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RIEMANN SURFACES WITH A QUASI LARGE ABELIAN
GROUP OF AUTOMORPHISMS

ROBERTO PIGNATELLI - CARMEN RASO

In this work we classify all Riemann surfaces having a quasi large
abelian group of automorphisms, i.e. having an abelian group of auto-
morphisms of order strictly bigger than 2(g−1), where g denotes the
genus of the Riemann surface.

1. Introduction

In 1890 Schwartz [18] proved that a compact Riemann surface of genus g ≥ 2
has a finite number of automorphisms.
A fundamental tool for the study of the groups of automorphisms of Riemann
surfaces is the so-called Riemann-Hurwitz formula proved in 1893 [8]. By
applying the formula Hurwitz established that a compact Riemann surface of
genus g≥ 2 has at most 84(g−1) automorphisms.
Better bounds have been found with more restrictive assumptions: Wiman [19]
proved in 1879 the upper bound 4g+2 for a cyclic group of automorphisms of
Riemann surfaces. In [13] Nakajima showed that an abelian group of automor-
phisms can’t have order larger than 4g+4.
Given a compact Riemann surface C of genus g ≥ 2 and G group of automor-
phisms of C, G is called large if |G|> 4(g−1).

Entrato in redazione: 20 luglio 2011

AMS 2010 Subject Classification: primary 14H37, secondary 14H30.
Keywords: automorphism groups, Galois covers, Riemann Existence Theorem
Some of the results of this paper belong to the thesis of C. Raso.



78 ROBERTO PIGNATELLI - CARMEN RASO

Kulkarni proved in [9] by using the formula of Riemann-Hurwitz, that if G is a
large group of automorphisms of C and C′ =C/G, then C′ has genus g = 0 and
the projection map C→C′ has 3 or 4 critical values.
Clelia Lomuto applied Pardini’s Theorem ([10]) about Galois covering to the
result of Kulkarni in order to obtain a complete list of Riemann surfaces with a
large abelian group of automorphisms.
In this paper we will extend the results of Lomuto by weakening the hypothesis
|G|> 4(g−1) using an elementary method based on the classic Riemann exis-
tence theorem.
We prove that if G is an abelian group of order G >

∣∣2g− 2
∣∣ then C/G is a

sphere. This motivates us in introducing the definition of quasi large: we will
say that a group of automorphisms is quasi large if G > 2(g−1). Our main
result is the classification of all the Riemann surfaces with a quasi-large group
of automorphisms.

Acknowledgements: The authors are indebted with the referee for many
useful comments which improved this paper on both the mathematical and the
presentational side. In particular the referee suggested to use Lemma 4.3, sim-
plifying a lot our original proof.

2. Riemann surfaces having a large group of automorphisms

In this section we’ll briefly recall some facts about group actions on Riemann
surfaces. For further details, see [11].
Let G be a finite group acting holomorphically and effectively on a Riemann
surface C, and fix a point P ∈C. Then:

(a) the stabilizer subgroup HP :=
{

σ ∈ G
∣∣σP = P

}
is cyclic

(b) there is a finite number of points in C having a nontrivial stabilizer;

(c) there is a unique structure of Riemann surface on the quotient C/G such
that the quotient map p : C→C/G is holomorphic. The degree of p is |G|.
Moreover, assume that HP is nontrivial and let g be a generator of the sta-
bilizer subgroup HP. Then there is a local coordinate z on C centered at P
such that g(z) = λ z, where λ is a primitive |HP|th root of unity.

