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ANALYTICAL SOLUTION OF SPACE-TIME FRACTIONAL
FOKKER PLANCK EQUATIONS BY GENERALIZED

DIFFERENTIAL TRANSFORM METHOD

MRIDULA GARG - PRATIBHA MANOHAR

In the present paper, we use generalized differential transform method
(GDTM) to derive solutions of some linear and nonlinear space-time frac-
tional Fokker-Planck equations (FPE) in closed form. The space and time
fractional derivatives are considered in Caputo sense and the solutions are
obtained in terms of Mittag-Leffler functions.

1. Introduction

The Fokker-Planck equation (FPE), first applied to investigate Brownian motion
[6] and the diffusion mode of chemical reactions [14], is now largely employed,
in various generalized forms, in physics, chemistry, engineering and biology
[21]. The FPE arises in kinetic theory [7], where it describes the evolution of
the one-particle distribution function of a dilute gas with long-range collisions,
such as a Coulomb gas. For some applications of this equation one can refer
the works of He and Wu [11], Jumarie [12], Kamitani and Matsuba [13], Xu et
al. [23], and Zak [27]. The general FPE for the motion of a concentration field
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u(t,x) of one space variable x at time t has the form [21]

∂u
∂ t

=

[
− ∂

∂x
A(x)+

∂ 2

∂x2 B(x)
]

u(t,x) , (1)

with the initial condition given by

u(0,x) = f (x) , x ∈ R, (2)

where B(x) > 0 is called the diffusion coefficient and A(x) is the drift coeffi-
cient. The drift and diffusion coefficients may also depend on time. Mathe-
matically, this equation is a linear second-order partial differential equation of
parabolic type. Roughly speaking, it is a diffusion equation with an additional
first-order derivative with respect to x.

There is a more general form of Fokker-Planck equation which is called the
nonlinear Fokker-Planck equation. The nonlinear Fokker-Planck equation has
important applications in various areas such as plasma physics, surface physics,
population dynamics, biophysics, engineering, neurosciences, nonlinear hydro-
dynamics, polymer physics, laser physics, pattern formation, psychology and
marketing (see [8] and references therein). In the one variable case, the nonlin-
ear FPE is written in the following form

∂u
∂ t

=

[
− ∂

∂x
A(x, t,u)+

∂ 2

∂x2 B(x, t,u)
]

u(t,x) , (3)

with the initial condition given by

u(0,x) = f (x) , x ∈ R. (4)

Due to vast range of applications of the FPE, a lot of work has been done
to find numerical solution of this equation. In this context, the works of Buet et
al. [4], Harrison [10], Palleschi et al. [20], Vanaja [22], and Zorzano [31] are
worth mentioning.

It has been observed that diffusion processes where the diffusion takes place
in a highly nonhomogeneous medium, the traditional FPE may not be adequate
[1, 2]. The nonhomogeneities of the medium may alter the laws of Markov dif-
fusion in a fundamental way. In particular, the corresponding probability den-
sity of the concentration field may have a heavier tail than the Gaussian density,
and its correlation function may decay to zero at a much slower rate than the
usual exponential rate of Markov diffusion, resulting in long-range dependence.
This phenomenon is known as anomalous diffusion [3]. Fractional derivatives
play key role in modeling particle transport in anomalous diffusion including
the space fractional Fokker-Planck (advection-dispersion) equation describing
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Levy flights, the time fractional Fokker-Planck equation depicting traps, and
the space-time fractional equation characterizing the competition between Levy
flights and traps [15, 28]. Different assumptions on this probability density
function lead to a variety of space-time fractional Fokker-Planck equations.

The non-linear space-time fractional FPE can be written in the following
general form

Dα
t u =

[
−Dβ

x A(x, t,u)+D2β
x B(x, t,u)

]
u(t,x) , (5)

where t > 0, x > 0, 0 < α ≤ 1,1 < 2β ≤ 2. It can be obtained from the general
Fokker-Planck equation by replacing the space and time derivatives by Caputo
fractional derivatives Dα

t and Dβ
x defined by (6). The function u(t,x) is assumed

to be a causal function of time and space, i.e., vanishing for t < 0 and x <
0. Particularly for α = β = 1, the fractional FPE (5) reduces to the classical
nonlinear FPE given by (3) in the case x > 0.

