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REMARK ON THE NUMBER OF SOLUTIONS
IN THE THERMISTOR PROBLEM

GIOVANNI CIMATTI

In this paper we study a nonlocal thermistor problem which models
two simple electrical circuits. We prove that, under certain assumptions
on the electrical conductivity, multiple states of thermal and electrical
equilibria (typically three) are possible. All mathematical methods used
are elementary.

1. Introduction

The term thermistor refers to a three-dimensional body made up of substances
conducting both heat and electricity (typically a mixture of semiconductors) for
which the thermal and electrical conductivities depend sharply on the tempera-
ture [10] and [15]. We shall represent the body of the thermistor by Ω, an open
and bounded subset of R3. The regular boundary of Ω consists of three surfaces
Γ1, Γ2 and Γ0 (Γ1 ∩Γ2 = /0). Γ1 and Γ2 represent the electrodes to which a
difference of potential is applied. Γ0 is the part of the boundary which is insu-
lated thermally and electrically. In this paper we treat a nonlocal boundary value
problem for a system of P.D.E. which models two different circuits of which the
thermistor is a part. In the first circuit the thermistor is in series with an ordinary
resistor RS and with an ideal generator of a difference V of potential. RS limits
the maximum of the current which may flow and may also represent the internal
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resistance of the generator. In the second circuit the thermistor is in parallel
with the ordinary resistor RP and with an ideal generator of a constant current I.
In this second case RP limits the maximum of the difference of potential which
may exist across the generator and the thermistor. In any practical situation we
have RS 6= 0 and RP 6= 0. Let J be the electrical current density in Ω. The total
current crossing the thermistor in the unit time is given by

i =
∫

Γ2

J ·n dΓ,

where n is the unit vector normal to Γ2 pointing outward with respect to Ω. In
the first circuit we have

V = X +RS

∫
Γ2

J ·n dΓ, (1.1)

where V is the fixed difference of potential given by the generator, whereas X is
the unknown difference of potential existing between Γ1 and Γ2. In the second
circuit we have, if I is the constant current provided by the generator,

I =
X
RP

+
∫

Γ2

J ·n dΓ,

or equivalently

RPI = X +Rp

∫
Γ2

J ·n dΓ. (1.2)

By the laws of Ohm and Fourier we have

J =−σ(u)∇ϕ (1.3)

and

q =−κ(u)∇u, (1.4)

where σ is the electrical conductivity, κ the thermal conductivity (both given
functions of the temperature u), ϕ(x), x = (x1,x2,x3) ∈ Ω̄ the electric potential
and q the density of the heat flow. Conservation of charge and energy imply

∇ ·J = 0 (1.5)

and

∇ ·q = E ·J (E =−∇ϕ), (1.6)

where E is the electric field, and the term in the right hand side of (1.6) reflects
the Joule heating. Setting A = V and R = RP in (1.1) and A = RPI in (1.2) we
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arrive, substituting (1.3) in (1.5) and (1.4) in (1.6), at the same mathematical
model (P) for the determination of the temperature u(x) and of the potential
ϕ(x) in Ω for both the circuits.

Problem (P). Given σ(u), κ(u) ∈C0([0,∞)) such that

σ(u)> 0, κ(u)> 0 (1.7)

and the positive number A, find u(x) ∈C2(Ω)∩C0(Ω̄), ϕ(x) ∈C2(Ω)∩C0(Ω̄)
and the constant X such that

∇ · (σ(u)∇ϕ) = 0 in Ω (1.8)

ϕ = 0 on Γ1, ϕ = X on Γ2 (1.9)
∂ϕ

∂n
= 0 on Γ0 (1.10)

−∇ · (κ(u)∇u) = σ(u)|∇ϕ|2 in Ω (1.11)

u = 0 on Γ1∪Γ2 (1.12)
∂u
∂n

= 0 on Γ0 (1.13)

A = X +R
∫

Γ2

J ·n dΓ. (1.14)

At first sight problem (P) appears to involve a quadratic nonlinearity in the
gradient. However, for classical solutions of problem (P) we have, taking into
account (1.8),

σ(u)|∇ϕ|2 = ∇ · (ϕσ(u)∇ϕ).

