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ON DIFFERENTIAL SUBORDINATIONS AND ARGUMENT
INEQUALITIES ASSOCIATED WITH THE GENERALIZED
HYPERGEOMETRIC FUNCTIONS

ALI MUHAMMAD

The main object of this paper is to derive several interesting argument
properties of a linear operator Hﬁ#s(al) associated with the generalized
hypergeometric functions.

1. Introduction

For any integer m > 1 —p, let}.,, ,, denote the class of functions f:

fl@)=z"+Y ad, peN (1.1)

k=m

which are analytic and p-valent in the punctured unit disc E* = {z | z € C and
0< |z] <1} = E\{0}.

If f and g are analytic in E, we say that f is subordinate to g, written f <
g or f(z) < g(z), if there exists a Schwarz function w in E such that f(z) =
g(w(z)). Furthermore, if the function g(z) is univalent in E, then the following
equivalence holds (see [7],[8]):

f(z2) <8(z) (z€E) <= f(0)=¢g(0)and f(E) C g(E).
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For functions f, g €}, ,,, where f is given by (1.1) and g is defined by

glz)=z"+ Z b, peN

k=m

then the Hadamard product (or convolution) f * g of the functions f and g is
defined by

(F8)@) ="+ Y ahid = (g5£)(2).
k=m

For real or complex parameters o ,--- 0 and By, ---, By, with B; ¢ Z; = {0, -1,
—2,---}, j=1,---s, the generalized hypergeometric function ,F; (see [10]) is
given by

R - (0g)k *
JF(aa, o By, By 2) Zﬁlk, XA (1.2)

withg <s+1, g,s € Ngo=NU{0}, z € E, where (v)y is the Pochhammer symbol
(or the shifted factorial) defined in (terms of the Gamma function) by

_Tv+k) [ 1 ifk=0, v € C\{0}
() = '(v) _{v(v—i-l),---(v—l—k—l) ifkeN,veC }

Corresponding to the function ¢, (e, ---ay; Bi,- - -, By;z) defined by

¢p(a1,"'aq;ﬁla"' 7BS;Z) :pr qu(ah‘" 7aq;ﬁ17"’ 7BS;Z)' (13)

We introduce a function @, , (1, --- 0g; Bi, - -+ , By z) defined by

(Pp(ala"'aq;ﬁlv"' 7BS;Z)*(Pp,,u(al""aq;ﬁla"' 7ﬁs;Z)

1 *
~ (o (W>—p;z€E"). (1.4)

We now define a linear operator Hpgs(Q1, -+~ 0 B1, -+, Bs) f(2) : Ly —

Ypm by

,Hgltﬁls(alv'“aq;ﬁlv'“?ﬁs) (Z):(Ppﬂ(ala"'aq;ﬁl?"'vﬁs; ) (Z) (1.5)

(0, Bi ¢ Zysi=12,..q; j=1,-s; u>—p; f€Y: z€E")
p,m

For convenience, we write

Hﬁ#s(al) - Hp (ys(a]? O‘q;ﬁh' e aBS)f(Z)'
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If f €Y, is given by (1.1), then from (1.5), we deduce that

Hyps(0n)f(2)

e Z 8 +<po)af)+k+(f 1 )(IX) ikﬁmk“kzk’ (B> —p;z€E7), (16)
P P

and it is easily verified from (1.6) that

(1 (o) f(2) = (+ p)Hp (on) f(2) — (m+2p) Hpd (o) f(2). (1.7)

and

d(Hppo(on+1)f(2)) = anHp ' (on) £ () — (p+on)Hyf (e +1) f(2). (1.8)

We note that the linear operator Hﬁﬁs(al) is closely related to the Choi-Saigo-
Srivastava operator [4] for analytic functions and is essentially motivated by the
operators defined and studied in [2]. The linear operator 7—[?35’3(&1) was investi-
gated recently by Cho and Kim [1], whereas ’H;Z’l (c,lia;2) = Ly(a,c) (c€R,

a € Z; ) is the operator studied in [6]. In particular, we have the following ob-
servations;

D Hps+ls(p+l7ﬁlv”')ﬁs;ﬁl)"'vﬁs) ():ggz ZP_If(t)dt

i) 0y (P Bry e BiBry o Be) f ()
= H (1B B By B F(E) = £(2);

iii) H0Ly (P By Bui B, B f(2) = LEERIE,
IV) Hps+ls(p+17ﬁla"' 7ﬁS;Blv"' 7B3)f(z) = W+Hw7

V) Hy DB B LB+ BOS(R) = s =

= =D"P71f(z) (nis an
integer > —p) the operator studied in [5];

Z
V) H LB+ L By B 183 P RS (@) = i [ 1017 flo)dt (6>
0,z€ E™).

Using the operator H),4s(t) we now define a function Q by

0(z) = (1= 8 — (1 +2p)8) (Hpid's(an) f(2)) + 8(u+ p)Hph T (o) f(2),

feyY u>-p; 8>0z€kE" (1.9)
p,m
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We observe that the operator Q(z) = H)4's(ot1) f(z) when § = 0. On the other
hand for § = 1, in view of Eq. (1.7), it follows that Q(z) = z(H}4.s(o1) f(2))"-

In this paper, we investigate some properties of Q(z). The following Lemma
will be required in our investigation.

Lemma 1.1. (see [9])
Let a function A(z) = 1+ i pZ™ P + Cuy pr12 + ...be analytic in E
and h(z) # 0, z € E. If there exists a point zo € E such that

m-+p+1

m n
largh(z)] < 51 (2] <lz0l) and Jargh(zo)| = 7 (0<a<1),  (1.10)

then we have,

20h'(z0) .
= ika, (1.11)
h(zo)
where
1 1 T
k> E(a—i— ) when argh(zO):En, (1.12)
k< —L((a+L) when argh(zg) =T (1.13)
s —slat+ ghizo) =51, .
and

(h(z()))% = +ia, (a>0).

