D

A B C

Figure 2: Example 4.3

V(G)={A,B,C,D,E,F},

E(G)={{A,F} {A,E} {B,F} {B,D} {C,E},{C,D}},
¢:(1,2,3,4,5,6) — (A,B,C,D,E,F); i=2,

1,(0,2) = {A,B,C}, 1,(2,2) = {D,E,F}.

Example 4.4. An example of strongly 2-colourable graph of degree 3 (the
colours are 0 and 3) is the following.

V(G)={A,B,C,D,E,F},
E(G)={{A,F}{A,E},{A,D},{B,F}.{B,E},{B,D},{C,F},
{C.E},{C,D}},
¢:(1,2,3,4,5,6) — (A,B,C,D,E,F); i=2
15(0,2) = {A,B,C}, 14(3,2) = {E,F,D}.

By the definition of complete graph and by definition of ¢ (¢,i) the follow-
ing theorem holds

Theorem 4.5. Every strong colouring c (@,i) of a complete graph K, is a strong
n-colouring, that is distinct vertices of K,, have different colours.

This theorem holds also for the classical colourings. Let G be a strongly
3-colourable regular simple graph, of degree r > 0. Let ¢ (¢@,i) be a strong 3-
colouring of G. By Theorem 4.1, the colours of ¢ (¢,i) are 0, j,r with0 < j < r.
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D E F
3 4 5

A B C

Figure 3: Example 4.4

Itis
C((P,i) = ({Iq)(()?i)?Iqo(jvi)vl(P(r? i)}ﬂ{07j7r}) .

Let us prove the following

Theorem 4.6. Let G be a regular simple graph of degree r > 0. Let ¢ (¢,i) be a
strong 3-colouring of G. Then the following inequalities hold:

r—|Io(ri)| < j < |1p(0,)
15(0,0)| + |[Ip(r,i)| >,
[Io(j,D)| <v—r.

If in the last inequality the equality holds, then

)

J=le(,1)|.

Proof. Let us prove that j < |I,(0,i)|. If r < |Io(0,i)], we get j < |I,(0,i)].
Ifr> ‘Iq, (0, z)! , by Theorem 3.3 it immediately follows that j < ‘I(p (0, 1)! . The
strong colouring ¢ (@,i') with i’ = {1,2} — {i}, has obviously the colours 0, r —
j,r. Therefore

c(@,i') = ({15(0,),Io(r— j,i'), Io(r,i") } ,{0,r — j,r}),

where
1p(0,i") = Io(r,i),
I(P(r_ j?i/) = I(P(j7 l)a
Io(r,i") = 14(0,i).
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Applying to ¢ (¢,i') the arguments of ¢ (¢, i), we get

r—j < |1p(0,i)| = [Ip(r,i)] . 4)

By (4) it follows
j=r—|lp(ri)].

Thus

r—|Ip(r.i)] < j < |15(0,i)] )
and so

1p(0,0)| + |1 (r,)| >,

hence

[Io(j,D)| <v—r.
If Ip(j,i) = v—r we get
J = Ip(0,0)].
]

Theorem 4.7. Let G be a regular simple graph of degree r, r an odd prime,
c(@,i) a strong 3-colouring of G, then

Io(j,i)| =0 modr.

Proof. By (2) we get:

HIAIEIACHIE %;. (6)

By (6) and since r is odd, it follows
ille(j,i)| =0 modr.

The integers j and r are coprime, since r is prime and 0 < j < r. It follows that
[I,(j,i)| =0 mod r and so the theorem is proved. O

Theorem 4.8. Let G be a regular simple graph of degree r = p", h > 1, p
a prime, |G| = v even, v < 2r. Let ¢(@,i) be a strong 3-colouring of G with
colours 0, j,r, 0 < j < r. We get either:

I(P(.]J)‘ = raj: ‘190(071)

i) v=2r

)

or
i) j=p", 1<W <h.

It follows that if h = 1, only i) occurs.
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Proof. By (2) it follows
jlle(j.i)] =0 modr (7
a) }I(p (J, z)| = kr, with k positive integer;
b) |1o(j,i)| # k.

In the case a) we remark that k = 1. For, assume k > 2. By (1), since
15(0,0)| > 1, [Ip(r,i)| > 1, it follows

v>2r+2,
a contradiction, since v < 2r. Therefore
|(j,0)] =r. ®)

By (8) and by the third inequality of Theorem 4.6 we get r < v —r, that is

v >2r, (©)]
hence
v=2r (10)
By (8) and (10) it follows
[Io(j,i)| =r=v—r. (11

By (11) and Theorem 4.6 it follows j = |I,(0,i)].