Recently several numerical methods have been proposed for solutions of
space and/or time fractional Fokker-Planck equations [24–26, 30]. In the present
paper we obtain closed form solutions of a linear space-time fractional and a
non-linear time fractional FPE using generalized differential transform method
[17–19]. The differential transform method was proposed by Zhou [29] to solve
linear and nonlinear initial value problems in electric circuit analysis. This
method constructs an analytical solution in the form of a series. It is different
from the traditional higher order Taylor series method, which requires symbolic
computation of the necessary derivatives of the data functions and takes long
time in computation whereas the differential transform is an iterative procedure
for obtaining analytic Taylor series solution. The method is further developed by
Momani, Odibat and Erturk in their papers [17–19] for solving two-dimensional
linear and non-linear partial differential equations of fractional order.

2. Preliminaries

Definition 2.1. Caputo fractional derivative of order α is defined as [5]:

Dα
x f (x) =

1
Γ(m−α)

∫ x

x0

f (m) (ξ )

(x−ξ )α−m+1 dξ ,(m−1 < α ≤ m),m ∈ N. (6)

Definition 2.2. The Mittag-Leffler function which is a generalization of expo-
nential function is defined as [16]:

Eα (z) =
∞

∑
n=0

zn

Γ(αn+1)
(α ∈ C,Re(α)> 0) . (7)
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Definition 2.3. Generalized differential transform [17–19] is as given below:
Consider a function of two variables u(t,x) which is analytic and differentiated
continuously with respect to t and x in the domain of interest, then the general-
ized differential transform of the function u(t,x) is given by

Uα,β (k,h) =
1

Γ(αk+1)Γ(βh+1)

[
(Dα

t )
k
(

Dβ
x

)h
u(t,x)

]
(t0,x0)

, (8)

where 0 < α,β ≤ 1,(Dα
t )

k = Dα
t .D

α
t ...D

α
t (k times) and Uα,β (k,h) is the trans-

formed function.
The inverse generalized differential transform of Uα,β (k,h) is given by:

u(t,x) =
∞

∑
k=0

∞

∑
h=0

Uα,β (k,h)(t− t0)
kα (x− x0)

hβ . (9)

We now mention a theorem which gives the conditions under which the
exponent law holds for Caputo derivative.

Theorem 2.4. [9] Suppose that f (x) = (x− x0)
λ g(x), where λ > 0 and g(x)

has the generalized power series expansion g(x) = ∑
∞
n=0 an (x− x0)

nα with ra-
dius of convergence R > 0,0 < α ≤ 1. Then

Dγ
xDβ

x f (x) = Dγ+β
x f (x) , (10)

for all (x− x0) ∈ (0,R), the coefficients an = 0 for n given by nα +λ −β = 0
and either

λ > µ,µ = max(β +[γ] , [β + γ])

or
λ ≤ µ,ak = 0 for k = 0,1, ...,

[
µ−λ

α

]
,

where [x] denotes the greatest integer less than or equal to x.

Lemma 2.5. [17–19] Some basic properties of the generalized differential trans-
form are as given below:
let Uα,β (k,h) ,Vα,β (k,h) and Wα,β (k,h) be the generalized differential trans-
forms of the functions u(t,x) ,v(t,x) and w(t,x) respectively, then

(a) if u(t,x) = v(t,x)±w(t,x), then Uα,β (k,h) =Vα,β (k,h)±Wα,β (k,h).
(b) If u(t,x) = av(t,x), a is constant, then Uα,β (k,h) = aVα,β (k,h).
(c) If u(t,x) = v(t,x)w(t,x), then

Uα,β (k,h) =
k

∑
r=0

h

∑
s=0

Vα,β (r,h− s)Wα,β (k− r,s) .
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(d) If u(t,x) = (t− t0)
n1α (x− x0)

n2β ,n1,n2 ∈ N, then

Uα,β (k,h) = δ (k−n1)δ (h−n2) ,

where δ is defined as

δ (k) =
{

1, when k = 0
0, otherwise

.

