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TOTAL BOUNDEDNESS IN VECTOR-VALUED
F-SEMINORMED FUNCTION SPACES

M. TAVERNISE - A. TROMBETTA - G. TROMBETTA

We present a compactness criterion of Vitali-type in a class of vector-
valued real F-seminormed spaces, which satisfy the W -property.

1. Introduction

The definition of some quantitative characteristics in spaces of functions and
their comparison with the Hausdorff measure of noncompactness has allowed
many authors to generalize some classical compactness results (see [2], [5],
[12], [14], for example). In this paper we introduce a quantitative characteristic,
which measures the degree of non equiabsolute continuity for subsets of spaces
in a class of vector-valued real F-seminormed function spaces. We compare this
quantitative characteristic with the Hausdorff measure of noncompactness. By
this comparison we obtain some inequalities, that give, as a special case, suffi-
cient conditions for the total boundedness of a set of functions. From our results
we derive a Vitali-type compactness criterion in spaces, of the class we have
considered, which satisfy the W -property (see Definition 3.7). In our context we
generalize some of the results obtained in [12]. Moreover, the results we present
are a partial anticipation of those contained in [13], where the total boundedness
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of a set is considered in a wider class of vector-valued F-seminormed function
spaces.

2. Preliminaries and notations

Throughout the present paper all linear spaces are real and we adopt the conven-
tion that inf /0=+∞. The notions concerning the theory of F-seminormed spaces
(resp. Riesz F-seminormed spaces) can be found in [8] (resp.[10] and [16]). We
give here only the basic ones. Let V be a linear space. An F-seminorm on V is a
function ‖ ·‖V : V −→ [0,+∞[ such that ‖u+v‖V ≤ ‖u‖V +‖v‖V , lim

n→∞

∥∥1
n u
∥∥

V =

0, ‖λu‖V ≤ ‖u‖V , for each u,v ∈ V and for all real number λ with |λ | ≤ 1. If
‖u‖V = 0 only when u = 0, then ‖ · ‖V is called an F-norm. An F-seminorm
(F-norm) is called a q-seminorm (q-norm), 0 < q ≤ 1, if ‖λu‖V = |λ |q‖u‖V
for all u ∈ V and for all real number λ . We observe that if (V,‖ · ‖V ) is an F-
seminormed space and u is an element of V, then the function

[0,+∞[3 t→ ϕ(t) = ‖tu‖V ∈ R

is continuous and non-decreasing.
In the following we assume that (E,‖ · ‖E) is an F-normed space, Ω a

nonempty set, A a subalgebra of the power set P(Ω) of Ω, η : A −→ [0,+∞]
a submeasure, (i.e., a monotone, subadditive function with η( /0) = 0), and η̃ :
P(Ω)−→ [0,+∞] the submeasure defined by η̃(B) = inf{η(A) : B⊂A and A∈
A }. Let EΩ be the linear space of all E-valued functions on Ω. For f ∈ EΩ we
denote by ‖ f‖E the function x→ ‖ f (x)‖E and we put {‖ f‖E ≥ a} = {x ∈ Ω :
‖ f (x)‖E ≥ a}. Then

‖ f‖0 = inf{a > 0 : η̃({‖ f‖E ≥ a})≤ a}

defines a Riesz group pseudonorm on EΩ, i.e., ‖0‖0 = 0,‖ f +g‖0≤‖ f‖0+‖g‖0
and ‖ f‖E ≤ ‖g‖E =⇒ ‖ f‖0 ≤ ‖g‖0 for each f ,g ∈ EΩ, (see [3], [4] for more
details).
Moreover set A0 = {A ∈A : η(A)<+∞}. We will denote by

S(A0,E) = span{χAy : y ∈ E and A ∈A0}

the linear space of all E-valued A0-simple functions on Ω, where χA denotes the
characteristic function of a set A defined on Ω. In the remainder of this paper
L = (L,‖ · ‖L) stands for an F-seminormed subspace of EΩ with the following
properties:

(a) if A ∈A and f ∈ L, then χA f ∈ L;
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(b) S(A0,E) is a linear subspace of L dense in (L,‖ · ‖L);

(c) if A ∈A0 and f ∈ L, then lim
η(B)→0

A⊇B∈A

‖χB f‖L = 0;

(d) there is k ≥ 1 such that ‖ f‖E ≤ ‖g‖E implies ‖ f‖L ≤ k‖g‖L for each
f ,g ∈ L.