A map as above is called a Galois cover with Galois group G; if G is abelian,
we say that p is an abelian cover. These maps are special |G|-sheeted branched
covers of C/G.
Let Q1, . . . ,Qk be the critical values of p, and let us associate to each of these
Qi their ramification index li = |HP|, where HP is the stabilizer subgroup of any
P ∈ p−1 (Qi).
Note that the ramification index of a critical value is well-defined since if P
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and P′ are points of C with p(P) = p(P′), then their stabilizers HP and HP′ are
conjugated. In this special case the Riemann-Hurwitz formula can be written as
follows:

2gC−2 = |G|

(
2gC/G−2+

k

∑
i=1

(
1− 1

li

))
(1)

We assume G abelian. Then HP = HP′ and therefore we can define, for every
Qi, HQi := HP for a randomly chosen P ∈ p−1(Qi). Applying the formula (1)
and Pardini’s Theorem, Lomuto proved in [10]

Theorem 2.1. Let C be a Riemann surface and G a large abelian group of auto-
morphisms of C and C′=C/G. Then gC′ = 0 and the projection map p : C−→C′

has 3 or 4 critical values. The possible triples (group, ramification indices,
genus of the Riemann surfaces) are listed in table 1.

Abelian group Ramification indices Genus of the curve C: g
Four critical values

1 Z6 {2,2,3,3} 2
Three critical values

2 Z4g+2 {2,2g+1,4g+2} g≥ 2
3 Z4g {2,4g,4g} g≥ 2
4 Z12 {3,4,12} 3
5 Z15 {3,5,15} 4
6 Z6 {3,6,6} 2
7 Z21 {3,7,21} 6
8 Z9 {3,9,9} 3
9 Z5 {5,5,5} 2

10 Z2×Z2g+2 {2,2g+2,2g+2} g≥ 2
11 Z3×Z9 {3,9,9} 7
12 Z3×Z6 {3,6,6} 4
13 Z4×Z4 {4,4,4} 3
14 Z5×Z5 {5,5,5} 6

Table 1: The table shows a list of abelian covers of P1. The second column represents

the large abelian group G, the third the ramification indices and the fourth the genus of

the Riemann surfaces C.

3. The method

In this section we quickly describe the method, based on the classical Riemann
Existence Theorem, we use to describe and study finite group actions on Rie-
mann surfaces. The method has been described in all details by the second
author in [17], see also [7], [1], [2], [16], [5], [12], [3], [15], [4].
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Let G be a finite subgroup of automorphisms acting on the Riemann surface
C with k critical values Q1, . . . ,Qk and p : C −→C′ := C/G the corresponding
projection map. G is also a group of automorphisms of the unbranched cover
p : C→ C′ ((C, p) for short) where C′ := C′ \ {Q1, . . . ,Qk}, C = p−1(C′) and
p := p

∣∣
C\p−1({Q1,...,Qk})

.

We fix a point x̃0 ∈ C and define x0 := p(x̃0). The cover (C, p) induces a
monomorphism among the fundamental groups

p∗ : π(C, x̃0)−→ π(C′,x0).

We define H := p∗(π(C, x̃0))< π(C′,x0). Then H /π(C′,x0) and

Aut(C, p)∼= G∼=
π(C′,x0)

H
.

The last isomorphism is equivalent to the existence of a surjective homomor-
phism

ψ : π(C′,x0)−→ G, with ker(ψ) = H.

Recall that the abelianization of the fundamental group of C′ is the first ho-
mology group H1

(
C′,Z

)
. If G is abelian, then ψ factors uniquely through an

homomorphisms ψ ′ : H1

(
C′,Z

)
→ G .

We have associated to each abelian cover(C,G) the following data: the Rie-
mann surface C′ = C/G, points Q1, . . . ,Qk ∈ C′, and the surjection ψ . These
data determine the cover as follows.

Theorem 3.1. For all finite abelian group G, ∀k ∈N,∀l1, . . . , lk ∈N with li ≥ 2,
there exists a bijection between

Galois cover (C,G)
where C is any Riemann surface

with k critical values
and ramification indices

l1, . . . , lk.

←→


Riemann surfaces C′

points Q1, . . . ,Qk ∈C′

and a surjection

ψ ′ : H1

(
C′,Z

)
→ G s. t.

∀i ψ ′(γi) has order li.


Here γi is the class of a small circle positively oriented around Qi.

