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COX RINGS OF DU VAL SINGULARITIES

L. FACCHINI - V. GONZÁLEZ-ALONSO - M. LASOŃ

In this note we introduce Cox rings of singularities and explicitly com-
pute them in the case of du Val singularities Dn, E6, E7 and E8.

1. Introduction.

In the study of the intrinsic geometry of a projective variety it is very useful to
consider all of its possible projective embeddings. This leads, for example, to
the study of the Picard group of the variety, considering all possible line bundles
on it. However, on the other hand we lose the concept of coordinate ring. In the
case of toric varieties, this problem was solved by Cox [5] by considering the
total coordinate ring of the variety. Cox’s construction was generalized by Hu
and Keel in [7] for varieties with free, finitely generated Picard group, and they
called this ring the Cox ring of the variety.

The Cox ring of a variety is closely related to its birational geometry, spe-
cially to its various GIT presentations and small modifications. For example, if
the Cox ring of a variety is finitely generated, then Mori’s Minimal Model Pro-
gram can be carried out for any divisor (hence the name Mori Dream Space for
these varieties). Some examples of varieties, except toric ones, whose Cox ring
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has been explicitly computed are homogeneous varieties, Del Pezzo surfaces
and some blow-ups of projective spaces in finitely many points (see [9]).

In this note, we generalize this construction to study resolutions of surface
singularities. More precisely, we define the Cox ring of a surface singularity
under some hypothesis on the relative Picard group of its desingularization, and
then compute explicitly the Cox ring of du Val singularities. We focus on these
singularities because the Picard group of their desingularizations is easy to de-
scribe, so many computations can be done explicitly. Moreover, since they are
the most basic surface singularities, they constitute a natural starting point for
computing Cox rings of other singularities. For a short introduction about these
singularities and their basic properties, the reader is referred to [2], sections III.3
to III.7.

The paper is organized as follows. First, in section 2, we introduce Cox rings
by stating our definition and summarizing some general properties. In section
3 we compute the case of the A-type singularities, which are toric varieties and
hence their Cox ring are known. After that, in section 4, using the results from
section 3 as a guide, we compute the Cox ring of the Dn singularities. This is
the longest section in the paper, and contains full and detailed proofs of all the
intermediate steps. Finally, in section 5, we state the basic results in the case
of the three E-type singularities. We have omitted the proof of these results
because they are very similar to the proofs from section 4 and they would make
the paper much longer (each of the three cases need specific proofs at some
point).

Note: All the varieties considered in the paper are defined over C.

2. Generalities on Cox rings.

Our aim is to compute the Cox ring of all du Val surface singularities. First
of all, we need to define such a ring, and we do it for any (normal) surface
singularity as suggested by Prof. Wiśniewski.

Definition 2.1. Let (X ,O) be a normal surface singularity, i.e., X is a nor-
mal surface and O is an isolated singularity, and let π : X̃ −→ X be its mini-
mal desingularization. Assume moreover that the relative Picard group of π ,
Pic(X̃/X) = Pic(X̃)/π∗Pic(X) is free and finitely generated. We define the Cox
ring of the singularity as the ring

Cox(X) =
⊕

L∈Pic(X̃/X)

H0(X̃ ,L).

Remark 2.2. Note that this definition is not the same as the Cox ring of the sin-
gular variety X , neither of its minimal desingularization. Indeed, we consider
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only the relative line bundles, so it is an object attached only to the singular-
ity. However, it shares lots of properties with the Cox ring of a variety. For
example, Cox(X) is naturally graded by Pic(X̃/X), and its multiplicative struc-
ture depends on the choice of line bundles representing isomorphism classes
L ∈ Pic(X̃), but two different choices give (non-canonically) isomorphic rings.

In our case, du Val singularities are rational, which implies that

Pic(X̃)∼= π
∗Pic(X)⊕H2(E,Z)

where E = π−1(O) is the fibre over the singular point. Moreover, E =
⋃n

i=1 Ei

is a connected union of (-2)-curves Ei (i.e. each Ei is a smooth rational curve
with self-intersection (Ei)

2 =−2) intersecting transversely at one point at most
(i.e. Ei ·E j = 0,1). Therefore, we get the following chain of isomorphisms

Pic(X̃/X)∼= H2(E,Z)∼=
n⊕

i=1

H2(Ei,Z)∼=
n⊕

i=1

Z〈c1(OEi(1))〉 ∼= Zn.

