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ON GRÜSS TYPE INEQUALITY FOR A
HYPERGEOMETRIC FRACTIONAL INTEGRAL

SHYAM L. KALLA - ALKA RAO

Aim of the present paper is to investigate a new integral inequality
of Grüss type for a hypergeometric fractional integral. Two main results
are proved, the first one deals with Grüss type inequality using the hyper-
geometric fractional integral. The second result states another inequality
regarding two synchronous functions.

1. Introduction

The well known Grüss inequality [4] (see also [12], p. 296) is stated as follows:
Let f and g be two functions defined and integrable on [a,b]. Further, let

`≤ f (x)≤ L, m≤ g(x)≤M, (1)

for each x ∈ [a,b], where `, m, L, M are given real constants, then

∣∣∣∣ 1
(b−a)

∫ b

a
f (x)g(x)dx − 1

(b−a)

∫ b

a
f (x)dx · 1

(b−a)

∫ b

a
g(x)dx

∣∣∣∣
≤ 1

4
(L− `)(M−m) (2)
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and the constant 1/4 is the best possible.
The inequality (2) has various generalizations, that have appeared in the

literature, we refer to a few, e.g. [1, 3, 11, 12, 13, 14] and the references cited
therein.
Besides the Reimann-Liouville definition of fractional operators many more
modifications and generalizations have been studied in the literature. Several
authors e.g. [5, 6, 7, 9, 10, 15] have studied and used different modifications of
hypergeometric fractional integral operators, for further details we refer to [8, 9,
16]. Recently, in [1] a generalization of Grüss inequality for Reimann-Liouville
fractional integral has been studied.
In the present work we shall investigate a fractional integral over the space C

λ

introduced in [2] and defined as follows:

Definition 1.1. The space of functions C
λ
, λ ∈R consists of all functions f (x),

x > 0, that can be represented in the form f (x) = xp f1(x) with p > λ and f1 ∈
C[0,∞), where C[0,∞) is the set of continuous functions in the interval [0,∞).

We define a fractional integral Kα,β ,η associated with the Gauss hypergeo-
metric function as follows:

Definition 1.2. Let f ∈ Cλ ; for α > max{0,−(η +1)}, η −β > −1, β < 1,
we define a fractional integral Kα,β ,η f as follows:(

Kα,β ,η f
)
(x) =

Γ(1−β )Γ(α +η +1)
Γ(η−β +1)

xβ

(
Iα,β ,η
0+ f

)
(x) , (3)

where Iα,β ,η
0+ f is the right -hand sided Gauss hypergeometric fractional integral

of order α and defined as:

Definition 1.3. Let α > 0, β ,η ∈ R then the right-hand sided Gauss hyperge-
ometric fractional integral of order α for a real valued continuous function f (x)
on (0,∞) is defined as [15]:

Iα,β ,η
0+ f (x) =

x−α−β

Γ(α)

∫ x

0
(x− t)α−1

2F1

(
α +β ,−η ;α;1− t

x

)
f (t)dt, (4)

The above integral has following property:

Iα,β ,η
0+ Iγ,δ ,ζ

0+ f (x) = Iγ,δ ,ζ
0+ Iα,β ,η

0+ f (x) . (5)

Erdélyi-Kober and Riemann-Liouville fractional integrals of order α , denoted
by Iα,η

0+ and Iα
0+ respectively, are obtained by the following relation:

Iα,0,η
0+ f (x) = Iα,η

0+ f (x) and Iα,−α,η
0+ f (x) = Iα

0+ f (x) , (6)
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where Erdélyi-Kober fractional integral of order α is defined as:

(
Iα,η
0+ f

)
(x) =

x−(η+α)

Γ(α)

∫ x

0
(x− t)α−1 tη f (t)dt, α > 0,η ∈ R . (7)

The above Erdélyi-Kober integral operator has been used by many authors,
in particular, to obtain solutions of the single, dual and triple integral equations
possessing special functions of mathematical physics as their kernels. For the
theory and applications of the Erdélyi-Kober (E-K) fractional integrals, we refer
to [5, 8, 9, 16, 17].
The Riemann-Liouville fractional integral Iα

0+ of order α is defined as (see [9,
10, 16]): (

Iα
0+ f
)
(x) =

1
Γ(α)

∫ x

0
(x− t)α−1 f (t)dt, α > 0 . (8)

Remark 1.4. We obtain the following special cases of the operator Kα,β ,η

When β = 0, it reduces to an Erdélyi-Kober type fractional integral of order
α and defined for α > 0; η >−1 as:

Kα,η =
Γ(η +α +1)

Γ(η +1)
(
I α,η
0+ f

)
(x) .