Thus equation (1.11) can be rewritten in the following full divergence form

∇ · (κ(u)∇u+ϕσ(u)∇ϕ) = 0. (1.15)

Hereafter we take in problem (P) equation (1.15) instead of (1.11). We also
consider the following related problem (PO)

∇ · (σ(u)∇ϕ) = 0 in Ω

ϕ = 0 on Γ1, ϕ = X on Γ2

∂ϕ

∂n
= 0 on Γ0 (1.16)

∇ · (κ(u)∇u+ϕσ(u)∇ϕ) = 0

u = 0 on Γ1∪Γ2

∂u
∂n

= 0 on Γ0, (1.17)
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where now X is a given constant, expressing a directly applied potential to the
thermistor. To problem (PO) the results of the papers [4] and [5] are applicable.
They are based on the following definition of solution.

Definition. If (u(x),ϕ(x)) is a classical solution of problem (PO) and there
exists a C2([0,x]) function U (ϕ) such that

u(x) = U (ϕ(x)) (1.18)

we say that (u(x),ϕ(x)) is a functional solution of problem (P).

Thus functional solutions are special classical solutions. This definition lim-
its the class of problems for which the search of this kind of solutions is mean-
ingful. For example, if in problem (P) we take, instead of (1.17), the condition

κ
∂u
∂n

= h(ub−u) on Γ0, ub and h positive constants (1.19)

this new problem would be intractable with the present method in view of (1.16)
and of the functional relation (1.18). Moreover, from the physical point of view,
the condition (1.18) implies that the current density J and the density of the heat
flow q are parallel in every point of Ω. On the positive side, the consideration
of functional solutions is justified since their search is possible with a two-point
problem for an ordinary differential equation depending on a parameter (see
(2.10) below) and also by the following theorem [5]. Functional solutions are
also useful in other problems of mathematical physics [6], [7].

Theorem 1.1. All classical solutions of problem (PO) are functional solutions.
Moreover, problem (PO) has a unique classical solution.

We note that Γ1 and Γ2 are equipotential surfaces. Thus the boundary con-
ditions (1.9) are the only physically meaningful. Moreover, the boundary condi-
tion (1.10) follows from the assumption that Γ0 is electrically insulated, which
means that

J ·n = 0 on Γ0.

The problem of the electrical heating of a conductor whose conductivities
depend on the temperature is over one century old (see [9] and [12]). In the book
of F. Llewellyn Jones [14] solutions in which J is parallel to q are considered in
the perspective of the engineering applications. From the point of view of exis-
tence of weak solutions, problems like (PO), with general boundary conditions
on the potential and the temperature, have been the object of many papers. We
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quote among others [2], [8], [11] and references therein. However the unique-
ness of solutions is proved, for general boundary conditions, only for sufficiently
small data [11].

Regarding problem (P) a result, valid only in a special case, on the number
of solutions is presented in [3]. New in this paper is the formulation in terms
of a two point problem (2.10) which greatly clarify the situation and Lemma
2.2 which, with formula (2.16), permits, in concrete cases, the calculation of the
number of solutions. Also new it is the asymptotic formula (2.20). Moreover,
the model studied here treats the case of a thermistor connected to a current
generator. This situation is not covered by [3].

2. The basic equation.

For a classical solution of problem (P) the estimate

u(x)≥ 0 in Ω (2.1)

follows immediately from the maximum principle applied to equation (1.11).
This is the reason why σ(u) and κ need to be defined only for u≥ 0 as in (1.7).
For later use we define the map

U = F (u) =
∫ u

0

κ(t)
σ(t)

dt, u≥ 0

and assume ∫
∞

0

κ(t)
σ(t)

dt = ∞. (2.2)

F maps biunivocally [0,∞) onto [0,∞). Thus U = F (u) gives a new scale on
which we can measure the temperature. Let us consider the problem

∆z = 0 in Ω, z = 0 on Γ1, z = 1 on Γ2,
∂ z
∂n

= 0 on Γ0 (2.3)

k =
∫

Γ2

∂ z
∂n

dΓ. (2.4)

By the maximum principle in the form of Hopf [16] we have k > 0.

Theorem 2.1. If σ(u) and κ(u) satisfy (1.7) and (2.2) all classical solutions
of problem (P) are functional solutions and there exists at least one of such
solutions. These solutions are in one-to-one correspondence with the solutions
X ∈ R1 of the equation
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A = X +Rk
∫ X

0
σ

(
F−1

(Xt
2
− t2

2

))
dt.

If, in addition to (1.7) and (2.2), σ(u) ∈C1([0,∞)), κ(u) ∈C1([0,∞)) and

σ
′(u)≥ 0, (2.5)

the functional solution is also unique.

