EXISTENCE RESULTS FOR A QUASI-LINEAR DIFFERENTIAL PROBLEM

PASQUALE F. PIZZIMENTI - ANGELA SCIAMMETTA

The aim of this paper is to establish the existence of at least one non-trivial solution for Neumann quasi-linear problems. Our approach is based on variational methods.

1. Introduction

The aim of this paper is to ensure the existence of at least one non-trivial solution for the following Neumann boundary value problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u h\left(u^{\prime}\right)=\lambda \alpha(x) f(u) h\left(u^{\prime}\right) \\
u^{\prime}(a)=u^{\prime}(b)=0
\end{array}\right.
$$

where $\alpha:[a, b] \rightarrow \mathbb{R}$ is a positive continuous function, $f: \mathbb{R} \rightarrow \mathbb{R}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions and λ is a positive real parameter.

Existence and multiplicity of solutions for Neumann boundary value problems have been investigated by several authors and, for an overview on this subject, we refer to [1], [3] - [6], [8], [9], [11] - [14].

The main result of this paper is Theorem 3.1, which generalizes [6, Theorem 3.1] to the case where the nonlinear term is not constant with respect to u^{\prime}. Two relevant consequences of Theorem 3.1 (that is, Corollary 3.2 and Theorem

[^0]3.3) are also pointed out. Here, as an example, we presented a special case of our main result.

Theorem 1.1. Let $\alpha:[a, b] \rightarrow \mathbb{R}$ be a nonnegative continuous function and $f, h: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions. Suppose that h is bounded and strictly positive, and that

$$
\lim _{\xi \rightarrow 0^{+}} \frac{f(\xi)}{\xi}=+\infty
$$

Then, there exists λ^{*} such that, for each $\left.\lambda \in\right] 0, \lambda^{*}\left[\right.$, the problem $\left(N_{\lambda}\right)$ admits at least one positive classical solution.

Our approach is based on a critical point theorem obtained in [2] (see Theorem 2.1).

The paper is arranged as follows: in Section 2, we recall some basic definitions and our main tool, while Section 3 is devoted to our main results.

2. Preliminaries and basic notations

Our main tool is the Ricceri variational principle [10, Theorem 2.5] as given in [2, Theorem 5.1] which is below recalled (see also [2, Proposition 2.1] and [7, Theorem 2.1]). First, given $\Phi, \Psi: X \rightarrow \mathbb{R}$, put

$$
\begin{equation*}
\beta\left(r_{1}, r_{2}\right)=\inf _{v \in \Phi^{-1}(] r_{1}, r_{2}[)} \frac{\sup _{u \in \Phi^{-1}(] r_{1}, r_{2}[)} \Psi(u)-\Psi(v)}{r_{2}-\Phi(v)} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{2}\left(r_{1}, r_{2}\right)=\sup _{v \in \Phi^{-1}\left(1 r_{1}, r_{2}[)\right.} \frac{\Psi(v)-\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r_{1}\right]\right)} \Psi(u)}{\Phi(v)-r_{1}} \tag{2}
\end{equation*}
$$

for all $r_{1}, r_{2} \in \mathbb{R}$, with $r_{1}<r_{2}$.
Theorem 2.1. ([2, Theorem 5.1]) Let X be a reflexive real Banach space; Φ : $X \rightarrow \mathbb{R}$ be a sequentially weakly lower semicontinuous, coercive and continuously Gâteaux differentiable function whose Gâteaux derivative admits a continuous inverse on $X^{*} ; \Psi: X \rightarrow \mathbb{R}$ be a continuously Gâteaux differentiable function whose Gâteaux derivative is compact. Put $I_{\lambda}=\Phi-\lambda \Psi$ and assume that there are $r_{1}, r_{2} \in \mathbb{R}$, with $r_{1}<r_{2}$, such that

$$
\begin{equation*}
\beta\left(r_{1}, r_{2}\right)<\rho_{2}\left(r_{1}, r_{2}\right) \tag{3}
\end{equation*}
$$

where β and ρ_{2} are given by (1) and (2).
Then, for each $\lambda \in] \frac{1}{\rho_{2}\left(r_{1}, r_{2}\right)}, \frac{1}{\beta\left(r_{1}, r_{2}\right)}\left[\right.$ there is $u_{0, \lambda} \in \Phi^{-1}(] r_{1}, r_{2}[)$ such that $I_{\lambda}\left(u_{0, \lambda}\right) \leq I_{\lambda}(u)$ for all $u \in \Phi^{-1}(] r_{1}, r_{2}[)$ and $I_{\lambda}^{\prime}\left(u_{0, \lambda}\right)=0$.

