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MULTIPLE SOLUTIONS FOR ELLIPTIC PROBLEMS
INVOLVING THE p(x)-LAPLACIAN

GABRIELE BONANNO - ANTONIA CHINNÌ

Multiplicity of solutions for p(x)-Laplacian Dirichlet problems is in-
vestigated. The approach is based on the critical point theory. The ordi-
nary case is pointed out.

1. Introduction

The aim of this paper is to investigate the following Dirichlet problem in-
volving the p(x)-laplacian

−∆p(x)u = λ f (x,u) in Ω

u = 0 on ∂Ω

(Pλ )

where Ω ⊂ RN is an open bounded domain with smooth boundary, p ∈ C(Ω̄),
∆p(x)u := div(|∇u|p(x)−2∇u) denotes the p(x)−Laplace operator, λ is a positive
real parameter and f is a Carathéodory function.

The existence of three solutions for problem (Pλ ) has been established in
[1, Theorem 3.2]. However, in that case, one of the solutions, in absence of
small perturbations of the nonlinear term, is the trivial solution. The aim of
this paper is to point out the existence of three non-trivial solutions for (Pλ ),
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which is a problem without small perturbations of the nonlinear term, whenever
p(x) is greater than N. Our main result is Theorem 3.1, where the existence of
three solutions to (Pλ ) is established. Moreover, as special case, the existence
of three non-trivial solutions to a two-point boundary value problem is obtained
(see Theorem 3.3). The main tool to prove our results, is a recent three critical
points theorem of G. Bonanno and S.A. Marano (see Theorem 2.2).

This note consists of three sections. Section 2 contains some basic proper-
ties of the space W 1,p(x)(Ω) and p(x)−Laplace operator, while main results and
their proofs are given in Section 3.

2. Preliminaries

The theory of the spaces Lp(x)(Ω) and W m,p(x)(Ω) presents results similar to
those for Lp(Ω) and W m,p(Ω) spaces but there are, also, some crucial differ-
ences. In this Section, we recall some basic definitions and properties, while we
refer to [7], [8], [6], [4] and references therein, for more details.

Here and in the sequel, we suppose that p ∈ C(Ω̄) satisfies the following
condition:

N < p− := inf
x∈Ω

p(x)≤ p(x)≤ p+ := sup
x∈Ω

p(x)<+∞. (1)

The variable exponent Lebesgue space Lp(x)(Ω) is defined as

Lp(x)(Ω) = {u : Ω→ R : u is measurable and ρp(u)<+∞}

where
ρp(u) :=

∫
Ω

|u(x)|p(x)dx

is called the ”modular” of the space Lp(x)(Ω). Such a space is a particular case
of Orlicz-Musielak spaces (see [8]). On Lp(x)(Ω) we consider the ”Luxembury”
norm

‖u‖Lp(x)(Ω) := inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)λ

∣∣∣∣p(x) dx≤ 1

}
.

The generalized Lebesgue-Sobolev space W 1,p(x)(Ω) is defined as

W 1,p(x)(Ω) :=
{

u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)
}

with the norm

‖u‖W 1,p(x)(Ω) := ‖u‖Lp(x)(Ω)+‖|∇u|‖Lp(x)(Ω)
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while, by W 1,p(x)
0 (Ω), we denote the closure of C∞

0 (Ω) in W 1,p(x)(Ω).

On W 1,p(x)
0 (Ω) we consider the norm

‖u‖ := ‖|∇u|‖Lp(x)(Ω)·

With such norms, Lp(x)(Ω), W 1,p(x)(Ω) and W 1,p(x)
0 (Ω) are separable, reflexive

and uniformly convex Banach spaces.
As pointed out in [7] and [6], W 1,p(x)(Ω) is continuously embedded in

W 1,p−(Ω) and, since p− > N, W 1,p−(Ω) is compactly embedded in C0(Ω).
Thus, W 1,p(x)(Ω) is compactly embedded in C0(Ω). So, in particular, there
exists a positive constant c0 > 0 such that

‖u‖C0(Ω) ≤ c0‖u‖ (2)

for each u ∈W 1,p(x)
0 (Ω).

Put

Φ(u) =
∫

Ω

1
p(x)
|∇u|p(x)dx,

for all u ∈W 1,p(x)
0 (Ω). It is known that Φ ∈C1(W 1,p(x)

0 (Ω),R), and〈
Φ
′
(u),v

〉
=
∫

Ω

|∇u|p(x)−2
∇u∇vdx

for each u,v ∈W 1,p(x)
0 (Ω). Moreover, (see [5, Theorem 3.1]), Φ is convex, se-

quentially weakly lower semi-continuous and Φ′ : W 1,p(x)
0 (Ω)→ (W 1,p(x)

0 (Ω))∗

is an homeomorphism.
From Theorem 1.3 of [6], we obtain the following proposition.

