doi: 10.4418/2011.66.2.9

ON DIFFERENTIAL SUBORDINATIONS AND ARGUMENT INEQUALITIES ASSOCIATED WITH THE GENERALIZED HYPERGEOMETRIC FUNCTIONS

ALI MUHAMMAD

The main object of this paper is to derive several interesting argument properties of a linear operator $\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1)$ associated with the generalized hypergeometric functions.

1. Introduction

For any integer m > 1 - p, let $\sum_{p,m}$ denote the class of functions f:

$$f(z) = z^{-p} + \sum_{k=m}^{\infty} a_k z^k, \quad p \in \mathbb{N}$$
 (1.1)

which are analytic and *p*-valent in the punctured unit disc $E^* = \{z \mid z \in \mathbb{C} \text{ and } 0 < |z| < 1\} = E \setminus \{0\}.$

If f and g are analytic in E, we say that f is subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$, if there exists a Schwarz function w in E such that f(z) = g(w(z)). Furthermore, if the function g(z) is univalent in E, then the following equivalence holds (see [7],[8]):

$$f(z) \prec g(z) \quad (z \in E) \iff f(0) = g(0) \text{ and } f(E) \subset g(E).$$

Entrato in redazione: 17 ottobre 2011

AMS 2010 Subject Classification: 30C45, 30C50.

Keywords: Analytic functions, Multivalent functions, Differential subordination, Hadamard product (or convolution).

For functions $f, g \in \sum_{p,m}$, where f is given by (1.1) and g is defined by

$$g(z) = z^{-p} + \sum_{k=m}^{\infty} b_k z^k, \quad p \in \mathbb{N}$$

then the Hadamard product (or convolution) f * g of the functions f and g is defined by

$$(f*g)(z) = z^{-p} + \sum_{k=m}^{\infty} a_k b_k z^k = (g*f)(z).$$

For real or complex parameters $\alpha_1, \dots, \alpha_q$ and β_1, \dots, β_s , with $\beta_j \notin Z_0^- = \{0, -1, -2, \dots\}$, $j = 1, \dots s$, the generalized hypergeometric function ${}_qF_s$ (see [10]) is given by

$${}_{q}F_{s}(\alpha_{1},\cdots,\alpha_{q};\beta_{1},\cdots,\beta_{s};z) = \sum_{k=0}^{\infty} \frac{(\alpha_{1})_{k}\cdots(\alpha_{q})_{k}}{(\beta_{1})_{k},\cdots,(\beta_{s})_{k} k!} z^{k}, \qquad (1.2)$$

with $q \le s+1$, $q, s \in N_0 = \mathbb{N} \cup \{0\}$, $z \in E$, where $(v)_k$ is the Pochhammer symbol (or the shifted factorial) defined in (terms of the Gamma function) by

$$(v)_k = \frac{\Gamma(v+k)}{\Gamma(v)} = \left\{ \begin{array}{ll} 1 & \text{if } k = 0, \ v \in \mathbb{C} \setminus \{0\} \\ v(v+1), \cdots (v+k-1) & \text{if } k \in \mathbb{N}, \ v \in \mathbb{C} \end{array} \right\}$$

Corresponding to the function $\phi_p(\alpha_1, \dots \alpha_q; \beta_1, \dots, \beta_s; z)$ defined by

$$\phi_p(\alpha_1, \dots, \alpha_a; \beta_1, \dots, \beta_s; z) = z^{-p} {}_{a}F_s(\alpha_1, \dots, \alpha_a; \beta_1, \dots, \beta_s; z). \tag{1.3}$$

We introduce a function $\phi_{p,\mu}(\alpha_1, \cdots \alpha_q; \beta_1, \cdots, \beta_s; z)$ defined by

$$\phi_{p}(\alpha_{1}, \cdots \alpha_{q}; \beta_{1}, \cdots, \beta_{s}; z) * \phi_{p,\mu}(\alpha_{1}, \cdots \alpha_{q}; \beta_{1}, \cdots, \beta_{s}; z)$$

$$= \frac{1}{z^{p}(1-z)^{\mu+p}} \quad (\mu > -p; \ z \in E^{*}). \quad (1.4)$$

We now define a linear operator $\mathcal{H}^{m,\mu}_{p,q,s}(\alpha_1,\cdots\alpha_q;\beta_1,\cdots,\beta_s)f(z):\sum_{p,m}\longrightarrow\sum_{p,m}$ by

$$\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_{1},\cdots\alpha_{q};\beta_{1},\cdots,\beta_{s})f(z) = \phi_{p,\mu}(\alpha_{1},\cdots\alpha_{q};\beta_{1},\cdots,\beta_{s};z)*f(z)$$

$$(\alpha_{i}, \beta_{j} \notin Z_{0}^{-}; i = 1,2,...q; j = 1,\cdots s; \mu > -p; f \in \sum_{p,m}; z \in E^{*}).$$
(1.5)