(e) If u(t,x) = (Dα
t )

m v(t,x) where 0 < α ≤ 1,m ∈ N, then

Uα,β (k,h) =
Γ(α (k+m)+1)

Γ(αk+1)
Vα,β (k+m,h) .

(f) If u(t,x) =
(

Dβ
x

)n
v(t,x) where 0 < β ≤ 1,n ∈ N, then

Uα,β (k,h) =
Γ(β (h+n)+1)

Γ(βh+1)
Vα,β (k,h+n) .

3. Applications

In this section, we shall apply this method for solving linear/nonlinear fractional
FPE.

Example 3.1. Consider the linear space-time fractional FPE:

Dα
t u(t,x) =

[
−Dβ

x

(
pxβ

)
+
(

Dβ
x

)2(
qx2β

)]
u(t,x) , (11)

where t > 0, x> 0,0<α ≤ 1,1< 2β ≤ 2, p,q∈R,Dα
t ,D

β
x are Caputo fractional

derivatives defined by (6) and initial condition is

u(0,x) = xa−1, a≥ 1, (12)

where (a−1)/β is a nonnegative integer. Applying generalized differential
transform (8) with x0 = 0 = t0, to both sides of time fractional FPE (11) and
making use of properties of generalized differential transform given in Lemma
2.5, equation (11) transforms to

Uα,β (k+1,h) = Γ(αk+1)
Γ(α(k+1)+1)

[
− pΓ(β (h+1)+1)

Γ(βh+1)

h+1
∑

s=0
δ (h− s)Uα,β (k,s)

+qΓ(β (h+2)+1)
Γ(βh+1)

h+2
∑

s=0
δ (h− s)Uα,β (k,s)

]
.

(13)
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The generalized differential transform of initial condition (12) is given by

Uα,β (0,h) = δ

(
h− a−1

β

)
. (14)

Utilizing the recurrence relation (13) and the transformed initial condition (14),
for k = 1,2, ... we obtain

Uα,β (k,h) =

{
bk

Γ(αk+1) whenh = a−1
β

0 otherwise
, (15)

where b = q(a)2β
− p(a)

β
, with (a)

β
denoting pochhammer symbol. From the

inverse transform given by equation (9), we have

u(t,x) =
∞

∑
k=0

∞

∑
h=0

Uα,β (k,h) tαkxβh. (16)

Using the values of Uα,β (k,h) from equation (15) in equation (16) and the def-
inition of Mittag-Leffler function (7), a solution of linear space-time fractional
FPE (11) is obtained as

u(t,x) = xa−1Eα (btα) ,b = q(a)2β
− p(a)

β
. (17)

A more general solution of linear space-time fractional FPE (11) is

u(t,x) = ∑
a∈I

xa−1Eα (btα) ,b = q(a)2β
− p(a)

β
, I =

{
a ∈ R| a−1

β
∈ Z+∪0

}
.

(18)
Further in view of Theorem 2.4 we find for equation (11) and its solution that(

Dβ
x

)2
x2β+a−1 = D2β

x x2β+a−1, hence the linear space-time fractional FPE (11)
can also be written as

Dα
t u(t,x) =

[
−Dβ

x

(
pxβ

)
+D2β

x

(
qx2β

)]
u(t,x) , (19)

where t > 0, x > 0,0 < α ≤ 1,1 < 2β ≤ 2, p,q∈R, which under condition (12)
has the solution given by (18).

Remark 3.2. Setting α = 1, equation (19) with condition (12) reduces to linear
space fractional FPE:

∂u
∂ t

=
[
−Dβ

x

(
pxβ

)
+D2β

x

(
px2β

)]
u(t,x) , t > 0, x > 0,1 < 2β ≤ 2, (20)

with initial condition
u(0,x) = xa−1,a≥ 1, (21)
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and a solution as

u(t,x) = ∑
a∈I

xa−1ebt ,b = q(a)2β
− p(a)

β
, I =

{
a ∈ R| a−1

β
∈ Z+∪0

}
. (22)

Remark 3.3. Setting β = 1, equation (19) with condition (12) reduces to linear
time fractional FPE:

Dα
t u(t,x) =

[
− ∂

∂x
(px)+

∂ 2

∂x2

(
qx2)]u(t,x) , t > 0, x> 0,0<α ≤ 1, p,q∈R,

(23)
with initial condition

u(0,x) = xa−1,a≥ 1, (24)

and a solution as

u(t,x) =
∞

∑
a=1

xa−1Eα (btα) ,b = qa2 +a(q− p) . (25)

Remark 3.4. Setting α = β = 1, equation (19) with condition (12) reduces to
linear FPE:

∂u
∂ t

=

[
− ∂

∂x
(px)+

∂ 2

∂x2

(
qx2)]u(t,x) , t > 0, x > 0, p,q ∈ R, (26)

with initial condition
u(0,x) = xa−1,a≥ 1, (27)

and a solution as

u(t,x) =
∞

∑
a=1

xa−1ebt ,b = qa2 +a(q− p) . (28)

Remark 3.5. Setting α = β = 1,a = 2, p = 1,q = 1/2, equation (19) with con-
dition (12) reduces to linear FPE [26]:

∂u
∂ t

=

[
− ∂

∂x
(x)+

∂ 2

∂x2

(
x2

2

)]
u(t,x) , t > 0, x > 0, (29)

with initial condition
u(0,x) = x, (30)

and a solution as
u(t,x) = xet . (31)
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Remark 3.6. Setting α = β = 1,a = 3, p = 1/6,q = 1/12, equation (19) with
condition (12) reduces to linear FPE [26]:

∂u
∂ t

=

[
− ∂

∂x

( x
6

)
+

∂ 2

∂x2

(
x2

12

)]
u(t,x) , t > 0, x > 0, (32)

with initial condition
u(0,x) = x2, (33)

and a solution as
u(t,x) = x2et/2. (34)

Example 3.7. Consider the nonlinear time fractional FPE:

Dα
t u(t,x) =

[
− ∂

∂x

(
3u− x

2

)
+

∂ 2

∂x2 (xu)
]

u(t,x) , (35)

where t > 0, x > 0,0 < α ≤ 1,Dα
t is Caputo fractional derivative defined by (6)

and initial condition is
u(0,x) = x. (36)

Applying generalized differential transform (8) with x0 = 0 = t0,β = 1, to both
sides of time fractional FPE (35) and making use of properties of generalized
differential transform given in Lemma 2.5, equation (35) transforms to

Uα,1 (k+1,h) =
Γ(αk+1)

Γ(α (k+1)+1)

·
[
−(h+1)

{
3

k
∑

r=0

h+1
∑

s=0
Uα,1 (r,h+1− s)Uα,1 (k− r,s)− 1

2Uα,1 (k,h)
}

+(h+2)(h+1)
k
∑

r=0

h+1
∑

s=0
Uα,1 (r,h+1− s)Uα,1 (k− r,s)

]
.

(37)

The generalized differential transform of initial condition (36) is given by

Uα,1 (0,h) = δ (h−1) . (38)

Utilizing the recurrence relation (37) and the transformed initial condition (38),
for k = 1,2, ... we obtain

Uα,1 (k,h) =

{
1

Γ(αk+1) whenh = 1
0 otherwise

. (39)

From the inverse transform given by equation (9), we have

u(t,x) =
∞

∑
k=0

∞

∑
h=0

Uα,1 (k,h) tαkxh. (40)
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Using the values of Uα,1 (k,h) from equation (39) in equation (40) and the defi-
nition of Mittag-Leffler function (7), we obtain a solution of problem (35)-(36)
as

u(t,x) = xEα (tα) . (41)

Remark 3.8. Setting α = 1, problem (35)-(36) reduces to non-linear FPE:

∂u
∂ t

=

[
− ∂

∂x

(
3u− x

2

)
+

∂ 2

∂x2 (xu)
]

u(t,x) , t > 0, x > 0, (42)

with initial condition
u(0,x) = x, (43)

and a solution as
u(t,x) = xet . (44)

4. Conclusions

Analytical exact solutions of fractional FPE, with both space and time frac-
tional derivatives in Caputo sense, are obtained using generalized differential
transform method. The solutions are given in terms of Mittag-Leffler function.
It may be concluded that generalized differential transform method is a pow-
erful and efficient technique that provides closed form solutions of fractional
differential equations.
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