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A NOTE ON SOME ELLIPTIC EQUATIONS
OF ANISOTROPIC TYPE

MOUSSA CHRIF - SAID EL MANOUNI

We prove the existence of weak solutions to some nonlinear elliptic
equations governed by an anisotropic operator mapping an appropriate
function space to its dual. A sign condition with no growth restrictions
with respect to the variable solution is imposed to a perturbed nonlinear
term to the operator. The data is considered to be close to L1.

1. Introduction

Let Ω be an open bounded subset of RN ,N ≥ 1. We denote p0, . . . , pN real
numbers with pi > 1, i = 0, . . . ,N,~p = (p1, . . . , pn). Let X = W 1,~p,ε

0 (Ω) be the
anisotropic Sobolev space associated with the vector ~p. Let A be the nonlinear
operator from X into the dual X∗ defined as

Au =−div(a(x,u,∇u)),

where

a : Ω×R×RN → RN ,a(x,u,ξ ) = {ai(x,u,ξ )}, i = 1, . . . ,N,

is a Carathéodory vector-valued function, that is, measurable with respect to x
in Ω for every (s,ξ ) in R×RN , and continuous with respect to (s,ξ ) in R×RN
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for almost every x in Ω. Further, the vector field a(x,u,ξ ) is anisotropic, that is,
each coordinate ai behaves like |ξ |pi for possibly different pi.

More precisely, we assume that there exist two real positive constants α and
β and a nonnegative function k ∈ L1(Ω) such that

(A1)

|ai(x,s,ξ )| ≤ β

[
k(x)+ |s|p0 +

N

∑
j=1
|ξ j|p j

]1− 1
pi

,

for a.e. x ∈Ω, all (s,ξ ) ∈ R×RN and all i = 1, . . . .N.

(A2)
N

∑
i=1

[ai(x,s,ξ )−ai(x,s,ξ ∗)](ξi−ξ
∗
i )> 0,

for a.e. x ∈Ω, for every ξ ,ξ ∗ ∈ RN ,ξ 6= ξ ∗.

(A3)

a(x,s,ξ )ξ ≥ α

N

∑
i=1
|ξi|pi

for a.e. x ∈Ω and every (s,ξ ) ∈ R×RN .

Consider the following nonlinear Dirichlet problem

Au+g(x,u) = f in Ω, (1.1)

where g is a nonlinear lower-order term having no growth conditions with re-
spect to |u| and verifying the following assumption

(G) g : Ω×R 7→ R is a Carathéodory function satisfying

sup
|u|≤s
|g(x,u)| ≤ hs(x),

for a.e. x ∈ Ω, all s > 0 and some function hs ∈ L
1

1−ε (Ω),0 < ε < 1. We
assume also the ”sign condition” g(x,u)u ≥ 0, for a.e. x ∈ Ω and for all
u ∈ R.

Let us mention that many results in the isotropic case have published for
problems of the form (1.1) involving operators of type A in the variational case
(i.e., where f belongs to the dual) and in the L1 case, we restrict ourselves
to papers dealing with L1-data since our problem is close to this case and we
cite the papers among others [4] and [7]. In the anisotropic case, it would be
interesting to refer the reader to the works [3], [6] and to the recent works [2]
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and [5], where the authors proved the existence of solutions of some anisotropic
elliptic equations for a general class of operators of higher order.

The purpose in this paper is to establish existence of weak solution to some
anisotropic elliptic equations. In particular, based on techniques related to that
of Webb [16], we give some estimates which help for the study of the problem
of the form (1.1) taking zero boundary data on Ω.

