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SUBHARMONIC SOLUTIONS
OF PLANAR HAMILTONIAN SYSTEMS

VIA THE POINCARÉ-BIRKHOFF THEOREM

ALBERTO BOSCAGGIN

We revisit some recent results obtained in [1] about the existence of
subharmonic solutions for a class of (nonautonomous) planar Hamilto-
nian systems, and we compare them with the existing literature. New
applications to undamped second order equations are discussed, as well.

1. Introduction

The aim of this brief note is to present some recent results obtained in [1], via
the Poincaré-Birkhoff fixed point theorem, about the existence of subharmonic
solutions for a class of planar Hamiltonian system

Jz′ = ∇zH(t,z), (1)

being z = (x,y) ∈ R2, J =

(
0 −1
1 0

)
the standard symplectic matrix and H :

R×R2 → R a function which is T -periodic in the first variable. Throughout
the paper, by subharmonic solution of order k of system (1) (with k ∈ N0) we
will mean a kT -periodic solution which is not lT -periodic for every integer l =
1, . . . ,k−1.
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Just to start our discussion, we first consider the particular case of a scalar
second order equation without damping

u′′+g(t,u) = 0, (2)

with g : R×R→ R a function which is T -periodic in the first variable, and we
focus on the case in which g(t,x) satisfies a (possibly one-sided) sublinearity
condition at infinity, that is to say

lim
x→+∞

g(t,x)
x

= 0 uniformly in t ∈ [0,T ]. (3)

With such an assumption (3), the problem of the existence of subharmonic so-
lutions for (2) has been tackled, independently and in the very same years, by
Fonda-Ramos [4] and Ding-Zanolin [3]. Precisely, pairing the sublinearity con-
dition (3) with the Landesman-Lazer condition∫ T

0
limsup
x→−∞

g(t,x)dt < 0 <
∫ T

0
liminf
x→+∞

g(t,x)dt (4)

and using critical point theory, Fonda and Ramos proved the existence of a se-
quence uk(t) of kT -periodic solutions, with minimal periods and amplitudes (i.e.
max[0,kT ] uk−min[0,kT ] uk) going to infinity with k. On the other hand, when (4)
is replaced by the more restrictive sign condition

liminf
|x|→+∞

g(t,x)sgn(x)> 0, (5)

Ding and Zanolin showed, via the Poincaré-Birkhoff fixed point theorem, the
existence, for every k large enough and for every integer j ∈ [1,mk] with mk→
+∞, of a kT -periodic solution u j,k(t) with 2 j zeros in the interval [0,kT [, and
with

lim
k→+∞

min
t∈[0,kT ]

(u j,k(t)2 +u′j,k(t)
2) = +∞. (6)

We point out that, as a quite general fact, the Poincaré-Birkhoff theorem seems
to be sometimes more demanding about the assumptions on the nonlinear term
with respect to variational tools but, on the other hand, it permits to greatly im-
prove the result from the point of view of the multiplicity of periodic solutions.
We refer the reader to [5] for more comments about this fact. Anyway, as it is
clear, the results in [3, 4] are strictly related and show the existence of subhar-
monics which are larger and larger as their order k increases. From a dynamical
point of view, conditions (4) or (5) imply that, fixed a time kT , solutions which
are large enough wind the origin, while, due to the sublinearity assumption (3),
much larger solutions do not: as a consequence, one gets the existence of sub-
harmonics satisfying (6).
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The aim of the paper [1] is twofold. On one hand, keeping (a weaker version
of) the sublinearity condition (3), we look for another assumption implying the
existence of subharmonic solutions with the same nodal characterization as in
[3]. Precisely, we suppose to deal with the “unforced” case g(t,0) ≡ 0 1 and
we assume a condition implying a positive twist for small solutions. In this
framework, our result is the following.

Corollary 1.1. Let g : R×R→ R be a Carathéodory function, T -periodic in
the first variable and such that g(t,0) ≡ 0 and assume that the uniqueness and
the global continuability for the solutions to the Cauchy problems associated to
(2) are guaranteed. Let us suppose:

(g0) there exists q0 ∈ L1([0,T ]) with
∫ T

0 q0(t)dt > 0 such that

liminf
x→0

g(t,x)
x
≥ q0(t) uniformly for a.e. t ∈ [0,T ],

(g∞) limsup
x→+∞

g(t,x)
x
≤ 0 uniformly for a.e. t ∈ [0,T ].