Indeed, by standard algebraic topology, a triple (C′,{Qi},ψ ′) as above de-
termines uniquely an unbranched Galois cover of complex manifolds p : C→
C′ \{Qi} with Galois group G which, by the classical Riemann Existence The-
orem [7, Theorem 4.10] determines uniquely a Riemann surface C and a Galois
cover (C,G) yielding exactly those data.
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4. Riemann surfaces having a quasi large group of automorphisms

We say that a subgroup G of Aut(C) is quasi large if:

|G|> 2(gC−1) .

Proposition 4.1. Let C be a Riemann surface of genus at least 2, G a quasi
large abelian group of automorphisms of C and C′ =C/G. Then gC′ = 0.

Proof. By the Riemann-Hurwitz formula (1), if G is quasi-large

gC′ +
1
2

k

∑
j=1

(
1− 1

l j

)
<

3
2
. (2)

It follows that gC′ ≤ 1. If gC′ = 1 then k 6= 0 (else gC = 1) and therefore by (2)
k = 1. In this case γ1 is trivial in H1(C

′
), contradicting the fact that, by Theorem

3.1, ψ ′(γ1) has order l1. Therefore gC′ = 0.

The statement is sharp in the sense that the inequality |G| > 2(g−1) can’t
be substituted by any inequality of the form |G|> ag+b with a < 2. We proved
it in [17] by constructing infinitely many examples with elliptic C/G.

The following theorem includes the statement of Proposition 4.1: it’s the
main result of this article.

Theorem 4.2. Let C be a Riemann surface of genus g and G a quasi large
abelian group of automorphisms of C and C′ = C/G. Then gC′ = 0 and the
projection map p : C −→ C′ has 3, 4 or 5 branch points. The possible pairs
(abelian group, ramification indices) are exactly those listed in Table 2.

In the case ∗, f (α,β ,δ1,δ2,δ3) := α

2 {αβδ1δ2δ3−δ1−δ2−δ3} and (α , β ,
δ1, δ2, δ3) is any quintuple of positive integers such that

- ∀i 6= j, gcd(δi,δ j) = 1;

- δ1δ2δ3 (β +1) is even and

- f (α,β ,δ1,δ2,δ3)> 0.

By means of Proposition 4.1 in order to classify the Riemann Surfaces with
an abelian quasi-large group of automorphisms we have to consider only the
case C/G rational. In this case the loops γi considered in Theorem 3.1 have the
property that ∑γi = 0, and therefore their images gi form a set of generators of
G which is spherical, i.e. ∑gi = 0 ∈ G. By Hurwitz formula (1), since we are
only interested in the case gC > 1, the cardinality of this set is at least 3.

Fix integers l1, . . . , lm such that li ≥ 2 and denote by Gl1...lm the quotient
group (Zl1× . . .×Zlm)/ < 1, . . . ,1 > . Let e1, . . . ,em be the standard generators
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Abelian group Ramification indices Genus of C: g≥ 2
Five critical values

(a) Z2×Z2 {2,2,2,2,2} 2
(b) Z2×Z2×Z2 {2,2,2,2,2} 3
(c) Z2×Z2×Z2×Z2 {2,2,2,2,2} 5
(d) Z2×Z6 {2,2,2,3,3} 6

Four critical values
(a) Z2g {2,2,2g,2g} g
(b) Z2×Zg+1 {2,2,g+1,g+1} g
(c) Z2×Z4t+2 {2,2,2t +1,4t +2} 4t, t ∈ Z, t ≥ 1
(d) Z2×Z2×Z2t {2,2,2t,2t} 4t−3, t ∈ Z, t ≥ 2
(e) Z6 {2,3,3,6} 3
(f) Z3×Z6 {2,3,3,6} 7
(g) Z12 {2,3,4,12} 6
(h) Z2×Z12 {2,3,4,12} 11
(j) Z30 {2,3,5,30} 15
(j) Z2×Z6 {2,3,6,6} 6
(k) Z6×Z6 {2,3,6,6} 16
(l) Z4×Z4 {2,4,4,4} 7