2. Preliminaries

Anisotropic Sobolev spaces. We start by recalling that the notion of anisotropic
Sobolev spaces were introduced and studied by Nikolskiı̆ [9], Slobodeckiı̆ [13],
and Troisi [14], and later by Trudinger [15] in the framework of Orlicz spaces.
Let Ω be a bounded open subset of RN , (N ≥ 1) and let ~p = (p1, ..., pN) be
vector of real numbers, with 1 < pi < ∞, i = 1, . . . ,N. We denote by W 1,~p(Ω),
called anisotropic Sobolev space, the space of all real-valued functions u ∈
Lp0(Ω), p0 > 1 such that the derivatives in the sense of distributions satisfy

∂u
∂xi
∈ Lpi(Ω) for all i = 1, . . . ,N .

This set of functions forms a Banach space under the norm

‖u‖1,~p,p0 =

(∫
Ω

|u(x)|p0 dx
) 1

p0
+

N

∑
i=1

(∫
Ω

∣∣∣∣∂u(x)
∂xi

∣∣∣∣pi

dx
) 1

pi
. (2.1)

The space W 1,~p
0 (Ω) is defined as the closure of C∞

0 (Ω) with respect to the norm
‖.‖1,~p. The theory of such anisotropic spaces was developed in [10],[11], [12],
[14]. It was proved that C∞

0 (Ω) is dense in W 1,~p
0 (Ω) and W 1,~p

0 (Ω) is a reflexive
Banach space for any ~p = (p1, ..., pN), with 1 < pi < ∞, i = 1, . . . ,N. We recall
that the dual space of the anisotropic Sobolev space W 1,~p

0 (Ω) is equivalent to
W−1,~p′(Ω), where ~p′ is the conjugate of ~p, i. e., p′i =

pi
pi−1 , i = 1, . . . ,N.

In the following, we will use the anisotropic Sobolev space given by

W 1,~p,ε(Ω) =

{
u ∈ L1+ 1

ε (Ω),
∂u
∂xi
∈ Lpi(Ω), i = 1, · · · ,N

}
,

under the norm

‖u‖1,~p,ε = ‖u‖L1+ 1
ε (Ω)

+
N

∑
i=1

∥∥∥∥ ∂u
∂xi

∥∥∥∥
pi

.

Let W 1,~p,ε
0 (Ω) =C∞

0 (Ω)
W 1,~p,ε (Ω)

endowed with the norm

‖u‖=
N

∑
i=1

∥∥∥∥ ∂u
∂xi

∥∥∥∥
pi

.
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The dual of W 1,~p,ε
0 (Ω) is denoted by W−1,~p′,ε(Ω), where ~p′ = {p′i, i = 1, . . . ,N},

p′i =
pi

pi−1 and p0 = 1+ 1
ε
, pi > 1 for i = 1, . . . ,N. Here ε is a positive number

satisfying 0 < ε < 1. We prove the existence of distributional solutions in an
appropriate function space for nonlinear elliptic equation

(Pε)

{
u ∈W 1,~p,ε

0 (Ω),
Au+g(x,u) = f in Ω,

where f ∈ L1+ε(Ω). The operator A and the function g are assumed to satisfy
the conditions (A1),(A2),(A3) and (G) respectively.

We state our main result as follows.

Theorem 2.1. Let Ω be an open bounded subset of RN and 0 < ε < 1. Assume
(A1),(A2),(A3) and (G) hold. Then for all f ∈ L1+ε(Ω), the problem (Pε) has
at least one nontrivial solution, i.e., there exists u ∈W 1,~p,ε

0 (Ω) such that

〈Au,v〉+
∫

Ω

g(x,u)vdx = 〈 f ,v〉 ∀v ∈W 1,~p,ε
0 (Ω)∩L∞(Ω).

Remark 2.2. Remark that 〈 f ,v〉 is well defined since v is in W 1,~p,ε
0 (Ω), thus

v ∈ L1+ 1
ε (Ω) and f ∈ L1+ε(Ω). This is also true in the case where pi = 2 for all

i≥ 1 and ε approaches 1, u belongs to H1
0 (Ω) and f belongs to L2(Ω).

