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EXISTENCE RESULTS FOR A QUASI-LINEAR
DIFFERENTIAL PROBLEM

PASQUALE F. PIZZIMENTI - ANGELA SCIAMMETTA

The aim of this paper is to establish the existence of at least one
non-trivial solution for Neumann quasi-linear problems. Our approach
is based on variational methods.

1. Introduction

The aim of this paper is to ensure the existence of at least one non-trivial solution
for the following Neumann boundary value problem{

−u′′+uh(u′) = λα(x) f (u)h(u′)
u′(a) = u′(b) = 0,

(Nλ )

where α : [a,b]→R is a positive continuous function, f : R→R and h : R→R
are continuous functions and λ is a positive real parameter.

Existence and multiplicity of solutions for Neumann boundary value prob-
lems have been investigated by several authors and, for an overview on this
subject, we refer to [1], [3] - [6], [8], [9], [11] - [14].

The main result of this paper is Theorem 3.1, which generalizes [6, Theo-
rem 3.1] to the case where the nonlinear term is not constant with respect to u′.
Two relevant consequences of Theorem 3.1 (that is, Corollary 3.2 and Theorem
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3.3) are also pointed out. Here, as an example, we presented a special case of
our main result.

Theorem 1.1. Let α : [a,b] → R be a nonnegative continuous function and
f ,h : R→ R be continuous functions. Suppose that h is bounded and strictly
positive, and that

lim
ξ→0+

f (ξ )
ξ

=+∞.

Then, there exists λ ∗ such that, for each λ ∈ ]0,λ ∗[, the problem (Nλ ) admits at
least one positive classical solution.

Our approach is based on a critical point theorem obtained in [2] (see The-
orem 2.1).

The paper is arranged as follows: in Section 2, we recall some basic defini-
tions and our main tool, while Section 3 is devoted to our main results.

2. Preliminaries and basic notations

Our main tool is the Ricceri variational principle [10, Theorem 2.5] as given in
[2, Theorem 5.1] which is below recalled (see also [2, Proposition 2.1] and [7,
Theorem 2.1]). First, given Φ,Ψ : X → R, put

β (r1,r2) = inf
v∈Φ−1(]r1,r2[)

sup
u∈Φ−1(]r1,r2[)

Ψ(u)−Ψ(v)

r2−Φ(v)
(1)

and

ρ2(r1,r2) = sup
v∈Φ−1(]r1,r2[)

Ψ(v)− sup
u∈Φ−1(]−∞,r1])

Ψ(u)

Φ(v)− r1
, (2)

for all r1,r2 ∈ R, with r1 < r2.

Theorem 2.1. ([2, Theorem 5.1]) Let X be a reflexive real Banach space; Φ :
X → R be a sequentially weakly lower semicontinuous, coercive and continu-
ously Gâteaux differentiable function whose Gâteaux derivative admits a con-
tinuous inverse on X∗; Ψ : X → R be a continuously Gâteaux differentiable
function whose Gâteaux derivative is compact. Put Iλ = Φ−λΨ and assume
that there are r1,r2 ∈ R, with r1 < r2, such that

β (r1,r2)< ρ2(r1,r2), (3)

where β and ρ2 are given by (1) and (2).

Then, for each λ ∈
]

1
ρ2(r1,r2)

,
1

β (r1,r2)

[
there is u0,λ ∈Φ−1(]r1,r2[) such that

Iλ (u0,λ )≤ Iλ (u) for all u ∈Φ−1(]r1,r2[) and I′
λ
(u0,λ ) = 0.
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Let X be the Sobolev space W 1,2([a,b]) endowed with the norm

‖u‖ :=
(∫ b

a
|u′(x)|2dx+

∫ b

a
|u(x)|2dx

) 1
2

.

Throughout the sequel, f : R→ R is a continuous function, h : R→ R is a
positive continuous function, α : [a,b]→ R is a sommable function and λ is a
positive real parameter. Put

F(t) =
∫ t

0
f (ξ )dξ , for all t ∈ R,

F1(x, t) =
∫ t

0
α(x) f (ξ )dξ = α(x)F(t), for all (x, t) ∈ [a,b]×R,

and, put

H(y) =
∫ y

0
(
∫

σ

0

1
h(τ)

dτ)dσ , for all y ∈ R.