(m) Z2×Z4×Z4 {2,4,4,4} 13
(n) Z3 {3,3,3,3} 2
(o) Z3×Z3 {3,3,3,3} 4
(p) Z3×Z3×Z3 {3,3,3,3} 10
(q) Z12 {3,3,4,4} 6
(r) Z15 {3,3,5,5} 8

Three critical values
∗ Zα ×Zαβδ1δ2δ3

{αβδ2δ3,αβδ1δ3,αβδ1δ2} 1+ f (α,β ,δ1,δ2,δ3)

Table 2: The table shows all abelian covers with quasi large group G. The second column

represents G, the third the ramification indices and the fourth the genus of the Riemann

surfaces C.

of Zl1 × . . .×Zlm and let gi ∈ Gl1...lm be the image of ei, i = 1, . . . ,m. Of course
we have ∑gi = 0, i. e., the gi are a set of spherical generators, and ord(gi) |li
for i = 1, . . . ,m. It is easy to check that ord(gi) = li for every i iff the following
condition holds:

∀= 1, . . . ,m, li
∣∣lcm j 6=i (l j) . (3)

So, by the Riemann Existence Theorem, if l1, . . . , lm satisfy (3), then there exists
a Gl1...lm-cover C→ P1 with branching indices l1, . . . , lm.

Conversely let G be a finite abelian group with spherical generators h1, . . .,
hm and set li := ord(hi) . There is a surjective homomorphism f : Gl1...lm → G
such that f (gi) = hi. Since ord(hi) = li, we have ord(gi) = li for i = 1, . . . ,m
and the li satisfy (3). This remark proves the following:
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Lemma 4.3. There exists an abelian cover of P1 with branching indices l1, . . .,
lm iff l1, . . . , lm satisfy (3).

Remark 4.4. Denote by K the kernel of the homomorphism f : Gl1...lm → G
above. Since ord(hi) = li = ord(gi) , we have K∩ < gi >= {0} for every i =
1, . . . ,m. Hence if C→ P1 is a Gl1...lm−cover as above, namely such that the non
trivial stabilizers of points of C are precisely the subgroups < gi > and points in
different orbits have different stabilizer, then K acts freely on C and C→C/K
is unbranched. Note that Gl1...lm is a quasi large group of automorphisms for C
if and only if G is quasi large for C/K.

Let us consider first the case of three critical values.We need the following
lemma.

Lemma 4.5. Let l,δ1,δ2,δ3 be positive integers such that gcd(δi,δ j) = 1 for
i 6= j. Then

Glδ2δ3,lδ1δ3,lδ1δ2
∼= Zl×Zlδ1δ2δ3 .

Proof. We take

α1,α2 with α1δ2−α2δ1 = 1
β1,β2 with β1δ3−β2δ1δ2 = 1

and the map DA : Zlδ2δ3×Zlδ1δ3×Zlδ1δ2 −→Zl×Zlδ1δ2δ3 , with given matrices

A =

 β1 −β1 −β2
−α2δ1 α1δ2 0
−δ1δ2 δ1δ2 δ3

 D :=
(

1 β2 0
0 −δ3 1

)
.

A tedious but straightforward computation shows that the map is surjective
and its kernel is the cyclic subgroup generated by (1,1,1).

An alternative proof is the following. It is easy to compute that the subgroup
generated by (1,0,1) and (1,1,0) in Zlδ2δ3 ×Zlδ1δ3 ×Zlδ1δ2 is isomorphic to
Z2

lδ1δ2δ3
. Since the maximal order in Zlδ2δ3×Zlδ1δ3×Zlδ1δ2 is lδ1δ2δ3, then the

group is isomorphic to Zl×Z2
lδ1δ2δ3

. The statement follows because (1,1,1) has
order lδ1δ2δ3.