Then there exists k∗ ∈N0 such that, for every integer k≥ k∗, there exists an inte-
ger mk such that, for every integer j ∈ [1,mk] with j and k coprime, equation (2)
has at least two subharmonic solutions u1

j,k(t),u
2
j,k(t) of order k, not belonging

to the same periodicity class 2, with exactly 2 j zeros in the interval [0,kT [. In
particular, if hypothesis (g0) is satisfied with q0 ∈ L∞([0,T ]), then 3

mk =

⌊
k

∫ T
0 q0(t)dt

2π(esssup[0,T ]q0(t))1/2

⌋
. (7)

We point out that the subharmonics produced can be quite small and possi-
bly they do not satisfy relation (6). We also notice that assumption (g0) avoids
the use of a linearized equation at zero (contrary to [7]), while the estimate
(7), which is not explicitly emphasized in [1], is sharp in the autonomous case
q0(t)≡ q0 and can be useful in some concrete applications. We will check this
claim by applying the result to the Sitnikov problem (see Proposition 4.2).

1Of course, if (2) has a T -periodic solution, we can enter into this setting with a change of
variables which does not modify the asymptotic properties of g(t,x).

2i.e., u1
j,k(t) 6≡ u2

j,k(t + lT ) for every l = 1, . . . ,k−1.
3Here, and throughout the paper, for a∈R+ we denote by bac the greatest integer strictly less

than a.
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On the other hand, the second (and major) task of [1] is to generalize Corol-
lary 1.1 to a planar Hamiltonian system (1), with ∇zH(t,0)≡ 0. The main idea
in order to achieve such a result is to compare the dynamical properties of (1)
to those of suitably chosen positively homogeneous planar Hamiltonian sys-
tems. In particular, on the line of [8], a modified rotation number is introduced
and extensively used. We point out that a technical difficulty here is given by
the fact that a (not even two-sided) sublinearity condition at infinity for g(t,x)
does not imply any well-recognized condition for the associated Hamiltonian
H(t,x,y) = 1

2 y2 +
∫ x

0 g(t,ξ )dξ .

2. The Poincaré-Birkhoff fixed point theorem and the modified rotation
number

The Poincaré-Birkhoff fixed point theorem is a classical result of planar topol-
ogy, ensuring the existence of two fixed points for an area-preserving “twist”
homeomorphism of the annulus. For a very nice survey on the theorem and
its application to ODE’s, we refer to [2]. Here, we just state, for the reader’s
convenience, a consequence of the Poincaré-Birkhoff fixed point theorem when
applied to equation (1) in the unforced case. To this aim, we first recall that, for
a (at least absolutely continuous) path z = (x,y) : [s1,s2]→R2 such that z(t) 6= 0
for every t, the quantity

Rot(z; [s1,s2]) :=
1

2π

∫ s2

s1

y(t)x′(t)− x(t)y′(t)
x(t)2 + y(t)2 dt (8)

is defined as the rotation number of z(t) on [s1,s2] and, as well known, it repre-
sents an algebric count of the clockwise windings around the origin of the path
z(t) in the time interval [s1,s2]. Assuming the uniqueness and the global con-
tinuability for the solutions to the Cauchy problems associated to (1), we will
denote by z(·;z0) the solution with z(0;z0) = z0.

Application of the Poincaré-Birkhoff fixed point theorem
Let k ∈ N0 be fixed. Assume that there exist two circumferences Γi = rS1 and
Γo = RS1, with 0 < r < R, and two numbers lr, lR ∈ N0 with lR ≤ lr such that:

• Rot(z(t;z0); [0,kT ])> lr for every z0 ∈ Γi;

• Rot(z(t;z0); [0,kT ])< lR for every z0 ∈ Γo.