Let X be the Sobolev space $W^{1,2}([a, b])$ endowed with the norm

$$
\|u\|:=\left(\int_{a}^{b}\left|u^{\prime}(x)\right|^{2} d x+\int_{a}^{b}|u(x)|^{2} d x\right)^{\frac{1}{2}}
$$

Throughout the sequel, $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, $h: \mathbb{R} \rightarrow \mathbb{R}$ is a positive continuous function, $\alpha:[a, b] \rightarrow \mathbb{R}$ is a sommable function and λ is a positive real parameter. Put

$$
\begin{gathered}
F(t)=\int_{0}^{t} f(\xi) d \xi, \quad \text { for all } t \in \mathbb{R} \\
F_{1}(x, t)=\int_{0}^{t} \alpha(x) f(\xi) d \xi=\alpha(x) F(t), \quad \text { for all }(x, t) \in[a, b] \times \mathbb{R}
\end{gathered}
$$

and, put

$$
H(y)=\int_{0}^{y}\left(\int_{0}^{\sigma} \frac{1}{h(\tau)} d \tau\right) d \sigma, \quad \text { for all } y \in \mathbb{R}
$$

We recall that $u:[a, b] \rightarrow \mathbb{R}$ is called weak solution of Problem $\left(N_{\lambda}\right)$ if $u \in$ $W^{1,2}([a, b])$ and

$$
\int_{a}^{b} H^{\prime}\left(u^{\prime}(x)\right) v^{\prime}(x) d x+\int_{a}^{b} u(x) v(x) d x=\lambda \int_{a}^{b} \alpha(x) f(u(x)) v(x) d x
$$

for all $v \in W^{1,2}([a, b])$.
We also recall that a weak solution is a generalized solution, that is, $u \in C^{1}([a, b]), u^{\prime} \in A C([a, b]),-u^{\prime \prime}(x)+u(x) h\left(u^{\prime}(x)\right)=\lambda \alpha(x) f(u(x)) h\left(u^{\prime}(x)\right)$, for a.e. $x \in[a, b]$, and $u^{\prime}(a)=u^{\prime}(b)=0$.
Moreover, if α is continuous, each weak solution is a classical solution, that is, $u \in C^{2}([a, b]),-u^{\prime \prime}(x)+u(x) h\left(u^{\prime}(x)\right)=\lambda \alpha(x) f(u(x)) h\left(u^{\prime}(x)\right)$ for all $x \in[a, b]$, and $u^{\prime}(a)=u^{\prime}(b)=0$. Finally, put

$$
\gamma=\left(\max \left\{2(b-a) ; \frac{2}{b-a}\right\}\right)^{\frac{1}{2}},
$$

we recall the following inequality which we use in the sequel

$$
\begin{equation*}
\max _{x \in[a, b]}|u(x)| \leq \gamma\|u\| \tag{4}
\end{equation*}
$$

for all $u \in X$ and for all $x \in[a, b]$.

3. Main Results

In this Section, we establish existence results for the Neumann boundary value problem $\left(N_{\lambda}\right)$.

Given two positive constants m, M, with $m \leq M$, put

$$
\delta_{1}=\left(\min \left\{\frac{1}{M(b-a)} ; \frac{1}{b-a}\right\}\right)^{\frac{1}{2}}, \delta_{2}=\left(\max \left\{\frac{1}{m(b-a)} ; \frac{1}{b-a}\right\}\right)^{\frac{1}{2}}
$$

Moreover, given three nonnegative constants c_{1}, c_{2}, d, with $\delta_{1} c_{1}<\gamma d<\delta_{2} c_{2}$, put

$$
a\left(c_{2}, d\right):=\frac{\max _{|t| \leq c_{2}} F(t)-F(d)}{\delta_{2}^{2} c_{2}^{2}-\gamma^{2} d^{2}}
$$

and

$$
b\left(c_{1}, d\right):=\frac{F(d)-\max _{|t| \leq c_{1}} F(t)}{\gamma^{2} d^{2}-\delta_{1}^{2} c_{1}^{2}}
$$

We give our main result.
Theorem 3.1. Let $\alpha:[a, b] \rightarrow \mathbb{R}$ be a nonnegative function and let $f, h: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions. Assume that there exist two positive constants m, M, such that
(i) $m \leq h(y) \leq M, \quad$ for all $y \in \mathbb{R}$,
and, assume that there exist three nonnegative constants c_{1}, c_{2}, d, with $\delta_{1} c_{1}<$ $\gamma d<\delta_{2} c_{2}$, such that

$$
\begin{equation*}
a\left(c_{2}, d\right)<b\left(c_{1}, d\right) \tag{5}
\end{equation*}
$$