Proposition 4.6. Let G be an abelian group and let g1,g2,g3 ∈ G be spherical
generators of orders l1, l2, l3 respectively. Then there are α,β ,δ1,δ2,δ3 ∈ N
such that

- gcd(δi,δ j) = 1 for i 6= j,

- the generators have the orders (αβδ2δ3,αβδ1δ3,αβδ1δ2) ,
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- G∼= Zα ×Zαβδ1δ2δ3 ,

- the product δ1δ2δ3 (β +1) is even.

Vice versa, for all α,β ,δ1,δ2,δ3 ∈ N with gcd(δi,δ j) = 1 for i 6= j and even
product δ1δ2δ3 (β +1), the group G∼= Zα ×Zαβδ1δ2δ3 has a set of three spheri-
cal generators of orders (αβδ2δ3,αβδ1δ3,αβδ1δ2) .

Proof. (⇒) By assumption there is a short exact sequence

1−→ K −→ Zl1×Zl2×Zl3 −→ G−→ 1. (4)

The images of (1,0,0), (0,1,0) and of (0,0,1) in G have respectively the orders
l1, l2 e l3. As (1,1,1) ∈ K it follows that

(lcm(l2, l3), lcm(l2, l3), lcm(l2, l3)) = (lcm(l2, l3),0,0) ∈ K⇒ l1
∣∣lcm(l2, l3).

Similarly we get l2
∣∣lcm(l1, l3) e l3

∣∣lcm(l1, l2). In particular we define

L := lcm(l1, l2, l3) = lcm(li, l j) ∀i 6= j

l := gcd(l1, l2, l3)

δi := gcd
(

l j

l
,

lk
l

)
con {i, j,k}= {1,2,3} .

From this definition gcd(δi,δ j) = 1. We observe that

δ2δ3 = lcm(δ2,δ3)
∣∣ l1

l
⇒ lδ2δ3

∣∣l1 ⇒ ∃µ1 ∈ N : l1 = µ1lδ2δ3

⇒ ∃µ2 ∈ N : l2 = µ2lδ1δ3

⇒ ∃µ3 ∈ N : l3 = µ3lδ1δ2

gcd
(

l1
l ,

l2
l

)
= δ3⇒ gcd(µ1δ2,µ2δ1) = 1, similarly gcd(µiδ j,µ jδi) = 1.

Furthermore

l1
∣∣lcm(l2, l3) = L = lδ1lcm(µ2δ3,µ3δ2) ⇒ µ1δ2δ3

∣∣δ1lcm(µ2δ3,µ3δ2)

⇒ µ1δ2δ3
∣∣δ1δ2δ3µ2µ3⇒ µ1

∣∣δ1µ2µ3

But gcd(µ1,δ1) = gcd(µ1,µ2) = gcd(µ1,µ3) = 1. It follows µ1 = 1.
Similarly µ2 = µ3 = 1. We conclude l1 = lδ2δ3, l2 = lδ1δ3, l3 = lδ1δ2.

By lemma 4.5 and the exact sequence (4) G ∼=
Zl×Zlδ1δ2δ3

H for a subgroup
H < Zl×Zlδ1δ2δ3 .

From the classification Theorem of abelian groups follows that there exist
α and β such that

G∼= Zα ×Zαβδ1δ2δ3 .
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Finally we have to prove that δ1δ2δ3 (β +1) is even. Let {g1,g2,g3} be the set
of spherical generators. We have

ord(g1) = αβδ2δ3 ⇒ g1 = (a1,k1δ1) ∈ Zα ×Zαβδ1δ2δ3

ord(g2) = αβδ1δ3 ⇒ g2 = (a2,k2δ2)

ord(g3) = αβδ1δ2 ⇒ g3 = (a3,k3δ3) .

If, by reductio ad absurdum, δ1δ2δ3 (β +1) is odd, then β is even

⇒ αβδ1δ2δ3 is even
⇒ k1δ1 + k2δ2 + k3δ3 is even
⇒ ∃i ∈ {1,2,3} such that kiδi is even.