Remark 2.3. The conclusion of Theorem 2.1 remains true if we assume, instead
of the condition (A1), the following

(A1)′ |ai(x,s,ξ )| ≤ β

k(x)+ |s|
p0
p′i +

(
N

∑
j=1
|ξ j|p j

) 1
p′i

 ,
for a.e. x ∈ Ω, all (s,ξ ) ∈ R×RN , all i = 1, . . . ,N and some function k(x) ∈
Lp′i(Ω).

Remark 2.4. 1. As example of such an operator satisfying (A1),(A2) and
(A3), we consider

−
N

∑
i=1

∂

∂xi

(∣∣∣∣ ∂u
∂xi

∣∣∣∣pi−2
∂u
∂xi

)
,

where the exponents pi > 1 for i = 1, . . . ,N.

2. Note that the growth condition upon g with respect to u (Condition (G))
can generically have the following form

|g(x,u)| ≤ F(u)h(x),

with h ∈ L
1

1−ε (Ω) and F is locally bounded and nondecreasing.
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Proof of Theorem 2.1.

We proceed by steps to prove our result.

Step (1) Existence of the approximate problem.

Set for a.e. x ∈Ω

gk(x,u) = Tkg(x,u),

and
bk(u,v) =

∫
Ω

gk(x,u)vdx for all u,v ∈W 1,~p,ε
0 (Ω),

where Tk is the usual truncation given by

Tkη =


η if |η | ≤ k

kη

|η |
if |η |> k.

Note that bk(u,v) is well defined. Since L1+ 1
ε (Ω)⊂ L

1
ε (Ω) and ( 1

ε
)′ = 1

1−ε
, it is

easy to see that

Gk : W 1,~p,ε
0 (Ω)−→W−1,~p′,ε(Ω)

u−→ Gku

is also well defined, where the operator Gku is given by

Gku : W 1,~p,ε
0 (Ω)−→ R

v−→
∫

Ω

gk(x,u)vdx.

On the other hand, notice that under the assumptions (A1),(A2),(A3) and (G),
the operator A+Gk is coercive, monotone, hemicontinuous and bounded. Pre-
cisely, note that gk satisfies also the sign condition. Indeed, the coercivity fol-
lows easily from (A3) and the monotonicity follows immediately from (A2) and
the sign condition of the function g stated in (G).
The continuity of the map λ ∈ R 7→ 〈(A+Gk)(u+λv),w〉 is an easy conse-
quence of the assumptions that ai, i = 1, . . . ,N and g are Carathéodory functions
and the growth condition (A1). The boundedness follows

|〈(A+Gk)u,v〉|= 〈Au,v〉+
∫

Ω

gk(x,u)vdx≤

≤
N

∑
i=1

β

(∫
Ω

(
k(x)+ |u|1+

1
ε +

N

∑
j=1

∣∣∣∣ ∂u
∂x j

∣∣∣∣p j
)) 1

p′i
(∫

Ω

∣∣∣∣ ∂v
∂xi

∣∣∣∣pi
) 1

pi

+ c1‖v‖ ≤
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≤ c2‖v‖(c3 +‖u‖)γ

where c1 and c2 are positive constants and γ is a positive real number. This
implies the boundedness of A+Gk.
Therefore, thanks to Theorem 2.1, page 171 of [8], there exists uk ∈W 1,~p,ε

0 (Ω)
solution of the problem

Auk +gk(x,uk) = f ,

i.e.
N

∑
i=1

∫
Ω

ai(x,uk,∇uk)∇vdx+
∫

Ω

gk(x,uk)vdx = 〈 f ,v〉 (2.2)

for all v ∈W 1,~p,ε
0 (Ω).

Step (2) A priori estimates.

Substituting v = uk in (2.2), using (A3) and (G), the result is

‖uk‖ ≤C, (2.3)∫
Ω

gk(x,uk)uk dx≤C (2.4)

for some constant C > 0 independent of k. By the similar arguments as above,
we can prove that A is a bounded operator, thus we get

‖Auk‖−1,~p′,ε ≤C′, (2.5)

for some constant C′ > 0 independent of k.