For convenience, we write

$$\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) = \mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1, \cdots \alpha_q; \beta_1, \cdots, \beta_s) f(z).$$

If $f \in \sum_{n,m}$ is given by (1.1), then from (1.5), we deduce that

$$\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1)f(z) = z^{-p} + \sum_{k=m} \frac{(\mu+p)_{p+k}(\beta_1)_{p+k}...(\beta_s)_{p+k}}{(\alpha_1)_{p+k}...(\alpha_q)_{p+k}} a_k z^k, \quad (\mu > -p; \ z \in E^*), \quad (1.6)$$

and it is easily verified from (1.6) that

$$z(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1)f(z))' = (\mu+p)\mathcal{H}_{p,q,s}^{m,\mu+1}(\alpha_1)f(z) - (\mu+2p)\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1)f(z).$$
(1.7)

and

$$z(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1+1)f(z))' = \alpha_1 \mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1)f(z) - (p+\alpha_1)\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1+1)f(z).$$
 (1.8)

We note that the linear operator $\mathcal{H}^{m,\mu}_{p,q,s}(\alpha_1)$ is closely related to the Choi-Saigo-Srivastava operator [4] for analytic functions and is essentially motivated by the operators defined and studied in [2]. The linear operator $\mathcal{H}^{0,\mu}_{1,q,s}(\alpha_1)$ was investigated recently by Cho and Kim [1], whereas $\mathcal{H}^{1-p}_{p,2,1}(c,1;a;z) = \mathcal{L}_p(a,c)$ $(c \in \mathbb{R}, a \in Z_0^-)$ is the operator studied in [6]. In particular, we have the following observations;

i)
$$\mathcal{H}_{p,s+1,s}^{m,0}(p+1,\beta_1,\cdots,\beta_s;\beta_1,\cdots,\beta_s)f(z) = \frac{p}{z^{2p}}\int_0^z t^{2p-1}f(t)dt;$$

ii)
$$\mathcal{H}_{p,s+1,s}^{m,0}(p,\beta_1,\cdots,\beta_s;\beta_1,\cdots,\beta_s)f(z)$$

= $\mathcal{H}_{p,s+1,s}^{m,1}(p+1,\beta_1,\cdots,\beta_s;\beta_1,\cdots,\beta_s)f(z) = f(z);$

iii)
$$\mathcal{H}_{p,s+1,s}^{m,1}(p,\beta_1,\cdots,\beta_s;\beta_1,\cdots,\beta_s)f(z) = \frac{zf'(z)+2pf(z)}{p};$$

iv)
$$\mathcal{H}_{p,s+1,s}^{m,2}(p+1,\beta_1,\cdots,\beta_s;\beta_1,\cdots,\beta_s)f(z) = \frac{zf'(z)+(2p+1)f(z)}{p+1};$$

v)
$$\mathcal{H}_{p,s+1,s}^{1-p,n}(\beta_1,\dots,\beta_s;1;\beta_1,\dots,\beta_s)f(z) = \frac{1}{z^p(1-z)^{n+p}} = D^{n+p-1}f(z)$$
 (*n* is an integer $> -p$) the operator studied in [5];

vi)
$$\mathcal{H}_{p,s+1,s}^{m,1-p}(\delta+1,\beta_2,\cdots,\beta_s;1;\delta;\beta_2,\cdots,\beta_s)f(z) = \frac{\delta}{z^{\delta+p}} \int_0^z t^{\delta+p-1} f(t)dt \ (\delta > 0, z \in E^*).$$

Using the operator $\mathcal{H}^{m,\mu}_{p,q,s}(lpha_1)$ we now define a function $\,Q\,$ by

$$Q(z) = (1 - \delta - (\mu + 2p)\delta)(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1)f(z)) + \delta(\mu + p)\mathcal{H}_{p,q,s}^{m,\mu+1}(\alpha_1)f(z),$$

$$f \in \sum_{p,m} \mu > -p; \quad \delta \ge 0; \ z \in E^*.$$
(1.9)

We observe that the operator $Q(z) = \mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1)f(z)$ when $\delta = 0$. On the other hand for $\delta = 1$, in view of Eq. (1.7), it follows that $Q(z) = z(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1)f(z))'$.