When β =−α , then it is described for α > 0 as:

(Kα f )(x) =
Γ(1+α)

xα

(
Iα
0+ f
)
(x) ,

where Iα,η
0+ and Iα

0+ are given by (7) and (8) respectively.

Definition 1.5. Two functions f and g are said to be synchronous functions on
[0, ∞) if

A(u , v) = ( f (u)− f (v))(g(u)−g(v)) ≥ 0;u , v ∈ [0, ∞) . (9)

Here we discuss some results regarding the fractional integral Kα,β ,η which
have been used in the present work.

Lemma 1.6. For µ > max{0,−(η−β )} − 1, α > max{0,−(η +1)} ; and
η−β >−1, β < 1

Kα,β ,η(xµ) =
Γ(µ +1)Γ(µ +η−β +1)Γ(1−β )Γ(α +η +1)

Γ(µ−β +1)Γ(α +µ +η +1)Γ(η−β +1)
xµ . (10)

Thus
Kα,β ,η(C) = C,

where C is a constant.
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Lemma 1.7. Let h ∈ C
λ

and m , M ∈ R:m ≤ h(x) ≤ M, for all x ∈ [0, ∞) ;
α > max{0,−(η +1)} ; η−β >−1, β < 1, we have:

Kα,β ,ηh2 (x) −
(

Kα,β ,ηh(x)
)2

=(
M−Kα,β ,ηh(x)

)(
Kα,β ,ηh(x)−m

)
−Kα,β ,η (M−h(x))(h(x)−m) . (11)

Proof. Let h ∈C
λ

and m, M ∈ R : m ≤ f (x) ≤ M, for every x in [0 , ∞), then
for any u , v ∈ [0, ∞), we have

(M−h(u))(h(v)−m) + (M − h(v))(h(u) − m) − (M − h(u))(h(u)−m)

− (M−h(v))(h(v)−m) = h2 (u) +h2 (v) − 2h(u)h(v) . (12)

If h ∈ Cλ , then h is integrable on [0, x] ;x > 0 , thus, multiplying the above
equation by (x−u)α−1

Γ(α) 2F1
(
α +β ,−η ;α;1− u

x

)
; u∈ (0,x) ; x > 0 and integrating

with respect to u from 0 to x, then using definition 1.2 and Lemma 1.6, we obtain(
M−Kα,β ,ηh(x)

)
(h(v)−m)+(M−h(v))

(
Kα,β ,η ,h(x)−m

)
− Kα,β ,η (M−h(x))(h(x)−m)−(M−h(v))(h(v)−m)

= Kα,β ,ηh2 (x)+h2 (v)−2Kα,β ,ηh(x) h(v) (13)

Again, multiplying the above equation by

1
Γ(α)

(x− v)α−1
2F1

(
α +β ,−η ;α; 1− v

x

)
;v ∈ (0,x) ; x > 0,

then integrating with respect to v from 0 to x , we obtain (11). This proves the
lemma.

2. Main Results

Theorem 2.1. Let f, g ∈ C
λ

satisfying the condition 1 on [0,∞). Then for all
x > 0; α > max{0,−(η +1)} ; η−β >−1; β < 1 , we have

| Kα,β ,η f g(x) − Kα,β ,η f (x)Kα,β ,ηg(x) | ≤ 1
4
(L− `)(M−m) . (14)

Proof. Let us define a function

A(u,v) = ( f (u)− f (v))(g(u)−g(v)) ;u , v ∈ [0, x) . (15)
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First we multiply the above expression by

(x−u)α−1 (x− v)α−1

(Γ(α))2 2F1

(
α +β ,−η ;α; 1− u

x

)
2F1

(
α +β ,−η ;α;1− v

x

)
;

and then integrate twice with respect to u and v from 0 to x , we obtain the
following result by applying (3), (4) and the property (5)

1

(Γ(α))2

∫ x

0

∫ x

0
(x−u)α−1 (x− v)α−1

2F1

(
α +β ,−η ;α;1− u

x

)
× 2F1

(
α +β ,−η ;α; 1− v

x

)
A(u,v)dudv

= 2Kα,β ,η f g(x)−2Kα,β ,η f (x)Kα,β ,ηg(x) . (16)

Making use of the well known Cauchy-Schwarz inequality for linear operator
[12, eq. (1.3), p. 296], we find that(

Kα,β ,η f g(x)−Kα,β ,η f (x)Kα,β ,ηg(x)
)2
≤(

Kα,β ,η f 2 (x)−
(

Kα,β ,η f (x)
)2
)(

Kα,β ,ηg2 (x)−
(

Kα,β ,ηg(x)
)2
)

(17)

Since

(L− f (x))( f (x)− `)≥ 0 and (M−g(x))(g(x)−m)≥ 0,

therefore,

Kα,β ,η (L− f (x))( f (x)− `)≥ 0 and Kα,β ,η (M−g(x))(g(x)−m)≥ 0 (18)