Since δ1δ2δ3 (β +1) is odd, then ∀ j ∈ {1,2,3}, δ j is odd. This implies, that
there exists an i ∈ {1,2,3} such that ki is even: ki = 2hi.
We choose j,k with {i, j,k}= {1,2,3}. It follows that

α · β
2
·δ jδk ·gi =

(
α

[
β

2
δ jδkai

]
,αβδ1δ2δ3 [hi]

)
≡ 0 in Zα ×Zαβδ1δ2δ3 .

⇒ ord(gi)
∣∣α β

2 δ jδk, this contradicts ord(gi) = li = αβδ jδk.
(⇐) We can suppose δ3 (β +1) even and δ1δ2 odd up to permutations of δi.

We choose

α̃1, α̃2 ∈ N con α̃1δ2− α̃2δ1 = 1

β̃1, β̃2 ∈ N con β̃1δ3− β̃2δ1δ2 = 1.

We note that they exist because gcd(δi,δ j) = 1. For every η ,θ ∈ Z we write

α1 = α̃1 +ηδ1
α2 = α̃2 +ηδ2

β1 = β̃1 +θδ1δ2

β2 = β̃2 +θδ3.

and still α1δ2−α2δ1 = β1δ3−β2δ1δ2 = 1.
We consider then the maps D and A in the proof of lemma 4.5 for l = αβ , and
let E be the composition of the surjection DA with the natural projection

Zαβ ×Zαβδ1δ2δ3 −→ Zα ×Zαβδ1δ2δ3 .

Set g1 := E (1,0,0), g2 := E (0,1,0) and g3 := E (0,0,1). Then

(a) {g1,g2,g3} is a set of generators, because it is the image of a set of genera-
tors of Zlδ2δ3×Zlδ1δ3×Zlδ1δ2 through a surjective map.

(b) {g1,g2,g3} is a set of spherical generators, since

g1 +g2 +g3 = E (1,1,1) = (0,0) .
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(c) We leave to the reader the long but standard verification that one can choose
η and θ so that the order of the gi are exactly as prescribed.

Proof of 4.2. From the inequality (2) we deduce that at most the following pos-
sibilities for the branching indices can occur:

(I) Five critical values:

(a) One infinite family: {2,2,2,2,n}, 2≤ n.

(b) Three exceptional cases: {2,2,2,3,a}, 3≤ a≤ 5.

(II) Four critical values:

(a) One infinite family depending on 2 parameters: {2,2,m,n}, 2≤ m≤ n;
and if m = 2⇒ 3≤ n.

(b) Four infinite families: {2,3,a,n}, 3≤ a≤ 6 e a≤ n.

(c) 35 cases: {2,3,7,a}, 7≤ a≤ 41.

(d) 16 cases: {2,3,8,a}, 8≤ a≤ 23.

(e) 9 cases: {2,3,9,a}, 9≤ a≤ 17.

(f) 5 cases: {2,3,10,a}, 10≤ a≤ 14.

(g) 3 cases: {2,3,11,a}, 11≤ a≤ 13.

(h) One infinite family: {2,4,4,n}, 4≤ n.

(i) 15 cases: {2,4,5,a}, 5≤ a≤ 19.

(j) 6 cases: {2,4,6,a}, 6≤ a≤ 11.

(k) 3 cases: {2,4,7,a}, 7≤ a≤ 9.

(l) 5 cases: {2,5,5,a}, 5≤ a≤ 9.

(m) 2 cases: {2,5,6,a}, 6≤ a≤ 7.

(n) One infinite family: {3,3,3,n}, 3≤ n.

(o) 8 cases: {3,3,4,a}, 4≤ a≤ 11.

(p) 3 cases: {3,3,5,a}, 5≤ a≤ 7.

(q) 2 cases: {3,4,4,a}, 4≤ a≤ 5.

(III) Three critical values:

(a) One infinite family depending on 2 parameters: {2,m,n}, 3≤ m≤ n;
if m = 3 then n≥ 7, if m = 4 then n≥ 5.