In this paper, we investigate some properties of Q(z). The following Lemma will be required in our investigation.

Lemma 1.1. (see [9])

Let a function $h(z) = 1 + c_{m+p} z^{m+p} + c_{m+p+1} z^{m+p+1} + ...$ be analytic in E and $h(z) \neq 0, z \in E$. If there exists a point $z_0 \in E$ such that

$$|\arg h(z)| < \frac{\pi}{2} \eta \ (|z| < |z_0|) \ \text{and} \ |\arg h(z_0)| = \frac{\pi}{2} \eta \ (0 \le \alpha < 1),$$
 (1.10)

then we have,

$$\frac{z_0 h'(z_0)}{h(z_0)} = ik\alpha, (1.11)$$

where

$$k \ge \frac{1}{2}(a + \frac{1}{a})$$
 when $\arg h(z_0) = \frac{\pi}{2}\eta$, (1.12)

$$k \le -\frac{1}{2}((a+\frac{1}{a}) \text{ when } \arg h(z_0) = \frac{\pi}{2}\eta,$$
 (1.13)

and

$$(h(z_0))^{\frac{1}{\eta}} = \pm ia, \ (a > 0).$$

2. Main Results

Theorem 2.1. Let $f \in \sum_{p}$ and Q(z) be defined by (1.9). If

$$\left|\arg z^{p-j}(\mathcal{Q}(z))^{(j)}\right| < \frac{\pi}{2}\eta \ (z \in E^*), \tag{2.1}$$

then

$$\left|\arg z^{p-j}(\mathcal{H}^{m,\mu}_{p,q,s}(\alpha_1)f(z))^{(j)}\right|<\frac{\pi}{2}\ (z\in E^*),$$

where $0 \le j \le p$, $0 < \eta \le 1$, $\mu > -p$, and $\delta \ge 0$.

Proof. Let $f \in \sum_{p}$ and set

$$\frac{(p-j)!}{n!} z^{p-j} (\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) f(z))^{(j)} = h(z). \tag{2.2}$$

Then h is analytic in E with $h(z) \neq 0$ for all $z \in E$ and h(0) = 1. Since

$$(z\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) f'(z))^{(j)} = j((\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) f(z))^{(j)} + z(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) f(z))^{(j+1)},$$
(2.3)

we have from Eqs. (1.7), (1.9) and (2.3) that

$$\begin{split} Q^{(j)}(z) &= (1 - \delta - (\mu + 2p)\delta)(\mathcal{H}^{m,\mu}_{p,q,s}(\alpha_1)f(z))^{(j)} \\ &+ \delta(\mu + p)(\mathcal{H}^{m,\mu+1}_{p,q,s}(\alpha_1)f(z))^{(j)} \\ &= (1 - \delta - (\mu + 2p)\delta)(\mathcal{H}^{m,\mu}_{p,q,s}(\alpha_1)f(z))^{(j)} + \delta(z(\mathcal{H}^{m,\mu}_{p,q,s}(\alpha_1) f'(z))^{(j)}) \\ &+ (\mu + 2p)(\mathcal{H}^{m,\mu}_{p,q,s}(\alpha_1)f(z))^{(j)} \\ &= (1 - \delta - \delta j)((\mathcal{H}^{m,\mu}_{p,q,s}(\alpha_1) f(z))^{(j)} + \delta z((\mathcal{H}^{m,\mu}_{p,q,s}(\alpha_1) f(z))^{(j+1)}. \end{split} \tag{2.4}$$

It is easy to see from Eqs. (2.4) and (2.2) that

$$z^{p-j}Q^{(j)}(z) = (1 - \delta - \delta j)z^{p-j}(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) f(z))^{(j)} + \delta z^{p+1-j}(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) f(z))^{(j+1)} = \frac{p!(1 - \delta - \delta j)}{(p-j)!}h(z) + \frac{p!\delta}{(p-j)!}(p-j)h(z) + zh'(z) = \frac{p!(1 - \delta - \delta p)}{(p-j)!}\left(h(z) + \frac{\delta}{(1 - \delta - \delta p)}zh'(z)\right).$$
(2.5)

Suppose there exists a point $z_0 \in E$ such that

$$|\arg h(z)| < \frac{\pi}{2} \eta \ (|z| < \in |z_0|) \text{ and } |\arg h(z_0)| = \frac{\pi}{2} \eta.$$

Then, by Lemma 1.1, we can write that

$$\frac{z_0 h'(z_0)}{h(z_0)} = ik\eta \text{ and } (h(z_0))^{\frac{1}{\eta}} = \pm ia \ (a > 0).$$