In the case b), by (7) it follows ged(j, r) # 1, since both the integers j and r = p”
have at least the factor p in common. Then, since 0 < j < r, it follows j = "
1<HW<h. O

Example 4.9. We provide some examples concerning Theorems 4.7 and 4.8.

V(G)={A,B,C,D,E F},
E(G> - {{A,D},{A,B},{A,C},{D,E},{D,F},
{F.E},{C,F},{B,E},{B,C}},
¢0:(1,2,3,4,56)— (A,D,F,B,E,C), i=2.
The colouring ¢ (¢,2) is a strong 3-colouring of G with colours 0, 1,3. For,

1,(0,2) = {A}, I,(1,2)={B,D,F}, I,(3,2)={C,E}.

This colouring is not classical, since the adjacent vertices D and E have the same
colour.
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Figure 4: Example 4.9

A B C

Figure 5: Example 4.10
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Example 4.10. This graph G is the complete bipartite graph K3 3.
V(G)={A,B,C,D,E F},
E(G)={{A,D}.{A,E}.{A,F},{B,D},{B,E},

{B,F},{C,D},{C,E},{C,F}},
¢0:(1,2,3,4,5,6)— (A,B,D,E,F,C), i=1.

The strong colouring ¢ (¢, 1) is a strong 3-colouring of colours 0, 1, 3.

1,(0,1) ={C}, Iy(1,1)={D,E,F}, 1I,(3,1)={A,B}.

Example 4.11. Cubic Petersen Graph.

Figure 6: Example 4.11

V(G) ={A,B,C,D,E,F,G,H,I,L},
E(G) = {{A,B},{B,C}, {C,D},{D,E}, {E, A}, {E, G}, {A, L} {B, 1},
{C,HY, {D,F} {G.1},{G,H},{F.L}, {F,1},{L,H}},
¢:(1,2,3,4,5,6,7,8,9,10) —s (C,E,I,L,B,H,F,G,D,A); i=2.
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The strong colouring ¢ (¢,2) is a strong 3-colouring with colours 0,2, 3, since
1,(0,2) = {C,E,L,I},

1,(2,2) = {B,F,H},
1,(3,2) = {A,D,G}.

Example 4.12. Graph with 3-strong colourings of colours 0, 2, 3.

D

Figure 7: Example 4.12

V(G)={A,B,C,D,E F},
E(G) = {{A,B},{B,C},{C,D},{D,E},{A,E},{E,F},
{C.F}.{B,F},{A,F},{A,D},{B,D}},
0 (1,2,3,4,5,6) — (A,C,B,E,F,D); i=1.
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We have a 3-colouring of colours 0,2,3, with

1,(0,1) ={D,F},
1,(2,1) = {B,E},
](P<37 1) = {A7C}
This example satisfies the hypotheses of Theorem 4.8 and ii) holds, but not i).

Example 4.13. An example of a non-standard colouring.

Figure 8: Example 4.13

V(G) = {A,B,C,D,E,F,G,H},
E(G) = {{A,B},{B,C},{C.D},{D,E} {E,F},{F,G},{G,H},{H,A},
{H,B},{B,D},{D,F},{F,H},{A,C},{C,E}.{E,G},{G,A}},
¢:(1,2,3,4,5,6,7,8) — (G,D,F,H,B,C,A,E); i=1,

Ip(0,1) = {A,E},
Ip(2,1) = {B,C,F,H},
I,(3,1) = {D,G}.
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This graph satisfies the hypotheses of Theorem 4.8 and both i) and ii) hold.
Moreover this strong colouring is not classical, since the adjacent vertices B and
C have the same colour.

By Theorem 4.8 it follows

Theorem 4.14. Let G be a simple regular graph of degree r = p, p a prime,
|G| = v, v < 2r. Then strong 3-colourings of G do not exist.

Example 4.15. We provide an example of a graph satisfying the hypoteses of
Theorem 4.14 and therefore not admitting a strong 3-colouring.

D E F G

A B C H

Figure 9: Example 4.15

V(G) = {A,B,C,D,E,F,G,H},

E(G) = {{A,H},{A,G},{A, F}.{A,E},{B,H},{B,G},{B,F},
{B,E},{C,H},{C,G},{C,F},{C,E},{D,H},{D, G},
{D,F},{D,E},{A,B},{C,D} {F,E},{G,H}}.