Thus, by Lemma 1.7

Kα,β ,η f 2 (x)−
(

Kα,β ,η f (x)
)2
≤
(

L−Kα,β ,η f (x)
)(

Kα,β ,η f (x)− `
)
, (19)

and

Kα,β ,ηg2 (x)−
(

Kα,β ,ηg(x)
)2
≤
(

M−Kα,β ,ηg(x)
)(

Kα,β ,ηg(x)−m
)
. (20)

From (17) and the inequalities (19), (20) we deduce that

( Kα,β ,η f g(x)−Kα,β ,η f (x)Kα,β ,ηg(x) )2 ≤(
L−Kα,β ,η f (x)

)(
Kα,β ,η f (x)− `

)(
M−Kα,β ,ηg(x)

)(
Kα,β ,ηg(x)−m

)
.

(21)
Applying the well known inequality 4ab ≤ (a+b)2 ; a , b ∈ R in the right -
hand side of the inequality (21) and simplifying it, we obtain the result (14).
This completes the proof.



62 SHYAM L. KALLA - ALKA RAO

Theorem 2.2. Let f and g be two synchronous functions on [0,∞), then the
following inequality holds:

Kα,β ,η f g(x) ≥ Kα,β ,η f (x)Kα,β ,ηg(x) . (22)

Proof. For the synchronous functions f and g, the inequality (9) holds for all
u , v ∈ [0, ∞) . This implies that

f (u)g(u)+ f (v)g(v)≥ f (u)g(v)+ f (v)g(u) . (23)

Following the procedure of the Lemma 1.7 for applying the fractional integral
Kα,β ,η , we arrive at the result (22). This completes the proof.

3. Corollaries and applications

The Grüss inequality for the Erdélyi-Kober type fractional integral

If we put β = 0, in the Theorems 2.1 and 2.2, we obtain the following Grüss
inequality for the Erdélyi-Kober type fractional integral Kα,η of order α given
in Remark 1.4 (i).

Corollary 3.1. Let f, g ∈Cλ satisfying the condition (1) on [0,∞). Then for all
x > 0; α > 0 ; η >−1, we have

| Kα,η f g(x) − Kα,η f (x)Kα,ηg(x) | ≤ 1
4
(L− `)(M−m) . (24)

Corollary 3.2. Let f and g be two synchronous functions on [0,∞), then for all
x > 0; α > 0 , η >−1, the following inequality holds:

Kα,η f g(x) ≥ Kα,η f (x)Kα,ηg(x) . (25)

Remark 3.3. If we take β = −α and apply the relations (6) and (8) for Rie-
mann-Liouville fractional integral Iα

0+, then Kα,β ,η reduces to the following
form:

Kα,−α,η f (x) =
Γ(1+α)

xα
Iα
0+ f (x) ,α > 0; (26)

and the Theorem 2.1 reduces to the result obtained in [1, Theorem 3.1].
Further, if we take α = 1 in (26) and Theorem 2.1, we obtain the Grüss inequal-
ity (2) on [0, x].
Also from Theorem 2.2 we obtain the following inequality for two synchronous
functions on [0,∞) and Riemann-Liouville fractional integral:

Iα
0+ f g(x) ≥ Γ(1+α)

xα
Iα
0+ f (x) Iα

0+ g(x) ; α > 0.
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Further, in Theorem 2.2 taking α = 1, we obtain the following inequality for the
two synchronous functions on interval [0, x]; x > 0 as:∫ x

0
f (x)g(x)dx ≥ 1

x

∫ x

0
f (x)dx

∫ x

0
g(x)dx.
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based upon compositions of Erdélyi-Kober operators in Lp, Math. Japonica 35
(1990), 1–21.

[6] S. L. Kalla - R. K. Saxena, Integral operators involving hypergeometric functions,
I, Math. Z. 108 (1969), 231–234.

[7] S. L. Kalla - R. K. Saxena, Integral operators involving hypergeometric functions
II, Univ. Nac. Tucumán Rev. Ser. A 24 (1969), 31–36.

[8] A. A. Kilbas - H. M. Srivastava - J. J. Trujillo, Theory and Applications of Frac-
tional Differential Equation. Elsevier, Amsterdam, 2006.

[9] V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Re-
search Notes in Math. 301, Longman, Harlow , J. Wiley, New York, 1994.

[10] F. Mainardi - Y. Luchko - G. Pagnini, The fundamental solution of the space-
time fractional diffusion equation, Fractional Calculus & Applied Analisis 4 (2)
(2001), 153–192.

[11] A. McD. Mercer, An improvement of the Grüss inequality, J. Inequal. Pure Appl.
Math. 6 (4) (2005), 1–4.
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