Proposition 2.1. Let u ∈W 1,p(x)
0 (Ω); then

(i) ‖u‖< 1 (= 1;> 1) ⇔ ρp(|∇u|)< 1 (= 1;> 1);

(ii) if ‖u‖> 1, then
1

p+
‖u‖p− ≤Φ(u)≤ 1

p−
‖u‖p+;

(iii) if ‖u‖< 1, then
1

p+
‖u‖p+ ≤Φ(u)≤ 1

p−
‖u‖p− .

Thanks to Proposition 2.1, the functional Φ turns out to be coercive.
Our main tool is a recent result obtained by G. Bonanno and S.A. Marano

in [2], that we recall in a convenient form.
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Theorem 2.2. [[2], Theorem 3.6] Let X be a reflexive real Banach space,
Φ : X → R be a coercive, continuously Gâteaux differentiable and sequen-
tially weakly lower semicontinuous functional whose Gâteaux derivative admits
a continuous inverse on X∗, Ψ : X→R be a continuously Gâteaux differentiable
functional whose Gâteaux derivative is compact such that

inf
x∈X

Φ(x) = Φ(0) = Ψ(0) = 0.

Assume that there exist r > 0 and x̄ ∈ X, with r < Φ(x̄), such that:

(a1)

sup
Φ(x)≤r

Ψ(x)

r
< Ψ(x̄)

Φ(x̄) ;

(a2) for each λ ∈ Λr :=]
Φ(x̄)
Ψ(x̄)

,
r

supΦ(x)≤r Ψ(x)
[ the functional Φ−λΨ is co-

ercive.

Then, for each λ ∈ Λr, the functional Φ−λΨ has at least three distinct critical
points in X.

3. Main results

Consider the problem (Pλ ) and assume that f : Ω×R→ R is a Carathéodory
function satisfying the following condition:

( f1) there exist s ∈ [1, p−[ and a positive constant c such that

| f (x, t)| ≤ c(1+ |t|s−1)

for each (x, t) ∈Ω×R.

Put

F(x,ξ ) :=
∫

ξ

0
f (x, t) dt

for each (x,ξ ) ∈Ω×R, ( f1) guarantees that the functional Ψ defined by

Ψ(u) =
∫

Ω

F(x,u(x))dx

for each u ∈W 1,p(x)
0 (Ω), is in C1(W 1,p(x)

0 (Ω),R), its derivative Ψ′ is compact
and

Ψ
′(u)(v) =

∫
Ω

f (x,u(x))v(x)dx
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for each u,v∈W 1,p(x)
0 (Ω). Now, let us introduce the energy functional Iλ related

to the problem (Pλ ):
Iλ (·) := Φ(·)−λΨ(·)

and we observe that, for each λ > 0, the critical points u of Iλ are the weak
solutions of (Pλ ) i.e.∫

Ω

|∇u|p(x)−2
∇u∇vdx = λ

∫
Ω

f (x,u(x))v(x)dx

for each v ∈W 1,p(x)
0 (Ω). Before introducing our result we observe that, putting

δ (x) = sup{δ > 0 : B(x,δ )⊆Ω}

for all x ∈ Ω, one can prove that there exists x0 ∈ Ω such that B(x0,D) ⊆ Ω,
where

D = sup
x∈Ω

δ (x). (3)

Finally, for each r > 0, put

γr := max
{
(p+r)

1
p− ,(p+r)

1
p+
}
,

and

m :=
π

N
2

N
2 Γ(N

2 )
,

where Γ is the Eulero function.

Theorem 3.1. Let f : Ω×R→ R be a function satisfying ( f1) and such that
essin fx∈ΩF(x,ξ ) ≥ 0 for all ξ ∈ R. Assume also that there exist two positive

constants r and h, with r <
1

p+
min{

(2h
D

)p−

,
(2h

D

)p+

} m DN 2N−1
2N , such that

αr :=
1
r

∫
Ω

sup
|ξ |≤c0γr

F(x,ξ )dx <
p−essin fx∈ΩF(x,h)

max
{(2h

D

)p−
,
(2h

D

)p+
}
(2N−1)

:= βh. (4)

Then, for each λ ∈] 1
βh
, 1

αr
[, the problem (Pλ ) admits at least three weak

solutions.