We call the composition δ : Pic(X̃/X)−→Zn the relative (multi)degree, because
its components are given by δi(L) = deg(L|Ei) for any L ∈ Pic(X̃). Furthermore,
any (isomorphism class of a) relative line bundle L ∈ Pic(X̃/X) is uniquely de-
termined by its multidegree δ (L). This nice description of the relative Picard
group is the reason to focus on du Val (rational) surface singularities.

Before going deeper into the study of Cox rings of du Val singularities, we
would like to remind some general properties of Cox rings (suitably adapted to
our case), mainly those related with GIT and birational models. We are follow-
ing [9], where the interested reader could find more detailed explanations.

First of all, Cox(X) is endowed with a natural action of the algebraic torus
TX = Hom(Pic(X̃/X),C∗). Explicitly, if L1, . . . ,Lr is a basis of Pic(X̃/X)∼= Zr

so that TX ∼= C∗r, and x ∈ H0(X̃ ,L), with L ∼= La1
1 ⊗·· ·⊗Lar

r , then the action is
given by

(t1, . . . , tr) · x = ta1
1 · · · t

ar
r x.

This action extends to an action on the affine scheme X = Spec(Cox(X)).
Therefore, whenever Cox(X) is finitely generated, we can use it to do GIT. So,
from now on we will assume that Cox(X) is finitely generated. Let L be a line
bundle on X̃ and set

RL =
∞⊕

m=0

Cox(X)Lm =
∞⊕

m=0

H0(X̃ ,Lm).

The inclusion RL ⊆ Cox(X) induces a rational map

πL : X 99K XL = Proj(RL)
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which is constant on TX -orbits. In particular, if we take L to be a very ample line
bundle on X̃ then XL ∼= X̃ . If we take L to be the pull-back of a very ample line
bundle on X , instead, we recover XL ∼= X . Therefore, quotients of X give some
insight into the geometry of X .

As explained in [9], L induces a linearization of the trivial bundle on X
extending the action of TX , and the GIT quotient of X via this linearization is
precisely XL. This quotient is a good geometric quotient of the set of semistable
points of X , whose complement is the subvariety associated to the irrelevant
ideal associated to L:

JL =

√
(H0(X̃ ,L))⊆ RL.

This fact shows that, in our case, both the singularity X and its desingularization
X̃ can be recovered from Cox(X) and some combinatorial data in Pic(X̃/X)
(namely the set of very ample line bundles).

3. The case of A singularities: an inspiration.

In order to get our first candidates for the Cox rings of (affine) A−D−E sin-
gularities, we look first at the case of

An = {xy− zn+1 = 0} ⊂ C3,

which are toric varieties. In this case, the exceptional curve of the minimal
desingularization is a chain of n (-2)-curves E1, . . . ,En, with intersection form

Ei ·E j =


−2 if i = j
1 if |i− j|= 1
0 otherwise.

The dual graph of the resolution is therefore:

GFED@ABCE1 GFED@ABCE2 GFED@ABCE3 ___ ___ GFED@ABCEn−1 GFED@ABCEn

Hence, in this case Pic(Ãn/An) ∼= Zn, and it is known (as for all toric vari-
eties) that Cox(Ãn) = C[x1,y1, . . . ,yn,xn] with degrees

d(x1) = e1 = (1,0, . . . ,0),
d(y1) =−2e1 + e2 = (−2,1,0, . . . ,0),
d(yk) = ek−1−2ek + ek+1 = (0, . . . ,0,1,−2,1,0, . . . ,0), for k = 2, . . . ,n−1,
d(yn) = en−1−2en = (0, . . . ,0,1,−2)
d(xn) = en = (0, . . . ,0,1),
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(where {e1, . . . ,en} stands for the standard basis of Zn).
Thus, the GIT presentation of Ãn (or An, depending on the chosen lineariza-

tion) is given by the action of the torus T = Hom(Pic(Ãn/An),C∗)∼= (C∗)n on
Cn+2 = Spec(C[x1,y1, . . . ,yn,xn]) given by these degrees, i.e.

(t1, . . . , tn) · (x1,y1, . . . ,yn,xn) = (t1x1, t−2
1 t2y1, t1t−2

2 t3y2, . . . ,

. . . , tn−2t−2
n−1tnyn−1, tn−1t−2

n yn, tnxn).

Indeed, the ring of invariants C[x1,y1, . . . ,yn,x1]
T is the subalgebra gener-

ated by

z1 = y1y2
2 · · ·yn

nxn+1
n ,z2 = xn+1

1 yn
1yn−1

2 · · ·yn, and w = x1y1y2 · · ·ynxn,

which is clearly isomorphic to C[Z1,Z2,W ]/(Z1Z2−W n+1), the coordinate ring
of An.