If the condition (d) is satisfied for k = 1, L is a Riesz F-seminormed space.
Throughout we denote by Bε(EΩ) = { f ∈ EΩ : ‖ f‖0 ≤ ε} and by Bε(L) = { f ∈
L : ‖ f‖L ≤ ε} for ε > 0.

Definition 2.1. Let M ⊆ EΩ; then

β0(M) := inf{ε > 0 : there is a finite subset F of M such that M⊆F+Bε(EΩ)}.

Let M ⊆ L; then

γL(M) := inf{ε > 0 : there is a finite subset F of L such that M ⊆ F +Bε(L)}.

The set functions β0 and γL are, respectively, the inner Hausdorff measure of
noncompactness in (EΩ,‖ ·‖0) and the classical Hausdorff measure of noncom-
pactness in (L,‖ · ‖L).
Clearly, M ⊆ EΩ is ‖ ·‖0-totally bounded (‖ ·‖0-tb, for short) iff β0(M) = 0, and
M ⊆ L is ‖ · ‖L-totally bounded (‖ · ‖L-tb, for short) iff γL(M) = 0.

3. Main results

In this section we introduce a quantitative characteristic which measures the
degree of non equiabsolute continuity for a subset of the space L.

Definition 3.1. Let M ⊆ L. We define for A ∈A0 and δ > 0 :

ΠL (M,A,δ ) = max

sup
f∈M

∥∥χΩ\A f
∥∥

L ,sup
f∈M

sup
A⊇B∈A

η(B)≤δ

‖χB f‖L

 ,

ΠL (M,A) = lim
δ→0

ΠL (M,A,δ ) ,

ΠL (M) = inf
A∈A0

ΠL (M,A) .

A subset M of L is called ‖ ·‖L-equiabsolutely continuous ( ‖ ·‖L-eac, for short)
if ΠL (M) = 0.
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Remark 3.2. Let s ∈ S(A0,E) and set As = {x ∈Ω : s(x) 6= 0} . Then As ∈A0
and ‖χΩ\Ass‖L = 0. Hence, by (c), ΠL({s} ,As) = 0.

We are now in a position to prove the main results of this note.

Theorem 3.3. Let M ⊆ L. Then

ΠL(M)≤ kγL(M).

Proof. The inequality is trivially true if γL(M) = sup
f∈L
‖ f‖L. Assume that

γL(M) < sup
f∈L
‖ f‖L. Let α > γL(M). By (b) there are s1, ...,sn ∈ S(A0,E) such

that M ⊆
n⋃

i=1
(si +Bα(L)). Set Ai = {x ∈Ω : si(x) 6= 0} for i = 1, ...,n. Clearly

A =
n⋃

i=1

Ai ∈A0. Let f ∈M . Choose i∈ {1, ...,n} such that ‖ f −si‖L ≤ α . Then

‖χΩ\A f‖L = ‖χΩ\A( f − si)‖L ≤ k‖ f − si‖L ≤ kα. (1)

Moreover, let δ > 0. For B⊆ A,B ∈A and η(B)≤ δ , we have

‖χB f‖L ≤ ‖χB( f − si)‖L +‖χBsi‖L ≤ k‖ f − si‖L +‖χBsi‖L

≤ kα + max
j=1,...,n

ΠL(
{

s j
}
,A,δ ). (2)

Having in mind Remark 3.2, by (1) and (2) we get

ΠL(M,A)≤ kα + max
j=1,...,n

ΠL(
{

s j},A) = kα + max
j=1,...,n

‖χΩ\As j‖L = kα,

hence ΠL(M)≤ kα, and therefore ΠL(M)≤ kγL(M).

Theorem 3.4. Let M ⊆ L, A ∈A0 and suppose that β0(χAM)< sup
y∈E
‖y‖E . Then

γL(M)≤ 3 lim
δ→β0(χAM)+

ΠL(M,A,δ )+ k ‖χAy0‖L, (3)

for some y0 ∈ E such that ‖y0‖E = β0(χAM). In fact, for every y ∈ E satisfying
‖y‖E > β0(χAM), there is a t0 ∈ [0,1[ such that ‖t0y‖E = β0(χAM) and such
that the inequality (3) is satisfied by y0 = t0y. In particular, if L is a Riesz F-
seminormed space, the inequality (3) is satisfied by any y0 ∈E such that ‖y0‖E =
β0(χAM).