We recall that u : [a,b]→ R is called weak solution of Problem (Nλ ) if u ∈
W 1,2([a,b]) and

∫ b

a
H ′(u′(x))v′(x)dx+

∫ b

a
u(x)v(x)dx = λ

∫ b

a
α(x) f (u(x))v(x)dx,

for all v ∈W 1,2([a,b]).
We also recall that a weak solution is a generalized solution, that is,
u ∈C1([a,b]), u′ ∈ AC([a,b]), −u′′(x)+u(x)h(u′(x)) = λα(x) f (u(x))h(u′(x)),
for a.e. x ∈ [a,b], and u′(a) = u′(b) = 0.
Moreover, if α is continuous, each weak solution is a classical solution, that is,
u ∈C2([a,b]), −u′′(x)+u(x)h(u′(x)) = λα(x) f (u(x))h(u′(x)) for all x ∈ [a,b],
and u′(a) = u′(b) = 0. Finally, put

γ =

(
max

{
2(b−a);

2
b−a

}) 1
2

,

we recall the following inequality which we use in the sequel

max
x∈[a,b]

|u(x)| ≤ γ‖u‖, (4)

for all u ∈ X and for all x ∈ [a,b].
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3. Main Results

In this Section, we establish existence results for the Neumann boundary value
problem (Nλ ).

Given two positive constants m, M, with m≤M, put

δ1 =

(
min

{
1

M(b−a)
;

1
b−a

}) 1
2

, δ2 =

(
max

{
1

m(b−a)
;

1
b−a

}) 1
2

.

Moreover, given three nonnegative constants c1, c2, d, with δ1c1 < γd < δ2c2,
put

a(c2,d) :=
max
|t|≤c2

F(t)−F(d)

δ 2
2 c2

2− γ2d2

and

b(c1,d) :=
F(d)−max

|t|≤c1

F(t)

γ2d2−δ 2
1 c2

1
.

We give our main result.

Theorem 3.1. Let α : [a,b]→R be a nonnegative function and let f ,h : R→R
be continuous functions. Assume that there exist two positive constants m, M,
such that

(i) m≤ h(y)≤M, for all y ∈ R,

and, assume that there exist three nonnegative constants c1, c2, d, with δ1c1 <
γd < δ2c2, such that

a(c2,d)< b(c1,d). (5)

Then, for each λ ∈
]

b−a
2γ2‖α‖1b(c1,d)

,
b−a

2γ2‖α‖1a(c2,d)

[
, the problem (Nλ ) ad-

mits at least one weak solution u, such that
c1

γ
< ‖u‖< c2

γ
.

Proof. Put

Φ(u) :=
1
2

∫ b

a
|u(x)|2dx+

∫ b

a
H(u′(x))dx,

Ψ(u) :=
∫ b

a
F1(x,u(x))dx,

for all u ∈ X .
It is well known that Φ and Ψ satisfy all regularity assumptions requested in
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Theorem 2.1 and that the critical points in X of the functional Φ−λΨ are ex-
actly the weak solutions of the problem (Nλ ). By using (i), one has

min
{

1
2M

;
1
2

}
‖u‖2 ≤Φ(u)≤max

{
1

2m
;
1
2

}
‖u‖2,

for every u ∈ X . Our aim is to apply Theorem 2.1. To this end, put

r1 =
b−a

2
δ 2

1
γ2 c2

1, r2 =
b−a

2
δ 2

2
γ2 c2

2

and
u0(x) = d, for all x ∈ [a,b].

Clearly, u0 ∈ X and one has

Φ(u0) =
1
2

∫ b

a
|u0|2dx+

∫ b

a
H(u′0)dx =

1
2

d2(b−a),

Ψ(u0) =
∫ b

a
F1(x,u0(x))dx = ‖α‖1F(d),

where

‖α‖1 :=
∫ b

a
|α(x)|dx.

From δ1c1 < γd < δ2c2, one has r1 < Φ(u0)< r2. Moreover, for all u ∈ X such
that Φ(u)< r2, taking (4) into account, one has

|u(x)|< c2, for all x ∈ [a,b],

and ∫ b

a
F1(x,u(x))dx≤

∫ b

a
max
|t|≤c2

F1(x, t)dx = ‖α‖1 max
|t|≤c2

F(t).

Therefore
sup

u∈Φ−1(]−∞,r2[)

Ψ(u)≤ ‖α‖1 max
|t|≤c2

F(t).

Arguing as before, we obtain

sup
u∈Φ−1(]−∞,r1])

Ψ(u)≤ ‖α‖1 max
|t|≤c1

F(t).