We will now show what we obtain by mimicking this construction for the
non-toric du Val singularities. As we shall see, when treating the Dn singular-
ities, there are some differences between odd n and even n, so we treat them
separately. We also treat independently E6, E7 and E8 because of their excep-
tional nature. Nevertheless, it will be apparent after these discussions that the
resulting candidates for the Cox rings will all be analogous independently of
these distinctions.

4. Singularities of type D.

4.1. Guessing the candidates.

We focus on D singularities. They are defined for n≥ 4 as the surfaces

Dn = {x2 + zy2 + zn−1 = 0} ⊂ C3.

The dual graph of its resolution is:

GFED@ABCE1 GFED@ABCE0 GFED@ABCE3 ___ ___ GFED@ABCEn−2 GFED@ABCEn−1

GFED@ABCE2

Thus, the exceptional curve consist of n (-2)-curves E0,E1, . . . ,En−1, where
E0 is the only one intersecting three curves, E1 and E2 intersect only E0, and the
remaining ones form a chain such that E3 also intersects E0. The (relative) Pi-
card group of D̃n is isomorphic (via de degree map) to Zn = Z〈e0,e1, . . . ,en−1〉,
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where we have shifted the indices of the canonical basis of Zn so that deg(L) =
∑

n−1
i=0 deg(L|Ei).

As the case of the An singularities suggests, we consider the polynomial
ring R̄=C[x1,x2,xn−1,y0,y1, . . . ,yn−1], with one variable yi for each exceptional
component Ei, and three further variables x1,x2 and xn−1 corresponding to the
leafs of the dual graph. As above, the degree of these variables is given by the
extended intersection matrix

−2 1 1 1
1 1 −2

1 1 −2
1 −2 1

1 −2
. . .

. . . . . . . . .
. . . −2 1

1 1 −2


(1)

where the first three columns are the degrees of x1,x2 and xn−1 respectively, and
the rest of the matrix is just the intersection matrix of the exceptional curve.
More explicitly, we set

d(x1) = e1 = (0,1,0, . . . ,0),
d(x2) = e2 = (0,0,1,0, . . . ,0),

d(xn−1) = en−1 = (0, . . . ,0,1),
d(y0) =−2e0 + e1 + e2 + e3 = (−2,1,1,1,0, . . . ,0)
d(y1) = e0−2e1 = (1,−2,0, . . . ,0),
d(y2) = e0−2e2 = (1,0,−2,0, . . . ,0),
d(y3) = e0−2e3 + e4 = (1,0,0,−2,1,0, . . . ,0),
d(yk) = ek−1−2ek + ek+1 = (0, . . . ,0,1,−2,1,0, . . . ,0) for k = 4, . . . ,n−2, and

d(yn−1) = en−2−2en−1 = (0, . . . ,0,1,−2).

Finally, we consider again the action of T =Hom(Pic(D̃n/Dn),C∗)∼= (C∗)n

on Cn+3 = Spec(C[x1,x2,xn−1,y0,y1, . . . ,yn−1]) given by the degrees:

(t0, . . . , tn−1) · (x1,x2,xn−1,y0, . . . ,yn−1) =

= (t1x1, t2x2, tn−1xn−1, t−2
0 t1t2t3y0, t0t−2

1 y1, t0t−2
2 y2, t0t−2

3 t4y3, . . .

. . . , tn−2t−2
n−1yn−1). (2)

We compute now the ring of invariants C[x1,x2,xn−1,y0,y1, . . . ,yn−1]
T with

respect to this action, which turns out to depend only on the parity of n. We treat
two cases separately.
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Lemma 4.1. The ring of invariants of C[x1,x2,xn−1,y0,y1, . . . ,yn−1] for n = 2k
with respect to the action given by (2) is isomorphic to

C[Z1,Z2,Z3,W ]/(W 2−Z1Z2Z3).

Furthermore, the isomorphism is given by

Z1 = x2
1y2k−2

0 yk
1yk−1

2 y2k−3
3 y2k−4

4 · · ·y2k−1

Z2 = x2
2y2k−2

0 yk−1
1 yk

2y2k−3
3 y2k−4

4 · · ·y2k−1

Z3 = x2
2k−1y2

0y1y2y2
3y2

4 · · ·y2
2k−1

W = x1x2x2k−1y2k−1
0 yk

1yk
2y2k−2

3 y2k−3
4 · · ·y2

2k−1

Proof. The ring of invariants is generated by monomials of degree 0, that is,
elements m = xb1

1 xb2
2 xb2k−1

2k−1ya0
0 · · ·y

a2k−1
2k−1 such that ai,bi ≥ 0 and

a1 +a2 +a3−2a0 = 0,ai−1−2ai +ai+1 = 0, . . . .

