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EXISTENCE RESULTS FOR AN ELLIPTIC
DIRICHLET PROBLEM

GIUSEPPINA D’AGUÌ - GIOVANNI MOLICA BISCI

The main purpose of this paper is to present recent existence results
for an elliptic eigenvalue Dirichlet problem. Precisely, our method en-
sures the existence of an exactly determined open interval (possibly un-
bounded) of positive parameters for which the problem admits infinitely
many weak solutions.

1. Introduction

This note concerns existence of infinitely many solutions to the Dirichlet prob-
lem {

−∆pu+q(x)|u|p−2u = λ f (u) in Ω

u|∂Ω = 0,
(Dq, f

λ
)

where Ω is a bounded open subset of the Euclidean space (RN , | · |), N ≥ 1,
with boundary ∂Ω of class C1 and Lebesgue measure “meas(Ω)”. Moreover
∆pu := div(|∇u|p−2∇u), p > N, is the usual Laplace operator, f : R→ R is a
continuous function, q ∈ L∞(Ω) and λ is a positive real parameter.

The existence of infinitely many solutions for problem (D0, f
λ

) has been
widely investigated. The most classical results in this topic are essentially based
on the Ljusternik-Schnirelman theory.
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In them, a key role is played by the oddness of the nonlinearity. Moreover,
conditions which do not allow an oscillating behaviour of the nonlinearity f are
necessary in order to check the Palais-Smale condition. Multiplicity results with
an oscillating behaviour of f are more rare.

In this direction, very recently, in [2], under some hypotheses on the behav-
ior of the potential of the nonlinear term at infinity, the existence of an interval Λ

such that, for each λ ∈Λ, problem (Dq, f
λ

) admits a sequence of pairwise distinct
weak solutions is proved (see Theorem 3.1). Moreover, replacing the conditions
at infinity of the potential by a similar at zero, the same results hold and, in ad-
dition, the sequence of pairwise distinct solutions uniformly converges to zero
(see Remark 1.4).

In order to recall our result, let us introduce some constants associated to
the geometry of the set Ω. Define

σ(N, p) := inf
µ∈]0,1[

1−µN

µN(1−µ)p ,

and consider µ ∈]0,1[ such that σ(N, p) =
1−µ

N

µ
N(1−µ)p

.

Further, let τ := supx∈Ω dist(x,∂Ω) and

κ :=
τ pµ

N

meas(Ω)mp(µN
σ(N, p)+‖q‖∞τ

pgµ(p,N))
, (1)

where ‖q‖∞ := esssupx∈Ω q(x),

m :=
N−

1
p

√
π

[
Γ

(
1+

N
2

)] 1
N
(

p−1
p−N

)1− 1
p

meas(Ω)
1
N−

1
p ,

and

gµ(p,N) := µ
N +

1
(1−µ)p NB(µ,1)(N, p+1).

Here, B(µ,1)(N, p+1) denotes the generalized incomplete beta function defined
as follows

B(µ,1)(N, p+1) :=
∫ 1

µ

tN−1(1− t)(p+1)−1dt,

and Γ is the Gamma function. Throughout the sequel, ωτ denotes the measure
of the N-dimensional ball of radius τ ,

F(ξ ) :=
∫

ξ

0
f (t)dt,
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for each ξ ∈ R and

B := limsup
ξ→+∞

F(ξ )

ξ p .

Our existence result, obtained in [2], can be stated as follows

Theorem 1.1. Let f : R→ R be a continuous function. Assume that

(i) F(ξ )≥ 0 for every ξ ≥ 0;

(ii) there exist two sequences {an} and {bn} such that

0≤ an <
1

µ
N/pm

(
σ(N, p)

τ
p +‖q‖∞

gµ(p,N)

µ
N

)1/p
ω

1/p
τ

bn,

for every n ∈ N and lim
n→+∞

bn =+∞ such that

A1 < meas(Ω)κB, (2)

where κ is given by (1) and

A1 := lim
n→+∞

meas(Ω)max|t|≤bn F(t)−µ
N

ωτF(an)

bp
n −mpap

nωτ

[
σ(N, p)

τ p +‖q‖∞

gµ(p,N)

µ
N

]
µ

N
.

Then, for every

λ ∈ Λq,g :=
]

1
pB

(
σ(N, p)

τ p +‖q‖∞

gµ(p,N)

µ
N

)
,

1
mp pA1

[
,

the problem (Dq, f
λ

) admits a sequence of weak solutions which is unbounded in
W 1,p

0 (Ω).

The main tool in order to obtain Theorem 1.1 is a refinement of the Varia-
tional Principle of Ricceri (see the quoted paper [10]) recently obtained in [1].