Therefore, one has

β (r1,r2)≤
sup

u∈Φ−1(]−∞,r2[)

Ψ(u)−Ψ(u0)

r2−Φ(u0)
≤

≤ 2γ2‖α‖1

b−a

max
|t|≤c2

F(t)−F(d)

δ 2
2 c2

2− γ2d2 =
2γ2‖α‖1

b−a
a(c2,d). (6)
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On the other hand, one has

ρ2(r1,r2)≥
Ψ(u0)− sup

u∈Φ−1(]−∞,r1])

Ψ(u)

Φ(u0)− r1
≥

≥ 2γ2‖α‖1

b−a

F(d)−max
|t|≤c1

F(t)

γ2d2−δ 2
1 c2

1
=

2γ2‖α‖1

b−a
b(c1,d). (7)

Hence, from (5) one has

β (r1,r2)< ρ2(r1,r2).

Therefore, owing to Theorem 2.1, for each

λ ∈
]

b−a
2γ2‖α‖1b(c1,d)

,
b−a

2γ2‖α‖1a(c2,d)

[
,

Φ−λΨ admits at least one critical point ū such that

r1 < Φ(ū)< r2,

that is c1

γ
< ‖ū‖< c2

γ
.

Hence, the proof is complete.

Now, we point out the following consequence of Theorem 3.1.

Corollary 3.2. Let α : [a,b]→R be a nonnegative function, h :R→]0,+∞[ and
f : R→ [0,+∞[ be continuous functions. Assume that (i) holds and that there

exist two positive constants c,d, with c >
γ

δ2
d, such that

F(c)
c2 <

(
δ2

γ

)2 F(d)
d2 . (8)

Then, for each λ ∈

]
b−a

2‖α‖1

d2

F(d)
,

b−a
2‖α‖1

(
δ2

γ

)2 c2

F(c)

[
, the problem (Nλ ) ad-

mits at least one nontrivial weak solution u such that ‖u‖< c
γ

.

Proof. Our aim is to apply Theorem 3.1. To this end, we pick c1 = 0 and c2 = c.
From (8) one has

a(c2,d) =
max
|t|≤c

F(t)−F(d)

δ 2
2 c2− γ2d2 ≤

F(c)−
(

γ2d2

δ 2
2 c2 F(c)

)
δ 2

2 c2− γ2d2 =
F(c)
δ 2

2 c2 .
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On the other hand, one has b(c1,d) =
F(d)
γ2d2 . Hence, owing to (8), Theorem 3.1

ensures the conclusion.

Now, we point out the following relevant consequence of Corollary 3.2.

Theorem 3.3. Let α : [a,b]→R be a nonnegative function and f ,h : R→R be
continuous functions. Assume that (i) holds. Assume that

lim
ξ→0+

f (ξ )
ξ

=+∞, (9)

and put λ ∗ =
b−a

2‖α‖1

(
δ2

γ

)2

sup
c>0

c2

F(c)
. Then, for each λ ∈ ]0,λ ∗[, the problem

(Nλ ) admits at least one positive weak solution.

Proof. Fix λ ∈ ]0,λ ∗[. Then, there is c > 0 such that λ <
b−a

2‖α‖1

(
δ2

γ

)2 c2

F(c)
.

From (9) there is d <
δ2

γ
c such that

2‖α‖1

b−a
F(d)

d2 >
1
λ

. Hence, Corollary 3.2

ensures the conclusion.

Remark 3.4. Taking (9) into account, fix ρ > 0 such that f (ξ ) > 0 for all

ξ ∈ ]0,ρ[. Then, put λ̄ =
b−a

2‖α‖1

(
δ2

γ

)2

supc∈]0,ρ[
c2

F(c)
. Clearly, λ̄ ≤ λ ∗. Now,

fixed λ ∈
]
0, λ̄
[

and arguing as in the proof of Theorem 3.3, there are c ∈ ]0,ρ[

and d <
δ2

γ
c such that

b−a
2‖α‖1

d2

F(d)
< λ <

b−a
2‖α‖1

(
δ2

γ

)2 c2

F(c)
. Hence, Corol-

lary 3.2 ensures that, for each λ ∈
]
0, λ̄
[
, the problem (Nλ ) admits at least one

positive weak solution uλ such that

|uλ (x)|<
ρ

γ
,

for all x ∈ [a,b].
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