Step (3) Convergence of uk.

Observe that W 1,~p,ε
0 (Ω) is reflexive (recall that pi > 1 for all i = 0,1, . . . ,N), we

deduce from (2.3) and (2.5)

uk ⇀ u weakly in W 1,~p,ε
0 (Ω),

Auk ⇀ χ weakly in W−1,~p′,ε(Ω).

Hence we can extract a subsequence still denoted by uk such that

uk→ u a.e. in Ω and gk(x,uk)−→ g(x,u) a.e. in Ω.

Now let δ > 0, since |gk(x, t)|δ ≤ |gk(x, t)t| for |t| ≥ δ , and then |gk(x, t)| ≤
δ−1|gk(x, t)t| for |t| ≥ δ , we have

|gk(x,uk)| ≤ sup
|t|≤δ

|gk(x, t)|+δ
−1|gk(x,uk)uk|

≤ hδ (x)+δ
−1|gk(x,uk)uk|.
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This implies ∫
E
|gk(x,uk)|dx≤

∫
E

hδ (x)dx+δ
−1C,

where E is a measurable subset of Ω and C is the constant of (2.4) which is
independent of k.

For |E| sufficiently small and δ = 2C
ε1

with ε1 > 0 we obtain∫
E
|gk(x,uk)|dx≤ ε1.

Then by Vitali’s theorem we get

gk(x,uk)→ g(x,u) strongly in L1(Ω).

Passing to the limit, we obtain

〈χ,v〉+
∫

Ω

g(x,u)vdx = 〈 f ,v〉 (2.6)

for all v ∈W 1,~p,ε
0 (Ω)∩L∞(Ω).

It remains to show that Au = χ. For this purpose, note that since A is bounded,
hemicontinuous and monotone, then A is pseudo-monotone (see Proposition 2.5,
page 179 of [8]).
Put v = Tku in (2.6) where Tku is the truncation of u (Tku ∈W 1,~p,ε

0 (Ω)∩L∞(Ω)).
On one hand we have

〈χ− f ,Tku〉 → 〈χ− f ,u〉.

On the other hand, using Lebesgue’s dominated convergence theorem, since

|g(x,u)Tku| ≤ |g(x,u)||u| ∈ L1(Ω)

and
g(x,u)Tku→ g(x,u)u a.e. in Ω,

we deduce that
g(x,u)Tku→ g(x,u)u in L1(Ω).

Therefore, we obtain

〈χ,u〉+
∫

Ω

g(x,u)udx = 〈 f ,u〉.

Now, by substituting v = uk in (2.2), then in view of Fatou’s lemma we get

limsup
k→+∞

〈Auk,uk〉 ≤ 〈 f ,u〉−
∫

Ω

g(x,u)udx.
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This implies
limsup
k→+∞

〈Auk,uk〉 ≤ 〈χ,u〉.

Since A is a pseudo-monotone operator, then χ = Au.
Finally, we conclude that

〈Au,v〉+
∫

Ω

g(x,u)vdx = 〈 f ,v〉,

for all v ∈W 1,~p,ε
0 (Ω)∩L∞(Ω). This completes the proof.

3. Concluding remarks

Remark 3.1. Note that
(

L1+ 1
ε (Ω)

)′
= L1+ε(Ω). So that, f is considered in a

dual space close to L1(Ω) for ε small enough.

Remark 3.2. Observe that when ε −→ 0, then f ∈ L1(Ω) and the solution u
will reach the maximal regularity, i.e., u ∈ L∞(Ω). Hence the duality pairing
between L1(Ω) and L∞(Ω),〈 f ,u〉, is still well defined.

Remark 3.3. Let us point out that in the work [5], the authors have studied
the existence of solutions for a general class of anisotropic equations of order m
with L1-data under the condition mp>N,m≥ 1, with p=min{pi, i= 1, . . . ,N}.
Here with specific conditions on the operator A and the function g, we prove the
existence result when the right hand side term becomes close to L1(Ω).
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