Then, for each $\lambda \in] \frac{b-a}{2 \gamma^{2}\|\alpha\|_{1} b\left(c_{1}, d\right)}, \frac{b-a}{2 \gamma^{2}\|\alpha\|_{1} a\left(c_{2}, d\right)}\left[\right.$,the problem $\left(N_{\lambda}\right)$ admits at least one weak solution \bar{u}, such that $\frac{c_{1}}{\gamma}<\|\bar{u}\|<\frac{c_{2}}{\gamma}$.

Proof. Put

$$
\begin{gathered}
\Phi(u):=\frac{1}{2} \int_{a}^{b}|u(x)|^{2} d x+\int_{a}^{b} H\left(u^{\prime}(x)\right) d x \\
\Psi(u):=\int_{a}^{b} F_{1}(x, u(x)) d x
\end{gathered}
$$

for all $u \in X$.
It is well known that Φ and Ψ satisfy all regularity assumptions requested in

Theorem 2.1 and that the critical points in X of the functional $\Phi-\lambda \Psi$ are exactly the weak solutions of the problem $\left(N_{\lambda}\right)$. By using (i), one has

$$
\min \left\{\frac{1}{2 M} ; \frac{1}{2}\right\}\|u\|^{2} \leq \Phi(u) \leq \max \left\{\frac{1}{2 m} ; \frac{1}{2}\right\}\|u\|^{2}
$$

for every $u \in X$. Our aim is to apply Theorem 2.1. To this end, put

$$
r_{1}=\frac{b-a}{2} \frac{\delta_{1}^{2}}{\gamma^{2}} c_{1}^{2}, \quad r_{2}=\frac{b-a}{2} \frac{\delta_{2}^{2}}{\gamma^{2}} c_{2}^{2}
$$

and

$$
u_{0}(x)=d, \quad \text { for all } x \in[a, b] .
$$

Clearly, $u_{0} \in X$ and one has

$$
\begin{gathered}
\Phi\left(u_{0}\right)=\frac{1}{2} \int_{a}^{b}\left|u_{0}\right|^{2} d x+\int_{a}^{b} H\left(u_{0}^{\prime}\right) d x=\frac{1}{2} d^{2}(b-a) \\
\Psi\left(u_{0}\right)=\int_{a}^{b} F_{1}\left(x, u_{0}(x)\right) d x=\|\alpha\|_{1} F(d)
\end{gathered}
$$

where

$$
\|\alpha\|_{1}:=\int_{a}^{b}|\alpha(x)| d x
$$

From $\delta_{1} c_{1}<\gamma d<\delta_{2} c_{2}$, one has $r_{1}<\Phi\left(u_{0}\right)<r_{2}$. Moreover, for all $u \in X$ such that $\Phi(u)<r_{2}$, taking (4) into account, one has

$$
|u(x)|<c_{2}, \quad \text { for all } x \in[a, b]
$$

and

$$
\int_{a}^{b} F_{1}(x, u(x)) d x \leq \int_{a}^{b} \max _{|t| \leq c_{2}} F_{1}(x, t) d x=\|\alpha\|_{1} \max _{|t| \leq c_{2}} F(t) .
$$

Therefore

$$
\sup _{u \in \Phi^{-1}(]-\infty, r_{2}[)} \Psi(u) \leq\|\alpha\|_{1} \max _{|t| \leq c_{2}} F(t)
$$

Arguing as before, we obtain

$$
\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r_{1}\right]\right)} \Psi(u) \leq\|\alpha\|_{1} \max _{|t| \leq c_{1}} F(t) .
$$

Therefore, one has

$$
\begin{align*}
\beta\left(r_{1}, r_{2}\right) & \leq \frac{\sup _{u \in \Phi^{-1}(]-\infty, r_{2}[)}^{r_{2}-\Phi(u)-\Psi\left(u_{0}\right)} \leq}{} \leq \\
& \leq \frac{2 \gamma^{2}\|\alpha\|_{1}}{b-a} \frac{\max _{|t| \leq c_{2}} F(t)-F(d)}{\delta_{2}^{2} c_{2}^{2}-\gamma^{2} d^{2}}=\frac{2 \gamma^{2}\|\alpha\|_{1}}{b-a} a\left(c_{2}, d\right) \tag{6}
\end{align*}
$$