(b) One infinite family depending on 2 parameters: {3,m,n}, 3≤ m≤ n;
if m = 3 then n≥ 4.

(c) One infinite family depending on 3 parameters:{l,m,n}, 4≤ l ≤ m≤ n.

We start by considering the cases in the previous list with 5 critical values. By
Theorem 3.1 there exist m1,m2,m3,m4,m5 ∈G such that 〈m1,m2,m3,m4,m5〉=
G, ∑

5
i=1 mi = 0 and ord(mi) = li, ∀i = 1, . . . ,5.
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(I,a) One infinite family: {2,2,2,2,n}, 2≤ n.
Here l1 = l2 = l3 = l4 = 2, l5 = n. By Lemma 4.3 follows n= 2 and then G
is a quotient of G2,2,2,2,2 ∼=Z4

2. Then G∼=Zr
2, r≤ 4. By (1) gC = 1+2r−2.

Since gC ∈ N, r ≥ 2. We have then 3 cases, for r = 2,3,4.
The following examples show their existence.
- For r = 2, we can take m1 = (1,0), m2 = (0,1), m3 = (1,1), m4 =
(1,0)⇒ m5 =−m1−m2−m3−m4 = (1,0).
- For r = 3, we choose m1 = (1,0,0), m2 = (0,1,0), m3 = (0,0,1), m4 =
(1,1,0)⇒ m5 =−m1−m2−m3−m4 = (0,0,1).
- For r = 4, m1 = (1,0,0,0), m2 = (0,1,0,0), m3 = (0,0,1,0), m4 =
(0,0,0,1)⇒ m5 =−m1−m2−m3−m4 = (1,1,1,1).
In this case we have then the three possibilities

G ∼= Z2×Z2 with {2,2,2,2,2} and gC = 2,
G ∼= Z2×Z2×Z2 with {2,2,2,2,2} and gC = 3,
G ∼= Z2×Z2×Z2×Z2 with {2,2,2,2,2} and gC = 5.

(I,b) Three exceptional cases: {2,2,2,3,a}, 3≤ a≤ 5.
By Lemma 4.3 follows a= 3 and then G is quotient of G2,2,2,3,3∼=Z2×Z6.
By (1), gC = 1+5 |G|12 : 12 divides |G|.
Then

G∼= Z2×Z6 with {2,2,2,3,3} and gC = 6.

We show the existence by taking m1 = (1,0), m2 = (0,3), m3 = (1,3),
m4 = (0,2)⇒ m5 =−m1−m2−m3−m4 = (0,4).

We consider now the cases with 4 critical values.

(II,a) One infinite family depending on 2 parameters: {2,2,m,n}, 2 ≤ m ≤ n;
and if m = 2⇒ 3≤ n.
If m = 2, n ≥ 3 contradicts Lemma 4.3. Then 3 ≤ m ≤ n and , again by
Lemma 4.3, either n = m or n = 2m and m is odd. Moreover G is a quo-
tient of Z2

2×Zm with an element of order m, so of the form Zr
2×Zm with

r ≤ 2.
If n = m, all the three possibilities, one for each value of r ∈ {0,1,2},
exist, giving the cases (a), (b) and (d) in table 2 (the genera are computed
by (1)). We show the existence
- for r = 0, G∼= Z2g, take m1 = m2 = g, m3 = 1, m4 =−1
- for r = 1, G ∼= Z2×Zg+1, take m1 = m2 = (1,0), m3 = (0,1), m4 =
(0,−1).
- for r = 2, G ∼= Z2

2 ×Z g+3
2

, take m1 = (1,0,0), m2 = (0,1,0), m3 =

(0,0,1), m4 = (−1,−1,−1).
Else, if n= 2m and m is odd, by (1) r = 2, m= g

2 +1 and G∼=Z2
2×Z g

2+1
∼=

Z2×Zg+2. This is case (c) of table 2.