Then, denoting with A the closed annulus having as inner and outer boundaries
the circumferences Γi and Γo respectively, for every integer j ∈ [lR, lr] equation
(1) has at least two kT -periodic solutions z1

j,k(t), z2
j,k(t) with z1

j,k(0),z
2
j,k(0)∈ ˚A

and such that
Rot(z1

j,k; [0,kT ]) = Rot(z2
j,k; [0,kT ]) = j.
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Now we pass to the description of the modified rotation number used in [1]. To
this aim, we introduce the class P made up by all the C1 functions V : R2→ R
which are positively homogeneous of degree 2 (i.e., V (λ z) = λ 2V (z) for every
λ > 0 and for every z ∈ R2) and such that V (z) > 0 for every z 6= 0. For every
V ∈P and for a (at least absolutely continuous) path z = (x,y) : [s1,s2]→ R2

such that z(t) 6= 0 for every t, we set AV :=
∫
{V≤1} dxdy and we define the

quantity

RotV (z; [s1,s2]) :=
1

2AV

∫ s2

s1

y(t)x′(t)− x(t)y′(t)
V (x(t),y(t))

dt (9)

as the modified V -rotation number of z(t) on [s1,s2]. Clearly, the classical rota-
tion number (8) is just the particular case of (9) with V (x,y) = x2 + y2. All we
need to know, for the application of the Poincaré-Birkhoff fixed point theorem,
is the following fact, which is proved in [1, Proposition 2.2].

Lemma 2.1. Let z : [s1,s2]→ R2 be an absolutely continuous path, such that
z(t) 6= 0 for every t ∈ [s1,s2], and j ∈ Z. Then, for every V ∈P:

RotV (z; [s1,s2])≷ j⇐⇒ Rot(z; [s1,s2])≷ j.

3. The planar Hamiltonian system

We are now ready to state our main result, which is a slight improvement of [1,
Theorems 3.1-4.1]. Throughout the section, we assume that H : R×R2 → R
is a function measurable and T -periodic in the t-variable, of class C1 in the z-
variable and such that for every r > 0 there exists ζr ∈ L1([0,T ],R+) such that
|∇zH(t,z)| ≤ ζr(t) for a.e. t ∈ [0,T ] and for every z ∈ R2 with |z| ≤ r.
Recall that, for V ∈P , AV =

∫
{V≤1} dxdy.

Theorem 3.1. Assume that ∇zH(t,0)≡ 0 and that the uniqueness and the global
continuability for the solutions to the Cauchy problems associated to (1) are
guaranteed. Let us suppose:

(H0) there exist V0 ∈P , a0 ∈ L1([0,T ]) with
∫ T

0 a0(t)dt > 0 such that

liminf
z→0

∇zH(t,z) · z
V0(z)

≥ a0(t) uniformly for a.e. t ∈ [0,T ],

(H∞) there exist θ 1
∞,θ

2
∞ ∈ [0,+∞) with 0 < θ 2

∞− θ 1
∞ ≤ 2π and two sequences

(V n
∞)n ⊂P , (an

∞)n ⊂ L1([0,T ],R+) such that:

i) infn
1

AV n
∞

∫ θ 2
∞

θ 1
∞

ds
V n

∞(coss,−sins) > 0;
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ii) infn

∫ T
0 an

∞(t)dt
AV n

∞

= 0,

iii) for every n ∈ N0 and for every ε > 0 there exist Rn,ε > 0 and bn,ε ∈
L1([0,T ],R+) with

∫ T
0 bn,ε(t)dt ≤ ε such that

∇zH(t,z) · z
V n

∞(z)
≤ an

∞(t)+bn,ε(t)

for a.e. t ∈ [0,T ] and for every z = ρe−iθ ∈ R2 with θ 1
∞ ≤ θ ≤ θ 2

∞

and ρ ≥ Rn,ε .

Set

mk :=

⌊
k
∫ T

0 a0(t)dt
2AV0

⌋
.

Then there exists k∗ ∈N0 such that, for every integer k≥ k∗, there exists an inte-
ger mk such that, for every integer j ∈ [1,mk] with j and k coprime, equation (1)
has at least two subharmonic solutions z1

j,k(t),z
2
j,k(t) of order k, not belonging

to the same periodicity class, with

Rot(z1
j,k; [0,kT ]) = Rot(z2

j,k; [0,kT ]) = j.