Denoting a = b2k−1,b = a2k−1−b2k−1,c = b2, and using the previous equations
on the ai,bi, we get that

m = (x−1
1 x1

2x1
2k−1y1

0y1
2y1

3 · · ·y1
n−1)

a·

· (x−(n−2)
1 xn

2yn−2
0 yn−1

2 yn−3
3 · · ·y1

n−1)
b(x2

1x−2
2 y1

1y−1
2 )c. (3)

Hence, the cone of monomials of degree 0 is (isomorphic to) the subcone of
Z3 = {(a,b,c)} satisfying that all the exponents are non-negative. So looking at
the exponent of x2k−1 we get that a≥ 0, again looking at the exponent of y1 we
get that c≥ 0. Looking at the exponent of x2 and x1 we get that−2c+nb+a≥ 0
and 2c−(n−2)b−a≥ 0, so b≥ 0. Now looking at all exponents we get that m is
a true monomial (its exponents are non-negative) if and only if a−c+(n−1)b≥
0,−2c+nb+a≥ 0 and 2c−(n−2)b−a≥ 0. The first inequality follows from
the second and the third, so all the exponents are non-negative if and only if

a≥ 0, b≥ 0, c≥ 0,−2c+nb+a≥ 0 and 2c− (n−2)b−a≥ 0.

The triple (2,0,1), corresponding to the monomial Z3, belongs to this cone,
and we take it as one of its generators. The elements from the cone which are
not divisible by (2,0,1) satisfy a = 0,1 or c = 0. If c = 0 then from the last
inequality we have −(n− 2)b− a ≥ 0, but n ≥ 4 so a = b = 0 and it is the
origin. If a = 0 we have n

2 b ≥ c ≥ (n
2 − 1)b and if a = 1 then n

2 b+ 1
2 ≥ c ≥

(n
2 − 1)b+ 1

2 . To get the first ones it is enough to add (0,1,k− 1),(0,1,k) as
generators, and adding (1,1,k) we also obtain the second ones. These three
generators correspond to Z1,Z2 and W . Since the four generators only satisfy
the relation W 2 = Z1Z2Z3, the proof is finished.
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Thus, the quotient of C2k+3 by the action in (2) is the affine 3-fold in C4

given by the equation W 2−Z1Z2Z3 = 0. We claim that intersecting it with the
hypersurface {Z1 +Z2 +Zk−1

3 = 0} we obtain a surface isomorphic to the D2k
singularity. Indeed, D2k can be defined as the surface {z2+(y2k−2−x2)y= 0}⊂
C3. We can write the equation as z2+(yk−1−x)(yk−1+x)y = 0, or equivalently
W 2 +X1X2X3 = 0, where X1 +X2 = 2Xk−1

3 , and a linear change of coordinates
gives the desired expression

D4 ∼= {W 2−Z1Z2Z3 = Z1 +Z2 +Zk−1
3 = 0} ⊂ C4.

Now, substituting the monomials of Lemma 4.1 in the relation Z1 + Z2 +
Zk−1

3 = 0, that is, pulling back this equation via the quotient map

Cn+3 −→ Cn+3/T ∼= {W 2−Z1Z2Z3 = 0} ⊂ C4,

we obtain

y2k−2
0 yk−1

1 yk−1
2 y2k−3

3 y2k−4
4 · · ·y2k−1(y1x2

1 + y2x2
2 + y3y2

4 · · ·y2k−3
2k−1x2k−2

2k−1) = 0

which suggest that we can obtain the singularity D2k as the quotient of the hy-
persurface

{y1x2
1 + y2x2

2 + y3y2
4 · · ·y2k−3

2k−1x2k−2
2k−1 = 0} ⊂ Cn+3

(by the same action of T ). Indeed, this hypersurface is invariant under the action,
and the remaining components of the preimage of {Z1 +Z2 +Zk−1

3 = 0} (given
by the other factors in the pull-back) are mapped to the origin by the quotient
map.

Summing up, all these computations suggest that

Cox(D2k)∼=C[x1,x2,x2k−1,y0,y1, . . . ,y2k−1]/(y1x2
1+y2x2

2+y3y2
4 · · ·y2k−3

2k−1x2k−2
2k−1),

which is actually true, as we shall prove later.
We take care now of the odd case.