G∼= Z2×Zg+1 with
{

2,2,
g
2
+1,g+2

}
and

g
4
∈ N.
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The following example confirms its existence: m1 = (1, g
2 + 1), m2 =

(1,0), m3 = (0,2), m4 = (0, g
2 −1).

(II,b) Four infinite families: {2,3,a,n}, 3≤ a≤ 6 e a≤ n.

If a = 3, by Lemma 4.3 n = 6 and G is a quotient of Z3×Z6, with
an element of order 6. Then either G ∼= Z3×Z6 or G ∼= Z6. Both cases
exist: in the first case one can take m1 = (0,3), m2 = (0,2), m3 = (1,2),
m4 = (2,5); in the second case m1 = 3, m2 = 2, m3 = 2, m4 = 5. These
are cases (e) and (f) of table 2.

If a = 4, the same arguments as in the previous case show n = 12 and
either G ∼= Z2×Z12 or G ∼= Z12. Both cases exist: in the first case one
can take m1 = (0,3), m2 = (0,2), m3 = (1,2), m4 = (1,5); in the second
case m1 = 3, m2 = 2, m3 = 2, m4 = 5. These are cases (g) and (h) of table
2.

If a = 5 the same arguments show n = 30 and G ∼= Z30. This case
exists: e.g. m1 = 15, m2 = 10, m3 = 6, m4 = 29. This is case (i) of table
2.

If a= 6 we get n= 6 and G is a quotient of Z6×Z6 with an element of
order 6. By (1), gC = 1+5 |G|12 : 12 divides |G|. Then either G∼=Z2×Z6 or
G∼= Z6×Z6. Both cases exist: in the first case one can take m1 = (0,3),
m2 = (0,2), m3 = (1,1), m4 = (1,0); in the second case m1 = (0,3),
m2 = (0,2), m3 = (5,1), m4 = (1,0). These are cases (j) and (k) of table
2.

(II,c-g) All these cases contradict Lemma 4.3.

(II,h) One infinite family: {2,4,4,n}, 4 ≤ n. By Lemma 4.3 n = 4 and G is a
quotient of Z2×Z4×Z4 with an element of order 4 and whose order, by
(1), is divided by 8. Moreover Z2×Z4 is impossible, because the sum
of three elements of order 4 in it has order 4. Then either G ∼= Z4×Z4
or G ∼= Z2×Z4×Z4. Both cases exist: in the first case one can take
m1 = (2,2), m2 = (1,0), m3 = (0,1), m4 = (1,1); in the second case
m1 = (1,0,0), m2 = (0,1,0), m3 = (0,0,1), m4 = (1,3,3). These are
cases (l) and (m) of table 2.

(II,i-m) All these cases contradict Lemma 4.3.

(II,n) One infinite family: {3,3,3,n}, 3 ≤ n. By Lemma 4.3 n = 3 and G is a
quotient of Z3

3, so G ∼= Zr
3, with r ∈ {1,2,3}, and all cases clearly exist.

This gives cases (n), (o) and (p) of table 2.
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(II,o) {3,3,4,a}, 4≤ a≤ 11. By Lemma 4.3, a = 4, and G is a quotient of Z12
whose order, by (1), is divided by 12. Then G ∼= Z12. This case esists:
take m1 = 4, m2 = 8, m3 = 3, m4 = 9. This is case (q) of table 2.

(II,p) {3,3,5,a}, 5 ≤ a ≤ 7. Arguing as in the previous case, a = 5, and G ∼=
Z15. This case exists: take m1 = 5, m2 = 10, m3 = 3, m4 = 12. This is
case (r) of table 2.

(II,q) It contradicts Lemma 4.3.

The case (III) gives the last row of table 2 by direct application of Proposition
4.6. By (1) g = 1+ α

2 (αβδ1δ2δ3− δ1− δ2− δ3) and it’s immediate to verify
that the group of automorphisms is always quasi-large.
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[18] H. A. Schwartz, Über diejenigen algebraischen Gleichungen zwischen zwei ver-
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