Remark 1.2. Condition (ii) in Theorem 1.1 is technical and could be replaced
by the more simple and sufficient assumption

(ii′) liminf
ξ→+∞

max|t|≤ξ F(t)
ξ p < κ limsup

ξ→+∞

F(ξ )

ξ p .
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In this setting, if

A := liminf
ξ→+∞

max|t|≤ξ F(t)
ξ p ,

for every

λ ∈ Λ
′
q,g :=

]
1

pB

(
σ(N, p)

τ p +‖q‖∞

gµ(p,N)

µ
N

)
,

1
mp pA

[
,

the problem (Dq, f
λ

) admits a sequence of weak solutions which is unbounded in
W 1,p

0 (Ω). If, in addition, the nonlinearity f is non-negative, hypothesis (ii′) can
be written as follows

(ii′′) liminf
ξ→+∞

F(ξ )

ξ p < κ limsup
ξ→+∞

F(ξ )

ξ p .

Remark 1.3. We observe that in the very interesting paper [8], the authors as-
sume

liminf
ξ→+∞

F(ξ )

ξ p = 0 and limsup
ξ→+∞

F(ξ )

ξ p =+∞,

which are conditions that imply our key assumptions. Moreover, when q ≡
0, our theorems and the results in [7] and [8] are mutually independent (see
Theorem 1.1, Example 4.1 and Remark 4.1 in [2]).

Remark 1.4. Replacing the condition (ii) at infinity by the following one at
zero

(jj) there exist two sequences {an} and {bn} such that

0≤ an <
1

µ
N/pm

(
σ(N, p)

τ
p +‖q‖∞

gµ(p,N)

µ
N

)1/p
ω

1/p
τ

bn,

for every n ∈ N and lim
n→+∞

bn = 0 such that

A1 < κ meas(Ω) limsup
ξ→0+

F(ξ )

ξ p ,

a sequence of pairwise distinct solutions uniformly converging to zero is ob-
tained.

Remark 1.5. We point out that the results contained in [4] are direct conse-
quences of the main Theorem. On the other hand, we do not require as in [6,
Corollary 3.1] that the function f is definitively non-positive.
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2. Main Results

Taking Remark 1.2 into account, a particular case of Theorem 1.1 reads as fol-
lows.

Theorem 2.1. Let f :R→R be a continuous non-negative function and assume
that

liminf
ξ→+∞

F(ξ )

ξ p <
τ p

mp meas(Ω)σ(N, p)
limsup
ξ→+∞

F(ξ )

ξ p .

Then, for each λ ∈

 σ(N, p)

pτ p limsup
ξ→+∞

F(ξ )

ξ p

,
1

pmp meas(Ω) liminf
ξ→+∞

F(ξ )

ξ p

, the prob-

lem {
−∆pu = λ f (u) in Ω

u|∂Ω = 0,
(D0, f

λ
)

admits a sequence of pairwise distinct positive weak solutions in W 1,p
0 (Ω).

The next result is a simpler but less general form of Theorem 1.1 in the
ordinary case (see [5, Theorem 1.1]).

Theorem 2.2. Let f : R→ R be a continuous non-negative function. Assume
that the following condition holds

f ′′2 ) liminf
ξ→+∞

F(ξ )

ξ 2 <
1
4

limsup
ξ→+∞

F(ξ )

ξ 2 .

Then, for each

λ ∈ Λ :=

 8

limsup
ξ→+∞

F(ξ )

ξ 2

,
2

liminf
ξ→+∞

F(ξ )

ξ 2

 ,
for every non-negative continuous function g : R→ R such that

g′1) G?
∞ := lim

ξ→+∞

∫
ξ

0
g(t) dt

ξ 2 <+∞,
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and for every µ ∈ [0, µ̂g,λ [, where

µ̂g,λ :=
1

G?
∞

(
2−λ liminf

ξ→+∞

F(ξ )

ξ 2

)
,

the following problem{
−u′′ = λ f (u)+µg(u) in ]0,1[
u(0) = u(1) = 0,

(P f ,g
λ

)

admits a sequence of pairwise distinct positive classical solutions.

Example 2.3. For instance, for each (λ ,µ)∈Λ× [0,+∞[ , the following Dirich-
let problem {

−u′′ = λ f (u)+µ
√
|u| in ]0,1[

u(0) = u(1) = 0,

where

f (u) :=


ucos2(ln(u)) if u > 0

0 if u≤ 0.

possesses a sequence of pairwise distinct positive classical solutions.

Here, we present a simple and direct consequence of Theorem 1.1 that im-
proves Proposition 1.1 in [4] (see also Remark 2.5).