2. Main Results
Theorem 2.1. Let f € ., and Q(z) be defined by (1.9). If

jargz (V| < 50 (€ £, Al

then
Jarg 2/t () f()V)| < T (2 € EY),

where 0 < j<p,0<n<1,u>—p,and d > 0.
Proof. Let f €}, and set

= DRt (o) S = () 02)
Then £ is analytic in E with i(z) # 0 for all z € E and h(0) = 1. Since

(s () £/(2) 9 = (A (o) () + 2 () £(2)0H),
(2.3)
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we have from Egs. (1.7),(1.9) and (2.3) that

(1.
OV (z2)=(1-8—(u+2p)8 )(H%ﬂ(a )f(2)Y)
+5( u+p)(H§§;‘i1( o) f(2))Y
= (18— (+2p)8)(HIH (o) f(2)V) + 8 (2(HE (on) f'(2))D))
+ (L4 2p) (HyE (on) f(2)Y)
= (1=8—8))((Hpt (o) f(2)V) + 8z((Hot (n) £(2)) 0.
2.4)

It is easy to see from Eqs. (2.4) and (2.2) that

#1006 = 13- 00 k) )
8P (o) 7(2)
=P + (p"_"i.)! (p— )1h(2) + ()

I /U Y YRS R
R P (h(Z)+(1_6_6p)zh(z)>. (2.5)

Suppose there exists a point zg € E such that

T

T
largh(z)] < 51 ([z] <€ |z0l) and fargh(z0)| = 5

Then, by Lemma 1.1, we can write that

20l (20) = ikm and (h(z()))nl = +ia (a > 0).
h(Zo)
Therefore, if argh(zo) = 5L, then by Eq. (2.5)
L 1-6— 5 n
@70V (z) = (< P ( 1—6 5p) : <(Z3)>

B .(1—5 5p) L 0 .
= —(p—j)! a'le'2 1+7(1—5—5p)lkn .
This shows that
pi i) = F 6 .
arg(zo 0 (m)) 2n+arg(1+(1_5_5p)lkn>
_T -1 6
= 2n+tan ((1—3—3p)k”>

1 1
>=-n <wherek2 E(CH_E) > 1) ,

SIE
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which contradicts the condition Eq. (2.1). Similarly, if arg(h(z)) = — %L, then
we obtain

i —-n
arg (Zg jQ(])(ZO)) S5

which also contradicts the Eq. (2.1). Thus, the function # satisfies

larg(h(z0))| < % (z€ EY).

This shows that

g (227 (3t (on) £V < T (e € 7).

This completes the proof. O

Taking a; = p, 4 =0, ;1 = B; (i=1,2,...5) in Theorem 2.1, we immedi-
ately have the following result.

Corollary 2.2. Let Q(z) = (1—8)f(z) + 8zf'(z) for f€ X, . If
‘arg <zp7jQ(j)(z)) ‘ < gn (ze EY),

then T
jarg ((79(2)) )| < 31 B,
where 0 < j<p,0<n<1landd>0.

Theorem 2.3. Let f(z) € ¥, and let Q be defined by Eq. (1.9). If

i, () 4Pt 1+(1-20)
PI(HY R (o) f(2)V) < p—j) 1-z

(z€E), (2.6)

then
(1-6—-pd)1+(1-20)z

(p—J)! 1—
where 0 < j<p,0< 0o <1,and

(i) < (d<p), @D

5 ak 5
i ”(a—a—pa))] IR

The bound p € (0, 1) is best possible.
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Proof. Set
11 1 1
Y(z)=(1-7y)- +7- , ZEE",
@ =077+ g |
where y = ﬁ > 0. We need to verify that
1
93{pz‘P(z)}>§, z€E¥, (2.9)

where p = (1+72)2 —yand p € (0,1). Let 7= =Re%and [z] = r < 1.In view
of

1+R*(1—1%) R |

o —
€08 2R ST

we have
1
2R {Z‘P(z) - 2} =2(1—7)Rcos 6 +2yR*cos26 — 1|

=Ry(1=r) + R ((1=7)(1 =) =2p7)
> (1 =)+ (1=7)(1=r) 277
:Rz(l —2}/r—r2) >0,

for |z| = r < p, which gives Eq. (2.9). Thus the function ¥(z) has the integral
representation

p2¥(z) = / ) g, (2.10)

where 1(x) is a probability measure on |x| = 1.
Now, setting

(P=0"( p-i ()
T (2 (Hpais(on) £(2)) " = h(2),
where h(z) is analytic in in E with ~(0) = 1. Then it follows from Eq. (2.6) that
Rh(z) >0,0<o6<1,z€E.
Since we can write

{2¥(2) #h(2)} = h(z) + 2l (2),
it follows from Eq. (2.10) that

R{h(pz) +vpah' ()} = R{pz¥(pz) x h(2)}

=R /h(xz)d/.t(x) >0, z€E". (2.11)

=1
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Thus, from Egs. (2.3) and (2.11), we conclude that Eq. (2.7) holds.

To show that the bound p is best possible we take f €}, defined by

Since

(p

for

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

=0 o im j I+z
=R (gt (o) 1) = (1-0) o
Ny pi m () !
— j)zPY ((pr’é'fs(m) f(z)) B 1+z 14z
05 0p) _(1—6)—1_Z+6+y(1—6)z -
1+2yz— 22
:(1_6)4(1—Z)2 +0=0,
|z| = —p, it follows that p is the best possible. O
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