Proof. Let X be a fixed positive constant. By Theorem 1.1 all classical solutions
of the problem

∇ · (σ(u)∇ϕ) = 0 in Ω (2.6)

ϕ = 0 on Γ1, ϕ = X on Γ2,
∂ϕ

∂n
= 0 on Γ0 (2.7)

∇ · (κ(u)∇u+ϕσ(u)∇ϕ) = 0 in Ω (2.8)

u = 0 on Γ1∪Γ2,
∂u
∂n

= 0 on Γ0 (2.9)

are functional solutions and the solution is unique. Moreover, the function
U (ϕ) entering in the definition (1.18) can be obtained as solution of the two-
point problem

κ(U )
dU

dϕ
+ϕσ(U ) = γσ(U ), U (0) = 0, U (X) = 0, (2.10)

where γ is a constant to be determined in order to satisfy both the boundary
conditions. Problem (2.10) can be easily solved by separation of variables since

1
σ(u) is an integrating factor for it. We find as solution of problem (2.10)

F (U ) =
ϕX
2
− ϕ2

2
,

where

F (U ) =
∫ U

0

κ(t)
σ(t)

dt.

Hence

U (ϕ) = F−1

(
Xϕ

2
− ϕ2

2

)
.

From (1.8) we have, for the determination of ϕ(x), the problem
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∇ ·
(

σ

(
F−1

(Xϕ

2
− ϕ2

2

))
∇ϕ

)
= 0 in Ω (2.11)

ϕ = 0 on Γ1, ϕ = X on Γ2,
∂ϕ

∂n
= 0 on Γ0. (2.12)

To this problem we can apply the transformation

w = G(ϕ) =
∫

ϕ

0
σ

(
F−1

(Xt
2
− t2

2

))
dt

which gives

∇w = σ

(
F−1

(Xϕ

2
− ϕ2

2

))
∇ϕ. (2.13)

By (2.11) and (2.12) we have

∆w = 0 in Ω

and

w = 0 on Γ1, w = G(X) =
∫ X

0
σ

(
F−1

(Xt
2
− t2

2

))
dt,

∂w
∂n

= 0 on Γ0.

If z(x) is the solution of (2.3) we obtain

w(x) = z(x)G(X) = z(x)
∫ X

0
σ

(
F−1

(Xt
2
− t2

2

))
dt. (2.14)

We now rewrite the nonlocal condition (1.14). On Γ0 we have, from (2.13) and
(2.14),

J ·n =
∂w
∂n

=
∫ X

0
σ

(
F−1

(Xt
2
− t2

2

))
dt

∂ z
∂n

.

Therefore (1.14) becomes, by (2.4),

A = X +Rk
∫ X

0
σ

(
F−1

(Xt
2
− t2

2

))
dt. (2.15)

Thus the solutions of problem (P) are in a one-to-one correspondence with the
solutions of equation (2.15). On the other hand, if we define

f (X) = X +Rk
∫ X

0
σ

(
F−1

(Xt
2
− t2

2

))
dt−A,
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we have f (0) = −A < 0 and f (X) > 0 for all X ≥ A. Hence a solution to
problem (P) always exists. Besides, if σ ′(u) ≥ 0 the solution is also unique.
For, we have

f ′(X) = 1+Rkσ(0)+Rk
∫ X

0

σ ′
(
F−1

(
Xt
2 −

t2

2

))
σ

(
Xt
2 −

t2

2

)
t

2κ

(
Xt
2 −

t2

2

) dt > 0.

To treat cases in which σ ′(u) does not satisfy (2.5) it is useful to rewrite
(2.15) in a more convenient form using the following

Lemma 2.2. Define

σ̃(t) = σ(F−1(t)).

We have

∫ X

0
σ

(
F−1

(Xt
2
− t2

2

))
dt =

√
2
∫ X2

8

0

σ̃(z)√
X2

8 − z
dz. (2.16)

Proof. With the change of variable of integration ζ = t− X
2 in the left hand side

of (2.16) we have

∫ X

0
σ

(
F−1

(Xt
2
− t2

2

))
dt = 2

∫ X
2

0
σ

(
F−1

(X2

8
− ζ 2

2

))
dζ . (2.17)

With the further change z = X2

8 −
ζ 2

2 in (2.17) we obtain

2
∫ X

2

0
σ

(
F−1

(X2

8
− ζ 2

2

))
dζ =

√
2
∫ X2

8

0

σ̃(z)√
X2

8 − z
dz.

Hence (2.16) follows.

By Theorem 2.1 and Lemma 2.2 the solutions of problem (P) are in a one-
to-one correspondence with the solutions X of the equation

A = X +RkF(X), (2.18)

where
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F(X) =
√

2
∫ X2

8

0

σ̃(z)√
X2

8 − z
dz. (2.19)

We note that F(X) is well-defined for X > 0 since

F(X)≤ X max
{

σ̃(z), z ∈
[
0,

X2

8

]}
.