Therefore, if $\arg h(z_0) = \frac{\pi \eta}{2}$, then by Eq. (2.5)

$$z_0^{p-j} Q^{(j)}(z_0) = \frac{p!(1-\delta-\delta p)}{(p-j)!} h(z_0) \left(1 + \frac{\delta}{(1-\delta-\delta p)} \frac{zh'(z_0)}{h(z_0)}\right)$$

$$= \frac{p!(1-\delta-\delta p)}{(p-j)!} a^{\eta} e^{i\frac{\eta \pi}{2}} \left(1 + \frac{\delta}{(1-\delta-\delta p)} ik\eta\right).$$

This shows that

$$\begin{split} \arg\left(z_0^{p-j}Q^{(j)}(z_0)\right) &= \frac{\pi}{2}\eta + \arg\left(1 + \frac{\delta}{(1-\delta-\delta p)}ik\eta\right) \\ &= \frac{\pi}{2}\eta + \tan^{-1}\left(\frac{\delta}{(1-\delta-\delta p)}k\eta\right) \\ &\geq \frac{\pi}{2}\eta \quad \left(\text{where } k \geq \frac{1}{2}(a+\frac{1}{a}) \geq 1\right), \end{split}$$

which contradicts the condition Eq. (2.1). Similarly, if $\arg(h(z_0)) = -\frac{\pi\eta}{2}$, then we obtain

$$\arg\left(z_0^{p-j}Q^{(j)}(z_0)\right) \leq \frac{-\pi}{2}\eta,$$

which also contradicts the Eq. (2.1). Thus, the function h satisfies

$$\left|\arg(h(z_0))\right| < \frac{\eta\pi}{2} \ (z \in E^*).$$

This shows that

$$\left|\arg\left(z^{p-j}\right)\left(\mathcal{H}^{m,\mu}_{p,q,s}(\alpha_1)\ f(z)\right)^{(j)}\right|<\frac{\pi}{2}\eta\ (z\in E^*).$$

This completes the proof.

Taking $\alpha_1 = p$, $\mu = 0$, $\alpha_{i+1} = \beta_i$ (i = 1, 2, ...s) in Theorem 2.1, we immediately have the following result.

Corollary 2.2. Let $Q(z) = (1 - \delta)f(z) + \delta z f'(z)$ for $f \in \Sigma_p$. If

$$\left| \arg \left(z^{p-j} Q^{(j)}(z) \right) \right| < \frac{\pi}{2} \eta \ (z \in E^*),$$

then

$$\left|\arg\left(\left(z^{p-j}f^{(j)}(z)\right)\right)\right|<\frac{\pi}{2}\eta \ (z\in E^*),$$

where $0 \le j \le p$, $0 < \eta \le 1$ and $\delta \ge 0$.

Theorem 2.3. Let $f(z) \in \sum_{p}$ and let Q be defined by Eq. (1.9). If

$$z^{p-j}(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) f(z))^{(j)} \prec \frac{p!}{(p-j)!} \frac{1 + (1 - 2\sigma)z}{1 - z} (z \in E), \qquad (2.6)$$

then

$$\left(z^{p-j}Q^{(j)}(z)\right) \prec \frac{p!(1-\delta-p\delta)}{(p-j)!} \frac{1+(1-2\sigma)z}{1-z} \ (|z|<\rho), \tag{2.7}$$

where $0 \le j \le p$, $0 \le \sigma < 1$, and

$$\rho = \left[1 + \left(\frac{\delta}{(1 - \delta - p\delta)}\right)^2\right]^{\frac{1}{2}} - \frac{\delta}{(1 - \delta - p\delta)}.$$
 (2.8)

The bound $\rho \in (0,1)$ is best possible.

Proof. Set

$$\Psi(z) = (1 - \gamma)\frac{1}{z}\frac{1}{1 - z} + \gamma \frac{1}{z}\frac{1}{(1 - z)^2}, \ z \in E^*,$$

where $\gamma = \frac{\delta}{(1 - \delta - p\delta)} > 0$. We need to verify that

$$\Re\left\{\rho z \Psi(z)\right\} > \frac{1}{2}, \quad z \in E^*, \tag{2.9}$$

where $\rho=(1+\gamma^2)^{\frac{1}{2}}-\gamma$ and $\rho\in(0,1)$. Let $\frac{1}{1-z}=R\ e^{i\theta}$ and |z|=r<1. In view of