Lemma 4.2. The ring of invariants of C[x1,x2,xn−1,y0,y1, . . . ,yn−1] for n =
2k+1 with respect to the action given by (2) is isomorphic to

C[Z1,Z2,Z3,Z4,Z5,Z6]/(Z4
2 −Z5Z6,Z1Z2

2 −Z3Z4,Z2
2Z4−Z3Z6,

Z2
2Z3−Z4Z5,Z2

4 −Z1Z6,Z2
3 −Z1Z5). (4)
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Furthermore, the isomorphism is given by

Z1 = x2
2ky2

0y1y2y2
3y2

4 · · ·y2
2k

Z2 = x1x2y2k−1
0 yk

1yk
2y2k−2

3 y2k−3
4 · · ·y2k

Z3 = x2
2x2ky2k

0 yk
1yk+1

2 y2k−1
3 y2k−2

4 · · ·y2
2k

Z4 = x2
1x2ky2k

0 yk+1
1 yk

2y2k−1
3 y2k−2

4 · · ·y2
2k

Z5 = x4
2y4k−2

0 y2k−1
1 y2k+1

2 y4k−4
3 y4k−6

4 · · ·y2
2k

Z6 = x4
1y4k−2

0 y2k+1
1 y2k−1

2 y4k−4
3 y4k−6

4 · · ·y2
2k.

Proof. The first part of the proof of Lemma 4.1 also applies in this case to give
(2,0,1) as one of the generators of the cone of monomials. However, in this
case the triples not divisible by (2,0,1) are those satisfying n

2 b ≥ c ≥ (n
2 −1)b

if a = 0 and n
2 b+ 1

2 ≥ c ≥ (n
2 − 1)b+ 1

2 if a = 1. To get the first ones we need
to add (0,1,k),(0,2,2k + 1), and (0,2,2k− 1), and (1,1,k) and (1,1,k + 1)
are enough to obtain all the second set. This way we get the six monomials
Z1, . . . ,Z6 generating the ring of invariants, and it is easy to check that the six
relations given generate all the possible relations.

In order to use this result to get a candidate for Cox(D2k+1), we need to
realize D2k+1 as a subvariety of

V =

{
Z4

2 −Z5Z6 = Z1Z2
2 −Z3Z4 = Z2

2Z4−Z3Z6 =
= Z2

2Z3−Z4Z5 = Z2
4 −Z1Z6 = Z2

3 −Z1Z5 = 0

}
⊂ C6.

First of all, the equation of D2k+1 can be rewritten as (zk−x)(zk+x)+y2z= 0, or
equivalently AB2−CD = 0 with C+D+Ak = 0. Hence, D2k+1 can be obtained
as the intersection of {C+D+Ak = 0} with {AB2−CD = 0}, and the second
hypersurface turns out to be the projection of V to C4 given by (Z1, . . . ,Z6) 7→
(A,B,C,D) = (Z1, . . . ,Z4). After these computations, it is immediate to check
that D2k+1 is isomorphic to the intersection of V with the hypersurface {Zk

1 +
Z3 + Z4 = 0}. Substituting the expressions of the Zi and cutting the common
factors as in the even case, we obtain the relation

y1x2
1 + y2x2

2 + y3y2
4 · · ·y2k−2

2k x2k−1
2k ,

which is analogous to the one obtained before.

4.2. Constructing the (iso)morphism.

Up to now we have got just reasonable guesses of the Cox rings of the Dn singu-
larities, but we are still quite far from a proof. In order to prove the isomorphism
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of graded rings

Cox(Dn)∼= C[x1,x2,xn−1,y0,y1, . . . ,yn−1]/(y1x2
1 + y2x2

2 + y3y2
4 · · ·yn−3

n−1xn−2
n−1),

we will construct a morphism Φ of graded rings and then prove that it is an
isomorphism on each degree. We will define Φ by giving the images of the
variables x1, . . . ,yn−1 and checking that the relation maps to 0.

First of all, fix once and for all, line bundles L0, . . . ,Ln−1 on D̃n such that
degE j

(Li|E j) = δi j, i.e. such that their isomorphism classes give the canonical

basis of Pic(D̃n/Dn) ∼= Zn. Given any line bundle L of degree (d0, . . . ,dn−1),
there is a unique isomorphism L ∼= L⊗d0

0 ⊗ . . .⊗L⊗dn−1
n−1 , and we will always im-

plicitly assume that we are working with the latter, even if for simplicity we
write the former. All this formalism seems useless, but it is necessary in order
to have a well defined multiplication in

Cox(Dn) = ∑
(d0,...,dn−1)∈Zn

H0(D̃n,L
⊗d0
0 ⊗ . . .⊗L⊗dn−1

n−1 ).