5. Hamiltonian strong colourings of regular simple graphs

A path of a graph G is a finite sequence of edges such as
V1V27 V2V37 ey Vme+17

denoted also
Vi=Vo—=-- =V, =V,

where the edges and the vertices are distinct (may be, evenctually, V| = V,,11).
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A graph G is called semi-hamiltonian if there is a path through every vertex
of G. If the path is closed, G is called hamiltonian.
Let G be a simple semi-hamiltonian graph and ¢ be a path through every vertex
of G.

Let V be the set of vertices of G and let v = |V|. Let

=V =V, — - =V,
The following bijection arises
o :nel={12,....vi—V, V.

For every i € {1,2}, we get the strong colouring ¢(¢y,i) which is called hamil-
tonian strong colouring of index i associated with {.

By Theorem 4.1 we have that, if G is regular of degree r > 0, the strong
colouring ¢(¢y,i) has the colours 0 and r. If ¢(¢y,i) is a hamiltonian strong
colouring, the following theorem holds

Theorem 5.1. Let G be a semi-hamiltonian regular simple graph of positive
degree r and let c(@y,i) a hamitonian strong colouring of G, with { =V, —
Vo = -+ = V,,, v=|G|. Then there is a unique vertex of colour 0, which is V;
and a unique vertex of colour r, which is V,.

Proof. Leti= 1. Then V| has the colour r, and V, has the colour 0. Any vertex
V., 1 < n < v, has a colour which is neither O, nor r. Therefore, V| and V,, are
the only vertices with colours r and 0, respectively. The same result holds in the
case i = 2, but V| has the colour 0. and V,, has the colour r. O

Theorem 5.2. Semi-hamiltonan regular simple graphs of positive degree having
a hamiltonian strong 1-colouring do not exists.

Proof. This result follows by Theorem 3.2, since a hamltonian graph cannot be
the null graph. O

Theorem 5.3. The only semi-hamiltonian regular simple graph of positive de-
gree admitting a hamiltonian strong 2-colouring is K.

Proof. Let G be a regular simple graph of positive degree having a hamiltonian
strong 2-colouring c(¢@y,i) and let { =V, — V, — --- — V,,, where v = |G|. By
Theorem 5.1 it follows

(= Vi—>W

then G = K. Conversely, K, is a regular simple graph of degree 1 having a
hamiltonian strong 2-colouring with colours 0 and 1. O
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Theorem 5.4. The only semi-hamiltonian regular simple graphs of positive de-
gree having a hamiltonian strong 3-colouring are the circuit-graphs.

Proof. Let G be a semi-hamiltonian regular simple graph of positive degree r
having a hamiltonian strong 3-colouring ¢(¢y,i), with £ =V} -V, — -+ =V,
where v = |G|. We get r > 1, since r = 1 implies £ =V} — V; and then v = 2:
a contradiction, since G admits a strong 3-colouring, then r > 2. By Theorem
5.1 it follows that |l (r,i)| = |Io(0,i)| = 1. By Theorem 4.6 it follows that r <
|15(0,i)| + |Ip(r,i)| = 2. Then r = 2 and G is a connected regular simple graph
of degree 2 and then a circuit-graph. The converse is obvious, since a simple
circuit-graph admits a hamiltonian strong 3-colouring with colours 0,1,2. [

We remark that in the case of classical colourings there is no characterization
of strongly 3-colourable graphs.

Theorem 5.5. Let G, v = |G|, be a semi-hamiltonian regular simple graph of
positive degree r admitting a hamiltonian strong 4-colouring c(@y,i). Thenr>3
and the colours of c(@y,i) are 0,1,r — 1,r. Moreover, the number of vertices with
colour I equals that of vertices of colour r — 1. This number is 5 — 1, hence v is

even.

Proof. Let G be a semi-hamiltonian regular simple graph of degree r > 0 admit-
ting a hamiltonian strong 4-colouring ¢(¢y,i) and let { =V} =V, — --- =V,
where v = |G|. Obviously v > 4. Let 0, jj, j2, r be the colours of c(¢y,i),
0 < ji < jo <r. Itis r>3. By Theorem 5.1 it follows |y, (0,i)| = 1. By The-
orem 3.3 it follows the existence of a colour j # 0 such that j < |Iq,£ (0, z)} =1.
Therefore j; = 1. Let us consider the strong colouring c(¢y, '), i" = {1,2} — {i}.
The colours of ¢(@g,i') are 0,r — jo,r—j1=r—1,n,withO <r— jo <r—j; =
r—1 < r. By Theorem 5.1 it follows ’IW (0, i’)’ = 1. By Theorem 3.3 it follows
the existence of a colour j # 0 such that j < ‘IW (0,7 )‘ = 1. Therefore r— j, =1,
that is j, = r — 1. So the colours of ¢(¢y,i) are 0,1, — 1,r. By (1) and (2), we
get:

10,0) +1(1,) +t(r—1,i) +1(r,i) = v, (12)

t(1,i)+ (r— De(r—1,i) +re(r,i) = g

By Theorem 5.1 it follows

1(0,i) =1(ri) = 1. (13)
By (12) and (13) we get:
t(1i)+t(r—1,i)=v-2, (14)
t(Li) + (r— Di(r—1,i) = = —r.