Proposition 2.4. Let {an}, {bn} be two sequences in ]0,+∞[, an < bn < an+1

∀ n ≥ n0, for some n0 ∈ N, lim
n→+∞

bn = +∞ and lim
n→+∞

bn

an
= +∞. Moreover, let

ϕ ∈C1([0,1]) be a non-negative and non-zero function such that ϕ(0) = ϕ(1) =
ϕ ′(0) = ϕ ′(1) = 0 and let g : R→ R be the function defined by

g(t) :=

 ϕ

( t−bn

an+1−bn

)
if t ∈

⋃
n≥n0

[bn,an+1]

0 otherwise.
(3)

Then, for every

λ > λϕ :=
1

p max
s∈[0,1]

ϕ(s)

(
σ(N, p)

τ p +‖q‖∞

gµ(p,N)

µ
N

)
,

the problem {
−∆pu+q(x)|u|p−2u = λh(u) in Ω

u|∂Ω = 0,
(Dq,h

λ
)

where
h(u) := up−1(pg(u)+ug′(u)),

admits an unbounded sequence of positive weak solutions in W 1,p
0 (Ω).
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Proof. Let {an},{bn} be two positive sequence satisfying our assumptions. We
claim that all the hypotheses of Theorem 1.1 are verified. In fact, taking into
account the definition of ϕ , one has that g is a C1(R)-function and

F(ξ ) =
∫

ξ

0
h(t)dt = ξ

pg(ξ ), ∀ ξ ∈ R+.

Hence, hypothesis (i) is verified. Moreover,

0 < an <
1

µ
N/pm

(
σ(N, p)

τ
p +‖q‖∞

gµ(p,N)

µ
N

)1/p
ω

1/p
τ

bn,

for every n sufficiently large. Then, condition (2) holds. Indeed, direct compu-
tations ensure that

limsup
ξ→+∞

F(ξ )

ξ p = limsup
ξ→+∞

g(ξ ) = max
s∈[0,1]

ϕ(s),

and A1 = 0. Hence, for every λ > λϕ , Theorem 1.1 guarantees the existence
of an unbounded sequence in W 1,p

0 (Ω) of weak solutions of problem (Dq,h
λ

).
Finally, arguing as in [2, Remark 3.3], the Strong Maximum Principle (see [9,
Theorem 11.1]) ensures that the obtained solutions are positive.

Remark 2.5. We point out that if {an}, {bn} are two sequences in ]0,+∞[ such

that bn+1 < an < bn, ∀n ≥ n0, for some n0 ∈ N, lim
n→+∞

bn = 0, lim
n→+∞

bn

an
= +∞

and g : R→ R is defined by

g(t) :=

 ϕ

( t−bn+1

an−bn+1

)
if t ∈

⋃
n≥n0

[bn+1,an]

0 otherwise,

then, for every λ > λϕ , the problem (Dq,h
λ

) admits a sequence of pairwise dis-
tinct positive weak solutions which strongly converges to zero in W 1,p

0 (Ω). For
instance, let

an :=
1

n!n
and bn :=

1
n!
,

for every n≥ 2 and ϕ ∈C1([0,1]) given by

ϕ(s) := exp
(

1
s(s−1)

)
, ∀s ∈ [0,1],

and zero otherwise.



140 GIUSEPPINA D’AGUÌ - GIOVANNI MOLICA BISCI

Hence, let g be the C1(R)-function given by

g(t) := exp

 1

n(n+1)!
(

t− 1
(n+1)!

)(
n
(

t− 1
(n+1)!

)
(n+1)!−1

)
 ,

for every t ∈
⋃
n≥2

[ 1
(n+1)!

,
1

n!n

]
and zero otherwise.

Consider the problem{
−∆pu+ e|u|p−2u = λh(u) in Ω

u|∂Ω = 0,
(De,h

λ
)

where
h(t) := up−1(pg(u)+ug′(u)).

Then, for every

λ >
e4

p

(
σ(N, p)

τ p + e
gµ(p,N)

µ
N

)
,

problem (De,h
λ

) possesses a sequence of pairwise distinct positive weak solutions
which strongly converges to zero in W 1,p

0 (Ω).

Finally, we just observe that, by using the same variational approach, in [3],
the existence of infinitely many weak solutions for quasilinear elliptic systems
has been widely investigated. A special case reads as follows; see [3, Theorem
1.2].

Theorem 2.6. Let Ω ⊂ RN be a non-empty bounded open set with boundary
of class C1. Let f ,g : R2 → R be two positive C0(R2)-functions such that the
differential 1-form ω := f (ξ ,η)dξ + g(ξ ,η)dη is integrable and let F be a
primitive of ω such that F(0,0) = 0. Fix p,q > N, with p≤ q, and assume that

liminf
y→+∞

F(y,y)
yp = 0 and limsup

y→+∞

F(y,y)
yq =+∞.

Then, the problem 
−∆pu = f (u,v) in Ω

−∆qv = g(u,v) in Ω

u|∂Ω = v|∂Ω = 0,

admits an unbounded sequence {(un,vn)} ⊂ W 1,p
0 (Ω)×W 1,q

0 (Ω) of positive
weak solutions.
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