TOTAL BOUNDEDNESS IN VECTOR-VALUED . . . 175

Proof. Fix an element y ∈ E such that ‖y‖E > δ0 = β0(χAM). Then, by the
definition of δ0, for every δ ∈]δ0,‖y‖E ] there are a positive number σ ∈ [δ0,δ [
and functions f1, ..., fn ∈M such that

χAM ⊆
n
∪

i=1
(χA fi +Bσ (EΩ)).

Fix f ∈M and let i∈ {1, ...,n} such that ‖χA( f − fi)‖0 ≤ σ . Set D f ={‖χA( f −
fi)‖E > σ}, then D f ⊆ A and η̃(D f ) ≤ σ . Hence, by the definition of η̃ there
exists C f ∈A such that D f ⊆C f and η(C f )≤ δ . Then B f = A∩C f ⊆ A, B f ∈
A , η(B f ) ≤ δ and χB f χA fi = χB f fi. Set aδ = ΠL(M,A,δ ). By the definition
of ΠL(M,A,δ ) we have ‖χΩ\A f‖L ≤ aδ , ‖χB f f‖L ≤ aδ and ‖χB f fi‖L ≤ aδ .
Therefore

‖ f −χA fi‖L ≤ ‖χΩ\A f‖L +‖χA( f − fi)‖L

≤ ‖χΩ\A f‖L +‖χA\B f ( f − fi)‖L +‖χB f f‖L +‖χB f fi‖L

≤ 3aδ +‖χA\B f ( f − fi)‖L. (4)

Since the function ϕ : [0,1] −→ [0,+∞[ defined by ϕ(t) = ‖ty‖E is continuous
and ϕ([0,1]) = [0,‖y‖E ], there is tδ ∈ [0,1] such that ‖tδ y‖E = δ . Clearly the
function χAtδ y ∈ L. Moreover, it is easy to see that

‖χA\B f ( f − fi)‖E ≤ ‖χAtδ y‖E .

Then
‖χA\B f ( f − fi)‖L ≤ k‖χAtδ y‖L .

By (4) it follows that

γL(M)≤ 3aδ + k ‖χAtδ y‖L . (5)

Now, since the function ϕ is non-decreasing, we have that

]δ0,‖y‖E ] 3 δ → tδ ∈ [0,1]

is a strictly increasing function and

lim
δ→δ

+
0

tδ = t0 = max{t ∈ [0,1] : ϕ(t) = δ0}.

Thus, by the continuity of the function

[0,1] 3 t→ ψ(t) = ‖χAty‖L ∈ R,

we have
lim

δ→δ
+
0

‖χAtδ y‖L = ‖χAy0‖L,
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where y0 = t0y. Therefore, by (5), the inequality

γL(M)≤ 3 lim
δ→δ

+
0

aδ + k ‖χAy0‖L ,

that is inequality (3), holds and ‖y0‖E = β0(χAM). This accomplishes the proof.

Corollary 3.5. Let M ⊆ L, A ∈A0, and suppose χAM ‖ · ‖0-tb. Then

γL(M)≤ 3ΠL(M,A).

The following corollary of the Theorem 3.4 gives a sufficient condition for the
total boundedness of a subset of L.

Corollary 3.6. Let M be a ‖ · ‖L-eac subset of L and suppose that χAM is
‖ · ‖0-tb for all A ∈A0. Then M is ‖ · ‖L-tb.

Definition 3.7. (see [15, Chapter III], [17]) A space L has the W -property if

fn
‖·‖L−→ 0 implies χA fn

‖·‖0−→ 0 for all sequences ( fn) of elements of L and for all
A ∈A0.

Proposition 3.8. If the space L has the W-property and if M is a subset of L
‖ · ‖L-tb , then χAM is ‖ · ‖0-tb for all A ∈A0.

Proof. Let M be ‖ · ‖L-totally bounded and let A ∈ A0. By the W -property we
have that

for all ε > 0 there exists δ > 0 such that χABδ (L)⊂ Bε(EΩ). (6)

Now fix ε > 0. By (6) there exists δ > 0 such that χABδ (L)⊂ Bε(EΩ). Since M
is ‖ · ‖L-tb there exists a finite subset F of L such that M ⊂ F +Bδ (L). Hence
χAM ⊂ χAF +χABδ (L)⊂ χAF +Bε(EΩ), and therefore χAM is ‖ · ‖0-tb.