Sketch of the proof. For a fixed k ∈ N0, it is possible to see that there exist 0 <
r < R such that

• RotV0(z(t;z0); [0,kT ])> mk for every |z0|= r;

• for at least one n, RotV n
∞
(z(t;z0); [0,kT ])< 1 for every |z0|= R.

The conclusion follows in a standard way from the Poincaré-Birkhoff fixed point
theorem, together with Lemma 2.1.

Remark 3.2. A more general version of assumption (H0), which allows a differ-
ent behavior for H(t,z) in different angular regions, is presented in [1, Theorem
4.1].

Remark 3.3. We notice that assumption (H∞) is satisfied if one can choose
an

∞(t)≡ 0, V n
∞(z) = |z|2, that is when ∇zH(t,z) satisfies a sublinearity-like con-

dition (at infinifty) in the angular sector {ρe−iθ | θ 1
∞ ≤ θ ≤ θ 2

∞}. On the other
hand, some interesting situations in which an

∞(t) and V n
∞(z) actually depend on

n are covered by the theorem. In this case, the condition i) in (H∞) can be quite
difficult to check, but we point out that, as shown in [1], it is always satisfied
when {ρe−iθ | θ 1

∞ ≤ θ ≤ θ 2
∞} is the whole plane or when it contains at least one

of the four quadrants and V n
∞(x,y) = cn

∞x2 +dn
∞y2 for some cn

∞,d
n
∞ > 0.
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4. The second order equation

The result which can be derived from Theorem 3.1, when dealing with the sec-
ond order equation (2), is just Corollary 1.1 of the Introduction. We give a
sketch of the proof.

Sketch of the proof of Corollary 1.1. Assumption (H0) is satisfied for a0(t) :=
min{q0(t), 1

σ
}−ρ (with σ ,ρ > 0 so small that

∫ T
0 a0(t)dt > 0) and V0(x,y) :=

x2 + ρy2. Assumption (H∞) is satisfied (see also Remark 3.3) for [θ 1
∞,θ

2
∞] :=

[−π

2 ,
π

2 ], an
∞(t) := 1

nT and V n
∞(x,y) := x2 +2nTy2.

Remark 4.1. We point out that assumption (g0) can be replaced by the follow-
ing more general condition:

(g′0) g(t,x) is continuous and there exist q+0 ,q
−
0 ∈ L1([0,T ]) with

∫ T
0 q±0 (t)dt >

0 such that

liminf
x→0±

g(t,x)
x
≥ q±0 (t) uniformly in t ∈ [0,T ].

Indeed, one can use the improved version of Theorem 3.1 recalled in Remark
3.2.

We end the paper by showing an application of Corollary 1.1 to the Sitnikov
problem. For a detailed description of this classicl problem in Celestial Me-
chanics, as well as of some classical and recent results, we refer to [6]. Here we
just recall that such a problem leads to the following undamped and unforced
second order ODE

u′′+
u

(u2 + r(t,e)2)3/2 = 0, (10)

being e ∈ [0,1[ the eccentricity of the orbits described by the primaries and
r(·,e) implicitly defined by

r(t,e) :=
1
2
(1− ecosv(t)), v(t)− esinv(t) = t.

The possibility of achieving multiplicity results for periodic solutions of (10)
via the Poincaré-Birkhoff theorem is suggested in [7, Example 1], but only a
semi-abstract result in term of the weighted eigenvalues of u′′+λ

u
r(t,e)3 = 0 is

given there. Here, as a straight consequence of Corollary 1.1 together with some
computations for the number (7), we can get the following result.

Proposition 4.2. For every k ∈ N0 and for every integer

j ∈

1,k
(

2
1+ e

)3
2
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prime with k, equation (10) has at least two 2kπ-periodic solutions (not 2lπ-
periodic for l = 1, · · · ,k−1) with 2 j zeros in [0,2kπ[.

We point out that the conclusion is optimal for the circular Sitnikov problem
(i.e., the autonomous case e = 0), while subharmonics with larger number of
zeros seem to be lost for greater values of e. This fact seems to be strictly
related to the question raised in [6, p. 731].
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