On the other hand, one has

$$
\begin{align*}
\rho_{2}\left(r_{1}, r_{2}\right) & \geq \frac{\Psi\left(u_{0}\right)-\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r_{1}\right]\right)} \Psi(u)}{\Phi\left(u_{0}\right)-r_{1}} \geq \\
& \geq \frac{2 \gamma^{2}\|\alpha\|_{1}}{b-a} \frac{F(d)-\max _{|t| \leq c_{1}} F(t)}{\gamma^{2} d^{2}-\delta_{1}^{2} c_{1}^{2}}=\frac{2 \gamma^{2}\|\alpha\|_{1}}{b-a} b\left(c_{1}, d\right) . \tag{7}
\end{align*}
$$

Hence, from (5) one has

$$
\beta\left(r_{1}, r_{2}\right)<\rho_{2}\left(r_{1}, r_{2}\right)
$$

Therefore, owing to Theorem 2.1, for each

$$
\lambda \in] \frac{b-a}{2 \gamma^{2}\|\alpha\|_{1} b\left(c_{1}, d\right)}, \frac{b-a}{2 \gamma^{2}\|\alpha\|_{1} a\left(c_{2}, d\right)}[
$$

$\Phi-\lambda \Psi$ admits at least one critical point \bar{u} such that

$$
r_{1}<\Phi(\bar{u})<r_{2},
$$

that is

$$
\frac{c_{1}}{\gamma}<\|\bar{u}\|<\frac{c_{2}}{\gamma} .
$$

Hence, the proof is complete.
Now, we point out the following consequence of Theorem 3.1.
Corollary 3.2. Let $\alpha:[a, b] \rightarrow \mathbb{R}$ be a nonnegative function, $h: \mathbb{R} \rightarrow] 0,+\infty[$ and $f: \mathbb{R} \rightarrow[0,+\infty[$ be continuous functions. Assume that (i) holds and that there exist two positive constants c, d, with $c>\frac{\gamma}{\delta_{2}} d$, such that

$$
\begin{equation*}
\frac{F(c)}{c^{2}}<\left(\frac{\delta_{2}}{\gamma}\right)^{2} \frac{F(d)}{d^{2}} \tag{8}
\end{equation*}
$$

Then, for each $\lambda \in] \frac{b-a}{2\|\alpha\|_{1}} \frac{d^{2}}{F(d)}, \frac{b-a}{2\|\alpha\|_{1}}\left(\frac{\delta_{2}}{\gamma}\right)^{2} \frac{c^{2}}{F(c)}\left[\right.$, the problem $\left(N_{\lambda}\right)$ admits at least one nontrivial weak solution \bar{u} such that $\|\bar{u}\|<\frac{c}{\gamma}$.
Proof. Our aim is to apply Theorem 3.1. To this end, we pick $c_{1}=0$ and $c_{2}=c$. From (8) one has

$$
a\left(c_{2}, d\right)=\frac{\max _{|t| \leq c} F(t)-F(d)}{\delta_{2}^{2} c^{2}-\gamma^{2} d^{2}} \leq \frac{F(c)-\left(\frac{\gamma^{2} d^{2}}{\delta_{2}^{2} c^{2}} F(c)\right)}{\delta_{2}^{2} c^{2}-\gamma^{2} d^{2}}=\frac{F(c)}{\delta_{2}^{2} c^{2}}
$$

On the other hand, one has $b\left(c_{1}, d\right)=\frac{F(d)}{\gamma^{2} d^{2}}$. Hence, owing to (8), Theorem 3.1 ensures the conclusion.

Now, we point out the following relevant consequence of Corollary 3.2.
Theorem 3.3. Let $\alpha:[a, b] \rightarrow \mathbb{R}$ be a nonnegative function and $f, h: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions. Assume that (i) holds. Assume that

$$
\begin{equation*}
\lim _{\xi \rightarrow 0^{+}} \frac{f(\xi)}{\xi}=+\infty \tag{9}
\end{equation*}
$$

and put $\lambda^{*}=\frac{b-a}{2\|\alpha\|_{1}}\left(\frac{\delta_{2}}{\gamma}\right)^{2} \sup _{c>0} \frac{c^{2}}{F(c)}$. Then, for each $\left.\lambda \in\right] 0, \lambda^{*}[$, the problem $\left(N_{\lambda}\right)$ admits at least one positive weak solution.
Proof. Fix $\lambda \in] 0, \lambda^{*}\left[\right.$. Then, there is $c>0$ such that $\lambda<\frac{b-a}{2\|\alpha\|_{1}}\left(\frac{\delta_{2}}{\gamma}\right)^{2} \frac{c^{2}}{F(c)}$. From (9) there is $d<\frac{\delta_{2}}{\gamma} c$ such that $\frac{2\|\alpha\|_{1}}{b-a} \frac{F(d)}{d^{2}}>\frac{1}{\lambda}$. Hence, Corollary 3.2 ensures the conclusion.