We start with the images of the yi. By construction, each exceptional com-
ponent Ei defines a line bundle OD̃n

(Ei) of degree d(yi), so Φ(yi) should belong

to H0(D̃n,OD̃n
(Ei)). Thus, we define Φ(yi) to be the unique section (up to scalar

multiplication) si ∈ H0(D̃n,OD̃n
(Ei)) vanishing exactly along Ei.

In order to define Φ(x1),Φ(x2) and Φ(xn−1) we need to choose sections
t1 ∈ H0(D̃n,L1), t2 ∈ H0(D̃n,L2) and tn−1 ∈ H0(D̃n,Ln−1) respectively. But this
choice cannot be arbitrary, since we want them to verify the relation

s1t2
1 + s2t2

2 + s3s2
4 · · ·sn−3

n−1tn−2
n−1 = 0

as a section of L0 (because the degree of this expression is (1,0, . . . ,0)). At this
point we need to remember where the relation y1x2

1+y2x2
2+y3y2

4 · · ·y
n−3
n−1xn−2

n−1 = 0
did come from, which depends on the parity of n.

In the even case n = 2k, it was obtained as a factor of the pull-back of
Z1 +Z2 +Zk−1

3 . But x1 appears only in the pull-back of Z1, and Z1 = 0 defines
(set-theoretically) an affine line C1 ⊂ D2k whose strict transform C1 ⊂ D̃2k is
still an affine line and is a divisor of degree (0,1,0, . . . ,0). Hence, we define t1
as the section of L1 vanishing exactly along C1. Analogously, we define t2 and
tn−1 as the sections of L2 and Ln−1 vanishing along the strict transforms of the
affine lines in D2k given by Z2 = 0 and Z3 = 0, respectively.

In the odd case, we found that D2k+1∼=V ∩{Zk
1+Z3+Z4 = 0}⊂C6. There-

fore, we have to take t1, t2 andtn−1 the sections of the corresponding line bundles
vanishing along the strict transforms of the affine lines defined by Z4 = 0, Z3 = 0
and Z1 = 0 respectively.
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With these choices, the relation maps to 0 by construction, and we have a
well-defined homomorphism of graded rings

Φ : C[x1,x2,xn−1,y0,y1, . . . ,yn−1]/(y1x2
1 + y2x2

2 + y3y2
4 · · ·yn−3

n−1xn−2
n−1)→ Cox(Dn)

as wanted. Moreover, also by construction, its piece of degree (0, . . . ,0) is an
isomorphism, which is the basic step in the inductive procedure which we will
use to prove that Φ is an isomorphism in every degree.

4.3. Reduction to the non-negative case.

As a first step, we will prove that Φ is an isomorphism on every degree if and
only if it is so on all non-negative degrees (that is, those with no negative com-
ponent). Note that these degrees correspond to (relatively) nef line bundles.

In order to lighten notation, we will denote

R = C[x1,x2,xn−1,y0,y1, . . . ,yn−1]/(y1x2
1 + y2x2

2 + y3y2
4 · · ·yn−3

n−1xn−2
n−1),

and given any divisor D on D̃n or any line bundle L ∈ Pic(D̃n/Dn), we denote
by RD or RL and Cox(Dn)D or Cox(Dn)L, respectively, the summands of degree
δ (D) or δ (L) of the corresponding rings. We will often identify a divisor with
its associated line bundle, writing H0(D̃n,D) instead of H0(D̃n,OD̃n

(D)).
Furthermore, in order to simplify the exposition, we make the following

Definition 4.3. Two divisors (line bundles, degrees) D,D′ are said to be equiv-
alent if the following conditions are equivalent:

• ΦD : RD→Cox(X)D is an isomorphism

• ΦD′ : RD′ →Cox(X)D′ is an isomorphism

Thus, our next objective is to show that each degree is equivalent a non-
negative one. We start with a preliminary lemma (recall that Ei denote the com-
ponents of the exceptional divisor, and that δi(D) = degEi

(OEi(D)) = D ·Ei).

Lemma 4.4. Let D be a divisor such that di = δi(D) < 0. Then D and D−Ei

are equivalent.

Proof. Let us consider the following exact sequence:

0 // RD−Ei

·yi //

ΦD−Ei
��

RD //

ΦD
��

Q //

∼=
���
�
� 0

0 // H0(D̃n,D−Ei)
·si // H0(D̃n,D) // H0(Ei,OEi(di)) = 0 // 0
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We want to see that ΦD−Ei is an isomorphism if and only if ΦD is. On the
one hand, We have that H0(Ei,OEi(di)) = 0 because di < 0. On the other
hand, Q = 0 because multiplying by yi is a surjection. Indeed, in the case
i = 4, . . . ,n− 1, if xβ1

1 xβ2
2 xβ3

3 yα1
1 · · ·yαn

n ∈ RD then αi−1− 2αi +αi+1 = di < 0,
so αi > 0 (all the exponents are non-negative), which means that it is the image
of xβ1

1 xβ2
2 xβ3

3 yα1
1 · · ·y

αi−1
i · · ·yαn

n ∈ RD−Ei . The rest of the cases are analogous, so
we have proved the assertion.

