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EXISTENCE RESULTS FOR A QUASI-LINEAR
DIFFERENTIAL PROBLEM

PASQUALE F. PIZZIMENTI - ANGELA SCIAMMETTA

The aim of this paper is to establish the existence of at least one
non-trivial solution for Neumann quasi-linear problems. Our approach
is based on variational methods.

1. Introduction

The aim of this paper is to ensure the existence of at least one non-trivial solution
for the following Neumann boundary value problem

—u" +uh(u') = Aou(x) f(u)h(u) N
{ (@) = (b) =0, )
where o : [a,b] — R is a positive continuous function, f: R —-Rand2: R — R
are continuous functions and A is a positive real parameter.

Existence and multiplicity of solutions for Neumann boundary value prob-
lems have been investigated by several authors and, for an overview on this
subject, we refer to [1], [3]-[6], [8], [9], [11]-[14].

The main result of this paper is Theorem 3.1, which generalizes [6, Theo-
rem 3.1] to the case where the nonlinear term is not constant with respect to u’.
Two relevant consequences of Theorem 3.1 (that is, Corollary 3.2 and Theorem
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3.3) are also pointed out. Here, as an example, we presented a special case of
our main result.

Theorem 1.1. Ler o : [a,b] — R be a nonnegative continuous function and
f,h: R — R be continuous functions. Suppose that h is bounded and strictly
positive, and that

lim @ = +-oo.

g-0t &
Then, there exists A* such that, for each A € ]0,A1*], the problem (N, ) admits at
least one positive classical solution.

Our approach is based on a critical point theorem obtained in [2] (see The-
orem 2.1).

The paper is arranged as follows: in Section 2, we recall some basic defini-
tions and our main tool, while Section 3 is devoted to our main results.

2. Preliminaries and basic notations

Our main tool is the Ricceri variational principle [10, Theorem 2.5] as given in
[2, Theorem 5.1] which is below recalled (see also [2, Proposition 2.1] and [7,
Theorem 2.1]). First, given ®, ¥ : X — R, put

sup  W(u)—¥(v)

. uEdD’l(]rhrz[)
r,r) = inf 1
B(ri,r2) o > — () (1)
and
Y(v)— sup  W(u)
ue®1(]—oo,r1])
p2(ri,r2) = sup ; 2
vK)*l(]rl,rz[) (D(V) —r

forall ri,r» € R, with r| < rp.

Theorem 2.1. ([2, Theorem 5.1]) Let X be a reflexive real Banach space; P :
X — R be a sequentially weakly lower semicontinuous, coercive and continu-
ously Gdteaux differentiable function whose Gdteaux derivative admits a con-
tinuous inverse on X*; W : X — R be a continuously Gdteaux differentiable
function whose Gdateaux derivative is compact. Put I, = ® — A and assume
that there are r1,ry € R, with r| < rp, such that

B(ri,r2) <pa(ri,ra), 3)
where B and p, are given by (1) and (2).
1
Then, for each A €

p2(ri,r2) B(ri,r)
Iy (up ) < I (u) forallu € & (ry,r|) and Ii (up2) = 0.

there is ug 3 € ®'(Jr1,r2[) such that
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Let X be the Sobolev space W'2(|a,b]) endowed with the norm

= ([ o [ e

Throughout the sequel, f : R — R is a continuous function, #: R — R is a
positive continuous function, o : [a,h] — R is a sommable function and A is a
positive real parameter. Put

= /Otf(é)dé, forallz € R,

Fi(x,1) = /Ota(x)f(&)dﬁ =oa(x)F(t), forall (x,t) € [a,b] xR,

and, put

/ / —d‘c o, forally € R.

We recall that u : [a,b] — R is called weak solution of Problem (N,) if u €
W'2([a,b]) and

/a " H () () + / X)dx = A / Y(x)dx,

for all v € W'2([a,b]).

We also recall that a weak solution is a generalized solution, that is,

ue C([a,b]), ' € AC([a,B)). —u"(x) + u(x)h(ul (x)) = Aex(x) fu(x) Jh(ud (x)).
for a.e. x € [a,b], and u/'(a) = u'(b) = 0.

Moreover, if & is continuous, each weak solution is a classical solution, that is,
u € C?([a,b)), —u" (x) + u(x)h(t (x)) = Lou(x) f(u(x))h( (x)) for all x € [a,b],
and u'(a) = ' (b) = 0. Finally, put

y= <max{2(b—a);bia}>§’

we recall the following inequality which we use in the sequel

max [u(x)] < 7u, @
x€la,b]

a,

for all u € X and for all x € [a,b].
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3. Main Results

In this Section, we establish existence results for the Neumann boundary value
problem (NV,).
Given two positive constants m, M, with m < M, put

o (o)) o (onfits)

Moreover, given three nonnegative constants ¢y, ¢, d, with 8¢ < yd < &,¢3,
put
max F (1) — F(d)

. l<ge
a(cy,d) = 6226% Epvy
and
F(d) — max F(t)
. lr|<es
b(Cl,d) =

V2d? — 8ict
We give our main result.
Theorem 3.1. Let o : [a,b] — R be a nonnegative function and let f,h: R — R

be continuous functions. Assume that there exist two positive constants m, M,
such that

(i) m<h(y)<M, forally€eR,

and, assume that there exist three nonnegative constants cy, ¢z, d, with 61¢1 <
Yd < 8¢, such that

a(cz,d) < b(cy,d). 5)
b—a b—a
27 ||all1b(cr,d)’ 2%l 1a(c2, d)

. A 1 — 2
mits at least one weak solution u, such that — < |ju|| < —.