$$\cos \theta = \frac{1 + R^2(1 - r^2)}{2R}, \ R \ge \frac{1}{1 + r},$$

we have

$$\begin{split} 2\Re\left\{z\Psi(z) - \frac{1}{2}\right\} &= 2(1 - \gamma)R\cos\theta + 2\gamma R^2\cos2\theta - 1\\ &= R^4\gamma(1 - r^2)^2 + R^2((1 - \gamma)(1 - r^2) - 2\gamma r^2)\\ &\geq R^2(\gamma(1 - r)^2 + (1 - \gamma)(1 - r^2) - 2\gamma r^2)\\ &= R^2(1 - 2\gamma r - r^2) > 0, \end{split}$$

for $|z|=r<\rho$, which gives Eq. (2.9). Thus the function $\Psi(z)$ has the integral representation

$$\rho z \Psi(z) = \int_{|x|=1}^{\infty} \frac{d\mu(x)}{1 - xz}, \ z \in E^*,$$
 (2.10)

where $\mu(x)$ is a probability measure on |x|=1.

Now, setting

$$\frac{(p-j)!}{n!} \left(z^{p-j} (\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) f(z))^{(j)} = h(z), \right.$$

where h(z) is analytic in in E with h(0) = 1. Then it follows from Eq. (2.6) that $\Re h(z) > \sigma$, $0 \le \sigma < 1$, $z \in E$.

Since we can write

$$\{z\Psi(z)*h(z)\}=h(z)+\gamma zh'(z),$$

it follows from Eq. (2.10) that

$$\Re\{h(\rho z) + \gamma \rho z h'(z)\} = \Re\{\rho z \Psi(\rho z) * h(z)\}$$

$$= \Re\left\{\int_{|x|=1} h(xz) d\mu(x)\right\} > \sigma, \quad z \in E^*. \tag{2.11}$$

Thus, from Eqs. (2.3) and (2.11), we conclude that Eq. (2.7) holds. To show that the bound ρ is best possible we take $f \in \Sigma_p$ defined by

$$\frac{(p-j)!}{p!} z^{p-j} \left(\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) \ f(z) \right)^{(j)} = (1-\sigma) \frac{1+z}{1-z} + \sigma.$$

Since

$$\frac{(p-j)!z^{p-j} \left((\mathcal{H}_{p,q,s}^{m,\mu}(\alpha_1) f(z) \right)^{(j)}}{p!(1-\delta-\delta p)} = (1-\sigma)\frac{1+z}{1-z} + \sigma + \gamma(1-\sigma)z \left(\frac{1+z}{1-z}\right)'$$
$$= (1-\sigma)\frac{1+2\gamma z - z^2}{(1-z)^2} + \sigma = \sigma,$$

for $|z| = -\rho$, it follows that ρ is the best possible.

REFERENCES

- [1] N.E. Cho I.H. Kim, *Inclusion properties of certain classes of meromorphic functions associated with the generalized hypergeometric function*, Appl. Math. Comput. 187 (2007), 115–121.
- [2] N.E. Cho K. I. Noor, *Inclusion properties for certain classes of meromorphic functions associated with Choi-Saigo-Srivastava operator*, J. Math. Anal. Appl. 320 (2006), 779–786.
- [3] N.E. Cho O.S. Kwon H.M. Srivastava, *Inclusion relationships for certain subclasses of meromorphic functions associated with a family of multiplier transformations*, Integral Transforms Spec. Funct. 16 (2005), 647–659.
- [4] J. H. Choi M. Saigo H. M. Srivastava, *Some inclusion properties of a certain family of integral operators*, J. Math. Anal. Appl. 276 (2002), 432–445.
- [5] M. R. Ganigi B. A. Uralegaddi, *New criteria for meromorphic univalent functions*, Bull. Math. Soc. Sci. Math. Roumanie (N.S) 33 (81) (1989), 9–13.
- [6] J. L. Liu H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl. 259 (2000), 566–581.
- [7] S. S. Miller P. T. Mocanu, *Differential subordination Theory and Applications*, Series on Monographs and Textbooks in Pure and Applied Mathematics 225, Marcel Dekker Inc., New York, Basel, 2000.
- [8] S. S. Miller P. T. Mocanu, *Subordinations of differential superordinations*, Complex Variables 48 (10) (2003), 815–826.
- [9] M. Nunokawa, On the order of strongly starlikness of strongly convex functions, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 234–237.

[10] H. M. Srivastava - P. W. Karlsson, *Multiple Gaussian Hypergeometric Series*, Halsted Press, Ellis Horwood Limited, Chichester, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1985.

ALI MUHAMMAD
Department of Basic Sciences
University of Engineering and Technology
Peshawar, Pakistan
e-mail: ali7887@gmail.com