We are now ready to prove the next

Proposition 4.5. For every divisor D there exists a nef divisor D′ (i.e., such that
δi(D′)≥ 0 for all i) equivalent to D.

Proof. Order the Ei’s as E1 < E2 < E0 < E3 < · · · < En and proceed in the
following way:

• if δ (D) has some negative component, choose the lowest (according to
the order above) negative component i and replace D by D−Ei.

• if δ (D) has no negative component, stop the procedure.

Due to Lemma 4.4 it is enough to prove that the above procedure stops af-
ter finitely many steps. Suppose that for the divisor D it does not. Let A =
a1,a2,a3, . . . be the infinite sequence of choices of the lowest negative coor-
dinate in the steps of the procedure, and let d1,d2,d3, . . . be the sequence of
degrees. Let j be the highest coordinate (always according to the order fixed
above) that appears infinitely many times in the sequence A. There exists some
n0 such that an ≤ j for n > n0 (since higher indices appear only finitely many
times). Let n1 be greater than n0 and such that an1 = j (it is possible since j
appears infinitely many times). So dn1 has nonnegative coordinates for i < j
and dn1

j < 0 so dn1 = (nn,nn, . . . ,nn,dn1
j , . . .) (nn denotes a nonnegative number

and p denotes a positive number). Let us observe what happens in the next steps
of procedure. If dn1

i > 0 for some i = 0,3, . . . , j− 1 and it is the highest such i
then

dn1 = (nn,nn, . . . , p,0, . . . ,0,dn1
j , . . .)

dn1+1 = (nn,nn, . . . , p,0, . . . ,0,−1,dn1
j +2, . . .)

dn1+2 = (nn,nn, . . . , p,0, . . . ,0,−1,1,dn1
j +1, . . .)

dn1+3 = (nn,nn, . . . , p,0, . . . ,0,−1,1,0,dn1
j +1, . . .)

. . .

dn1+ j−i−1 = (nn,nn, . . . , p,−1,1,0, . . . ,0,dn1
j +1, . . .)

dn1+ j−i = (nn,nn, . . . , p−1,1,0, . . . ,0,dn1
j +1, . . .)



COX RINGS OF DU VAL SINGULARITIES 127

so all indices lower then j are nonnegative and j-th is greater by 1. The same
happens then

dn1 = (0, . . . ,0,dn1
j , . . .)

dn1+1 = (0, . . . ,0,−1,dn1
j +2, . . .)

dn1+2 = (0, . . . ,0,−1,1,dn1
j +1, . . .)

dn1+3 = (0, . . . ,0,−1,1,0,dn1
j +1, . . .)

. . .

dn1+ j−3 = (0,0,0,−1,1,0, . . . ,0,dn1
j +1, . . .)

dn1+ j−2 = (−1,0,0,1,0, . . . ,0,dn1
j +1, . . .)

dn1+ j−1 = (1,−1,−1,0,0, . . . ,0,dn1
j +1, . . .)

dn1+ j = (−1,1,1,0,0, . . . ,0,dn1
j +1, . . .)

dn1+ j+1 = (1,0,0,0, . . . ,0,dn1
j +1, . . .)

Hence after finitely many steps we will have dm
j ≥ 0, and for all i < j, dm

i ≥ 0
so am > j, which is a contradiction.

4.4. Reduction to basic cases.

Now that we know that it is enough to check that Φ is an isomorphism on nef
degrees, we want to reduce this problem to check only a few (basic) degrees.
As before, we need first some results studying the relation between ΦD and ΦD′

when adding or subtracting elementary divisors. However, the situation now is
a bit more complicated because we should always have nef degrees.

Lemma 4.6. Let D be a nef divisor such that di = δi(D) ≥ 2 for some i. Then
D+Ei is nef and equivalent to D.