Then, for each A € ] [ the problem (N,)) ad-

Proof. Put
b b
®(u) ;:% / () Pdx+ / H (i (x))dx,

W(u) = / Ry (e (),

forallu € X.
It is well known that @ and W satisfy all regularity assumptions requested in
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Theorem 2.1 and that the critical points in X of the functional ® — A are ex-
actly the weak solutions of the problem (N, ). By using (i), one has

1 ) 11,
< < .-
mm{ZM 2}” I D(u) < max{zm,z}HuH ,

for every u € X. Our aim is to apply Theorem 2.1. To this end, put

b— a52 b— a52

r=-—_,j/— D) ')/2 la rn=-—— D) ’y

and
up(x) =d, forallx€ [a,b].

Clearly, uy € X and one has
L b 1o
:f/ | dx+/ H(uy)dx = ~d*(b—a),
2 a a 2
b
Vo) = [ Fi(rn()dx = ol F(a),
a

lafl = [ e d.

From &;¢; < yd < 8¢;, one has r; < ®(up) < rp. Moreover, for all u € X such
that ®(u) < rp, taking (4) into account, one has

where

lu(x)| < cp, forallx € [a,b],

and
b

b
/0F1(x,u(x))dx< ma Fi(x.0)dx = || max F(r)

‘I <c |

Therefore
sup Y(u )<H(x||1maxF()

UED1(]—o0,1)) lf|<ca

Arguing as before, we obtain

sup Y(u) < |lal|; max F(t).
ued~1(]—o0,r1]) lr<e

Therefore, one has

wp )~ (o)
ued~1(]—o0,r2])

< <
plrir) < r2 —®(uo) a
max F(t) — F(d) )
< 2Pl fize _2rleh e a. @

= b—a 8S-Pd®  b-a
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On the other hand, one has

Puo)—  sup  W(u)
ue®1(]—oo,r1])
r,r2) = >
p2(r1,72) D(ug) —ry
F(d) — max F(t)
S Mol s T _2rllelhy gy
~ b—a  Pd*-6ic b—a e
Hence, from (5) one has
B(ri,r2) < p2(r1,72).
Therefore, owing to Theorem 2.1, for each
b—a b—a
Ae 2 502
27 |lecflb(er,d) " 2v? el 1a(c2,d)

® — AW admits at least one critical point & such that

r < ®(it) < ry,
that is c c

1 _ 2
— <|la|| < =.
Y Y

Hence, the proof is complete. O

Now, we point out the following consequence of Theorem 3.1.

Corollary 3.2. Let o : [a,b] — R be a nonnegative function, h: R —]0, oo and
f R = [0,4co] be continuous functions. Assume that (i) holds and that there

exist two positive constants c,d, with ¢ > Id, such that

&
F(e) _ <62>2F<d>

C2 ? d2 . (8)

b—a d* b-—a (82)2 c2
2lally F(d) 2llal \ v/ F(c)

. .. - — c
mits at least one nontrivial weak solution u such that ||u|| < —.
14

Then, for each A € ] , the problem (N, ) ad-

Proof. Our aim is to apply Theorem 3.1. To this end, we pick c; =0 and ¢, =c.
From (8) one has

)
maxF(t)—F(d) F(c)— (;;;;F(d) F(c)

522c2— 242 52202— 242 N 522c2'
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F(d
On the other hand, one has b(c;,d) = }/2( dz) . Hence, owing to (8), Theorem 3.1
ensures the conclusion.
O

Now, we point out the following relevant consequence of Corollary 3.2.

Theorem 3.3. Let o : [a,b] — R be a nonnegative function and f,h:R — R be
continuous functions. Assume that (i) holds. Assume that

lim 2227 = 4o, )

d put \* b—a(@>2w ¢ Then, f: h A €10,A*|, the probl

and put A* = — . Then, for eac ,A*|, the problem
el \v /) es0 F(e)

(N),) admits at least one positive weak solution.

b— 22
Proof. Fix A € ]0,A*[. Then, there is ¢ > 0 such that A < a (52) ¢

, ao 2l \'v ) Fle)’
F
From (9) there is d < (zlzc such that el () . Hence, Corollary 3.2

> —_
b—a d? A
ensures the conclusion. O

Remark 3.4. Taking (9) into account, fix p > 0 such that f(&) > 0 for all

b—a @)2 2 _
— | sup, ——. Clearly, A < A*. Now,
2HaH1<’V c0PLF ()

fixed A € 0, A [ and arguing as in the proof of Theorem 3.3, there are ¢ € ]0,p|

& €]0,p[. Then, put A =

b—a d& b— 22
and d < éc such that a <A< a <5z> C—. Hence, Corol-
Y 2|lafl F(d) 2llalli \ v ) F(c)

lary 3.2 ensures that, for each A € ]0, A [, the problem (N, ) admits at least one
positive weak solution ;, such that

_ p
u x| < —,
(%) v

for all x € [a,b].
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