Proof. Our aim is to apply Theorem 2.2. To this end, take X :=W 1,p(x)
0 (Ω) with

the usual norm and
Φ(u) =

∫
Ω

1
p(x)
|∇u|p(x)dx,

Ψ(u) =
∫

Ω

F(x,u(x))dx,
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Iλ (u) := Φ(u)−λΨ(u)

for all u ∈ X .
As seen before, the functionals Φ and Ψ satisfy the regularity assumptions

of Theorem 2.2.
Now, let v̄ ∈ X be defined by

v̄(x) =


0 x ∈Ω\B(x0,D)

h x ∈ B(x0,
D
2 )

2h
D (D−|x− x0|) x ∈ B(x0,D)\B(x0,

D
2 ),

(5)

where | · | denotes the euclidean norm on RN . We have

1
p+

min

{(
2h
D

)p−

,

(
2h
D

)p+
}

m

(
DN−

(
D
2

)N
)
≤

≤Φ(v̄)≤ 1
p−

max

{(
2h
D

)p−

,

(
2h
D

)p+
}

m

(
DN−

(
D
2

)N
)

and

Ψ(v̄)≥
∫

B(x0,
D
2 )

F(x, v̄(x))dx≥ essin fx∈ΩF(x,h) m
(

D
2

)N

·

From r <
1

p+
min{

(2h
D

)p−

,
(2h

D

)p+

} m DN 2N−1
2N , one has r < Φ(v̄). More-

over, thanks to the embedding X ↪→C0(Ω̄), for each u ∈ X with Φ(u) ≤ r, the
following relation holds:

max
x∈Ω

|u(x)| ≤ c0 max
{
(p+r)

1
p− ,(p+r)

1
p+
}
= c0γr

and so
sup

Φ(u)≤r
Ψ(u)≤

∫
Ω

sup
|ξ |≤c0γr

F(x,ξ )dx·

From (4) one has

1
r

sup
Φ(u)≤r

Ψ(u)≤ 1
r

∫
Ω

sup
|ξ |≤c0γr

F(x,ξ )dx = αr <

< βh =
essin fx∈ΩF(x,h)m

(
D
2

)N

1
p− max

{(2h
D

)p−
,
(2h

D

)p+
}

m
(

DN−
(D

2

)N
) ≤ Ψ(v̄)

Φ(v̄)
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and so condition (a1) of Theorem 2.2 is verified. Finally, we prove that, for each
λ > 0, the functional Iλ is coercive. For each u ∈ X , from ( f1) one has

Ψ(u) =
∫

Ω

F(x,u(x)) dx≤
∫

Ω

c(|u(x)|+ 1
s
|u(x)|s) dx≤

c‖u‖C0(Ω̄)|Ω|+
c
s
‖u‖s

C0(Ω̄)|Ω| ≤ cc0‖u‖|Ω|+
c
s
(c0‖u‖)s|Ω|·

If ‖u‖ ≥ 1, then this leads to

Iλ (u)≥
1

p+
‖u‖p−−λcc0‖u‖|Ω|−

λc
s
(c0‖u‖)s|Ω|

and, since s < p−, coercivity of Iλ is obtained. Taking into account that

Λ̄ :=]
1
βh

,
1
αr

[⊆]Φ(v̄)
Ψ(v̄)

,
r

supΦ(u)≤r Ψ(u)
[,

Theorem 2.2 ensures that, for each λ ∈ Λ̄, the functional Iλ admits at least three
critical points in X that are weak solutions of the problem (Pλ ).

Remark 3.2. Actually, in Theorem 3.1, it is enough to require

essin fx∈ΩF(x,ξ )≥ 0

for all ξ ∈ [0,h].

Now, we point out the following special case of Theorem 3.1. To this end,
let α : [0,1]→ R be a positive, bounded, and measurable function. Put α0 =
essin fx∈[0,1]α(x) and ‖α‖1 = ‖α‖L1([0,1]). Moreover, put

k =
p−

p+
1

4p+
α0

‖α‖1
.

Theorem 3.3. Let g : R→ R be a nonnegative continuous function such that

lim
|t|→+∞

g(t)
|t|v

= 0

for some 0≤ v < p−−1, and g(0) 6= 0. Put G(ξ ) =
∫ ξ

0 g(t)dt for all ξ ∈R and

assume that there exist two positive constants l and h, with l≤ 1<
(1

2

) 1
p+ (4h)

p−
p+

such that
G(l)
lp+ < k

G(h)
hp+
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Then, for each λ ∈
]

4p+

p−α0

hp+

G(h) ,
1

p+‖α‖1

lp+

G(l)

[
, the problem

−(|u′|p(x)−2u′)′ = λα(x)g(u) in ]0,1[

u(0) = u(1) = 0
(Dλ )

admits at least three non-trivial weak solutions.

Proof. From [3, Proposition 2.4] one has∫ 1

0
|u′(t)|dt ≤ 2‖u′‖Lp(x)([0,1])‖1‖Lq(x)([0,1])

for all u ∈W 1,p(x)
0 ([0,1]), where 1

p(x) +
1

q(x) = 1. Since ‖1‖Lq(x)([0,1]) ≤ 1, one has

|u(t)| ≤ ‖u‖

for all t ∈ [0,1] and for all u ∈W 1,p(x)
0 ([0,1]). Hence, taking (2) into account,

one has c0 ≤ 1. Now, by choosing r = lp+

p+ , simple computations show that all
assumptions of Theorem 3.1 are verified and the conclusion is achieved.
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