Remark 3.4. Taking (9) into account, fix $\rho>0$ such that $f(\xi)>0$ for all $\xi \in] 0, \rho\left[\right.$. Then, put $\bar{\lambda}=\frac{b-a}{2\|\alpha\|_{1}}\left(\frac{\delta_{2}}{\gamma}\right)^{2} \sup _{c \in] 0, \rho[} \frac{c^{2}}{F(c)}$. Clearly, $\bar{\lambda} \leq \lambda^{*}$. Now, fixed $\lambda \in] 0, \bar{\lambda}[$ and arguing as in the proof of Theorem 3.3, there are $c \in] 0, \rho[$ and $d<\frac{\delta_{2}}{\gamma} c$ such that $\frac{b-a}{2\|\alpha\|_{1}} \frac{d^{2}}{F(d)}<\lambda<\frac{b-a}{2\|\alpha\|_{1}}\left(\frac{\delta_{2}}{\gamma}\right)^{2} \frac{c^{2}}{F(c)}$. Hence, Corollary 3.2 ensures that, for each $\lambda \in] 0, \bar{\lambda}\left[\right.$, the problem $\left(N_{\lambda}\right)$ admits at least one positive weak solution \bar{u}_{λ} such that

$$
\left|\bar{u}_{\lambda}(x)\right|<\frac{\rho}{\gamma}
$$

for all $x \in[a, b]$.

4. Acknowledgements

The authors wish to thank Professor Gabriele Bonanno for his remarks and suggestions during the writing of this paper.

REFERENCES

[1] D. Averna - G. Bonanno, Three solutions for a Neumann boundary value problem involving the p-Laplacian, Le Matematiche 60 (2005), 81-91.
[2] G. Bonanno, A critical point theorem via the Ekeland variational principle, preprint.
[3] G. Bonanno, Multiple solutions for a Neumann boundary value problem, J. Nonlinear Convex Anal. 4 (2003), 287-290.
[4] G. Bonanno - G. D'Aguì, A critical point theorem and existence results for a nonlinear boundary value problem, Nonlinear Anal. 72 (2010), 1977-1982.
[5] G. Bonanno - G. D’Aguì, A Neumann boundary value problem for the SturmLiouville equation, Appl. Math. Comput. 208 (2009), 318-327.
[6] G. Bonanno - P. F. Pizzimenti, Neumann boundary value problems with not coercive potential, preprint.
[7] G. Bonanno - A. Sciammetta, An existence result of one non-trivial solution for two point boundary value problems, preprint.
[8] M. Cherpion - C. De Coster - P. Habets, A constructive monotone iterative method for second order BVP in the presence of lower and upper solutions, Appl. Math. Comput. 123 (2001), 75-91.
[9] J. Chu - Y. Sun - H. Chen, Positive solutions of Neumann problems with singularities, J. Math. Anal. Appl. 337 (2008), 1267-1272.
[10] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000), 401-410.
[11] J. P. Sun - W. T. Li, Multiple positive solutions to second-order Neumann boundary value problems, Appl. Math. Comput. 146 (2003), 187-194.
[12] Y. Sun - Y. Je Cho - D. O'Regan, Positive solutions for singular second order Neumann boundary value problems via a cone fixed point theorem, Appl. Math. Comput. 210 (2009), 80-86.
[13] S. Villegas, A Neumann problem with asymmetric nonlinearity and a related minimizing problem, J. Differential Equations 145 (1998), 145-155.
[14] L. Zhilong, Existence of positive solutions of superlinear second-order Neumann boundary value problem, Nonlinear Anal. 72 (2010), 3216-3221.

PASQUALE F. PIZZIMENTI
Department of Mathematics
University of Messina
98166 - Messina (Italy)
e-mail: ppizzimenti@unime.it
ANGELA SCIAMMETTA
Department of Mathematics
University of Messina
98166 - Messina (Italy)
e-mail: asciammetta@unime.it

[^0]: Entrato in redazione: 20 dicembre 2010