The following development of F(X) in powers of X could be useful in applying
equation (2.18). Assume σ̃(z) ∈Cn([0,∞)). With n integration by parts in the
right hand side of (2.19) we have

F(X) = σ̃(0)+
1

22·1
σ̃ (1)(0)

1 ·3
X3 +

1
22·2

σ̃ (2)(0)
1 ·3 ·5

X5+ (2.20)

1
22·3

σ̃ (3)(0)
1 ·3 ·5 ·7

X7 + ...+
1

22·n
σ̃ (n)(0)

1 ·3 ·5 ·7... · (2n−1)(2n+1)
X2n+1 +Rn(X),

where

Rn(X) =

√
2 22n−1

1 ·3 · ... · (2n−1)(2n+1)

∫ X2
8

0

(X2

8
− z
) 2n+1

2
σ̃
(n+1)(z) dz.

If

|σ̃ (n)(z)| ≤ L

we have

|Rn(X)| ≤ L
√

2
23(2n+3)(1 ·3 ·5 · .... · (2n−1)(2n+3))

X2n+3.

Thus the series converges as n→ ∞ in [0,A].

3. The “one-or-three” solutions case.

Three states of thermal and electrical equilibria with the circuits studied here
occur in reality with industrially made thermistors (see [15]). It is therefore of
interest to exhibit specific cases of conductivity laws which give the one-or-three
solutions situation on the ground of the present model. To this end we have the
following
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Theorem 3.1. Let σ̃(z) ∈C1([0,∞)) be such that the function F(X) defined by
(2.19) satisfies

lim
X→∞

F(X) = 0. (3.1)

If there exists a unique XM ∈ (0,∞) such that

F ′(XM) = 0, F ′(X)> 0 in [0,XM), F ′(X)< 0 in (XM,∞)

and

lim
X→∞

F ′(X) = 0, (3.2)

then

0 > inf{F ′(X), X ∈ [0,∞)}>−∞.

Let µ2 =− inf{F ′(X), X ∈ [0,∞)}. If

Rkµ
2 < 1, (3.3)

problem (P) has one and only one solution. If

Rkµ
2 > 1, (3.4)

then there exist two numbers A1 and A2 with 0 < A2 < A1 such that, if

0≤ A < A2 or A > A1,

problem (P) has one and only one solution. If

A2 < A < A1,

then problem (P) has exactly three solutions.

Proof. We have F(0) = 0 and F(X)> 0 for all X > 0. We claim that

inf{F ′(X), X ∈ [0,∞)}>−∞.

By contradiction, assume

inf{F ′(X), X ∈ [0,∞)}=−∞. (3.5)

Let ε > 0. By (3.2) there exists Xε > 0 such that F ′(X)>−ε for all X > Xε . On
the other hand, in [XM,Xε ] we have inf{F ′(X), X ∈ [0,∞)}>−∞. Hence (3.5)
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is not possible. By Theorem 2.1 the solutions of problem (P) are in a one-to-one
correspondence with the solutions of the equation

X +Rk F(X) = 0.

If L(X) = X +Rk F(X), by (3.1) we have

lim
X→∞

L(X) = ∞. (3.6)

Moreover L′(X) = 1 + RkF ′(X). Thus, if (3.3) holds, we have L′(X) > 0.
Since L(0) = 0 we conclude, by (3.6), that (P) has one and only one solu-
tion. If (3.4) holds there exist two numbers X1 and X2 with 0 < X1 < X2 such
that RkF ′(X) < −1 in (X1,X2). Therefore L′(X) > 0 in (0,X1)∪ (X2,∞) and
L′(X)< 0 in (X1,X2). Hence L(X) is strictly increasing in (0,X1)∪ (X2,∞) and
strictly decreasing in (X1,X2). Thus X1 is a strict relative maximum and X2 a
strict relative minimum for L(X). We conclude that problem (P) has exactly
three solutions if A2 = L(X2)< A < A1 = L(X1).

As an application of the theorem we take

σ̃(z) = e−z. (3.7)

With a direct calculation we find in this case

F(X) = 2
√

2 e
−X2

8

∫ X
2
√

2

0
et2

dt. (3.8)

It is easy to verify that (3.8) satisfies all the assumptions of Theorem 3.1. There-
fore, if (3.7) holds, which is compatible with the empirical conductivity laws
reported in [15], the “one or three solutions” situation occurs.

Remark 3.2. It would be interesting to prove a similar “one or three solutions”
result assuming (1.19) as boundary condition for the temperature.
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