Combining Theorem 3.3 and Proposition 3.8, and having in mind Corollary 3.6,
we obtain the following Vitali-type total boundedness criterion.

Theorem 3.9. Assume that the space L has the W-property. Then a subset M of
L is ‖ · ‖L-tb if and only if it is ‖ · ‖L-eac and χAM is ‖ · ‖0−tb for all A ∈A0.

In the setting of q-seminormed spaces, 0 < q≤ 1, we have the following corol-
laries of the Theorem 3.4.
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Corollary 3.10. Assume that E is a q-normed space, 0 < q≤ 1. Let M ⊆ L and
A ∈A0, then

γL(M)≤ 3 lim
δ→β0(χAM)+

ΠL(M,A,δ )+ k ‖β0(χAM)
1
q χAy0‖L,

where y0 ∈ E and ‖y0‖E = 1.

Corollary 3.11. Assume that L is a p-normed space, 0 < p ≤ 1, and E is a
q-normed space, 0 < q≤ 1. Let M ⊆ L and A ∈A0, then

γL(M)≤ 3 lim
δ→β0(χAM)+

ΠL(M,A,δ )+ k β0(χAM)
p
q ‖χAy0‖L,

where y0 ∈ E and ‖y0‖E = 1.

4. Example

In this section we give an example of a class of F-seminormed spaces of type L
satisfying the W -property. We consider the “ Orlicz spaces ” LN introduced in
[6] in the same way as Dunford and Schwartz [7, Chapter III] define the space of
integrable functions and the integral for integrable functions. We briefly recall
the definition of the space LN . Let ‖ · ‖ : S(A0,R) −→ [0,+∞[ be a Riesz F-
seminorm such that η(A) = ‖χA‖ for all A ∈ A0 and N : [0,+∞)→ [0,+∞)
a continuous, strictly increasing function such that N (0) = 0 and N(s+ t) ≤
n̄(N(s)+N(t)) for all s, t ≥ 0. Assume that (E,‖ · ‖E) is a complete F-normed
space and let us denote by L0 the closure of S(A0,E) in (EΩ,‖ · ‖0). For s ∈
S(A0,E), ‖s‖N is defined by ‖s‖N = ‖N ◦‖s‖E‖. Then LN (see [6, p.92]) is the
linear space of all functions f ∈ L0, for which there is a ‖·‖N- Cauchy sequence
(sn) in S(A0,E) converging to f with respect to ‖ · ‖0. Such a sequence (sn) of
simple functions is said to determine f . If (sn) is a determining sequence for
f ∈ LN , ‖ · ‖N is defined by ‖ f‖N = lim

n→+∞
‖sn‖N . The function ‖ · ‖N has the

following properties:

‖ f +g‖N ≤ 2n̄max{‖ f‖N , ‖g‖N}, lim
n→+∞

‖1
n

f‖N = 0,‖λ f‖N ≤ ‖ f‖N ,

for all f ,g ∈ LN and for all real number λ with |λ | ≤ 1, therefore ‖ · ‖N is a
∆-seminorm on LN in the sense of [9, p.2]. Moreover, the space (LN ,‖ · ‖N)
satisfies the properties (a)-(c) of Section 2 and (see [6, Proposition 2.6])

‖ f‖E ≤ ‖g‖E implies ‖ f‖N ≤ ‖g‖N , for each f ,g ∈ LN .
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Set L = LN , then by [9, Theorem 1.2], if p is choosen such that 2
1
p = 2n̄ then

the formula

‖ f‖L = inf
{ n

∑
i=1
‖ fi‖p

N :
n

∑
i=1

fi = f
}

defines an F-seminorm on L generating the same topology of the ∆-seminorm
‖ · ‖N .
Further, being 1

4‖ f‖p
N ≤‖ f‖L≤‖ f‖p

N (see [9, Lemma 1.1]), using (4) we obtain
that

‖ f‖E ≤ ‖g‖E implies ‖ f‖L ≤ 4‖g‖L, for each f ,g ∈ LN . (7)

Hence the space (L,‖ · ‖L) is a F-seminormed subspace of EΩ which satisfies
the properties (a)-(d) of Section 2. Moreover, as consequence of [6, Theorem
2.7], it has the W -property.
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