2
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By (14) we get

(r—2i(r—1,i) = =2

—(r=2).

Since r—2 # 0 (itis r > 3), we get 1(r — 1,i) = v/2 — 1. By previous conditions
we get £(1,i) =v/2— 1. Since

1(j,i) = 1o, (j,1)

the Theorem is proved. OJ

, j=0,1,...r

By Theorems 5.2, 5.3, 5.4, 5.5 it follows immediately

Theorem 5.6 (Theorem of cubic simple graphs). Let G be a semi-hamiltonian
regular simple graph of degree 3 and let ¢(@y,i) be a hamiltonian strong colour-
ing of G. Then c(@y,i) is a strong 4-colouring with colours 0,1,2,3. Moreover,
the number of vertices of colour I equals the number of vertices of colour 2.
This number is 5 — 1, hence v = |G| is even.

Example 5.7. This example is an explanation of Theorem 5.6.

Now let G be a semi-hamiltonian regular simple graph of degree r > 0 ad-
mitting a hamiltonian strong 5-colouring ¢(¢y, ). Like in Theorem 5.5, we prove
that » > 4 and that the colours of ¢(¢@y,i) are 0,1, j,r—1,r, with 1 < j <r—1.
By (1) and (2), we get:

t(0,0)+t(1,0) +1t(j,i) +t(r—1,i)+t(ri)
t(1,0) + je(j,i) + (r— Dt(r—1,0) +re(ryi) = =

v, (15)

>
where v = |G|. By Theorem 5.1 it follows
1(0,i) =t(ri) = 1. (16)
By (15) and (16) we have
t(L,i)+1(j,i)+t(r—1,i) =v—2, (17)
t(1,0) + jt(,i) + (r— De(r— 1,i) = g—r.

By (17), we have:
J(L i) +1(r=1,0) = (v=2)] = #(1,i) + (r= Dr(r = 1)) = 5 (v=2).

Since t(1,i) +t(r — 1,i) <v—3, the integer #(1,i) +¢(r — 1,i) — (v —2) is neg-
ative, then we get
t(L,i)+(r—=1Dt(r—=1,i) = 5(v—-2)

I ) L) -(-2) " (1%)
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Figure 10: Example 5.7

By (18), since r —2 > 0, we get
tU—L0<§—L (19)

We denote by ¢(¢y,i') the hamiltonian strong 5-colouring, with /' = {1,2} —{i},
whose colours are 0,1,r — j,r — 1,r. Applying (19), to this strong colouring,
since 7(r — 1,i') =1(1,i), we get

NLD<§—L (20)
Now assume v even. By (19) and (20) we have

t(r—1,i)

IN
[
|

2
t(1,i) < — —2.
By the first of (17) and by (21) we get
v—2—1(j,i)=t(1,i)+t(r—1,i) <v—4. (22)
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Then
1(j,i) >2.

If t(j,i) = 2, by (21) and (22) we get

t(l,i):t(r—l,i):%—Z.

By (18) and (23) it follows
;

J=5:

Then the following theorem holds

55

(23)

Theorem 5.8. Let G be a semi-hamiltonian regular simple graph of positive
degree r admitting a hamiltonian strong 5-colouring c(@y,i) and let v = |G]|.
Then r > 4, the colours of c(@y,i) are 0,1, j,r—1,r, with 1 < j <r—1. The
number of the vertices of colour 1 and that of the vertices of colour r — 1 are
both less than v/2 — 1. If v is even, the number of vertices of colour j is greater
than or equal 2 and if this number equals 2, we get j = r/2. Therefore r is even
and the number of vertices of colour 1 and that of vertices of colour r — 1 are

both equal to v/2 — 2.

Example 5.9. This example provides a hamiltonian strong 5-colouring with
i =1 of a regular simple graph of degree 4 with 6 vertices. The colours are

Figure 11: Example 5.9

0,1,2,3,4and j=2=1r/2.

This strong colouring is not classical, since there are two adjacent vertices hav-
ing the same colour 2. We remark that in the case of classical colourings, we

have no result concerning 4-colourings and 5-colourings.
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