Proof. Let us consider the following exact sequence:

0 // RD
·yi //

ΦD
��

RD+Ei
//

ΦD+Ei
��

Q //

∼=
���
�
� 0

0 // H0(D̃n,D)
·si// H0(D̃n,D+Ei)

// H0(Ei,OEi(di−2)) // H1(D̃n,D)

(5)

On the one hand, since D is relatively nef (by hypothesis) and relatively big
(because π is birational), and Dn is affine, then

H1(D̃n,D) = H0(Dn,R1
π∗D) = 0
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because of the relative Kawamata-Viehweg vanishing theorem. On the other
hand, the multiplication by yi in the upper row is of course injective, since the
relation in R is irreducible. We are going to describe the generators of Q over C
and observe that it has dimension equal to the dimension of H0(Ei,OEi(di−2)),
which is di−1. The monomials of RD+Ei which are not in the image of RD are
of the form m = xb1

1 xb2
2 xbn−1

n−1 ya0
0 · · ·y

an−1
n−1 with ai = 0. We can assume moreover,

thanks to the relation, that y1x2
1 does not divide m, so either a1 = 0 or b1 ≤ 0.

They have to be of degree δ (D+Ei) so−2ai+ai+1+ai−1 = ai+1+ai−1 = di−2
(it is the case i = 3, . . . ,n− 1, the remaining ones are analogous), so we have
di − 1 possibilities: ai−1 = a and ai+1 = di − 2− a for a = 0, . . . ,di − 2. It
is enough to show that each possibility can be extended to a monomial in a
unique way. Before going through the vertex E0 it is easy because the degree
force us to have ai− j = jai−1 +( j−1)di−1 + · · ·+di− j+1. Then we have either
a1 + a2 + a3− 2a0 = d0 and a0 > a3 or a0 = a3 = 0. In the last case the only
solutions are of the form

(a1,b1,a2,b2) = (c,2c+d1,d0− c,2d0−2c+d2).

In the case a1 the only possibility is c = 0, for which all components are non-
negative. Otherwise, if a1 > 0 we must have b1 = 0,1 according with the parity
of d1, and in each case there is only one possibility for c. On the other hand, in
the first case the solutions are of the form

(a1,b1,a2,b2) =

(⌊
1
2
(2a0−a3 +d0)

⌋
+ c,a0−

⌊
1
2
(2a0−a3 +d0)

⌋
+d1 +2c,⌈

1
2
(2a0−a3 +d0)

⌉
− c,a0−

⌈
1
2
(2a0−a3 +d0)

⌉
+d2−2c

)
and again there is only one possible c such that y1x2

1 6 | m.

As we said before, the situation now is more complicated and it is not
enough for our purposes to add single exceptional components to the divisor.
Indeed, we will need to add chains of exceptional components in order to reach
a basic case having only nef divisors along the procedure, so we need the fol-
lowing lemma.

Lemma 4.7. Let D be a divisor such that di = δi(D) = 1, d j = δ j(D) ≥ 1 and
δk(D) = 0 for all Ek between Ei and E j, and let E = Ei + · · ·+E j be the sum of
the components corresponding to the path joining Ei and E j. Assume moreover
that d j = 1 if E j is not a leaf of the dual graph. Then D+E is nef and equivalent
to D.

Proof. First of all, notice that since the dual graph of the resolution is a tree,
there is only one path joining Ei and E j and hence E is well defined.
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Let us consider now the following exact sequence:

0 // RD
·yi···y j //

ΦD
��

RD+E //

ΦD+E
��

Q //

∼=
���
�
� 0

0 // H0(D̃n,D)
·si···s j// H0(D̃n,D+E) // H0(E,OE(D+E)) // H1(D̃n,D)

As in the previous proof, H1(X ,D) = 0 due to the relative Kawamata-Viehweg
vanishing theorem. In the upper row multiplication by yi · · ·y j is again an in-
jection, since the relation in R is irreducible. We are going to describe the gen-
erators of Q over C and observe that its dimension equals the dimension of
H0(E,OE(D+E)). The rest of the cases being analogous, we will give the de-
tails assuming j > i≥ 3. In this case, dimH0(E,OE(D+E)) = di+d j−1 = d j.
The monomials of RD+E which are not in the image of RD are of the form
xb1

1 xb2
2 xb3

3 ya0
0 · · ·y

an−1
n−1 where at least one of the ai, . . . ,a j is equal to 0. They have

to be of degree δ (D+E) so ak−1− 2ak + ak+1 = 0 for k = i, . . . , j− 1, hence
if ak = 0 for some of these k, then (ai, . . . ,a j) = (0, . . . ,0). Otherwise, it must
hold a j = 0 and a j−1 > 0, and since a j−1−2a j+a j+1 = d j−1, there are exactly
d j−1 possibilities (a j−1 = 1,2, . . . ,d j−1) each of which can be extended to a
monomial in a unique way. These possibilities, together with the first one, make
a total of d j possible monomials, as wanted.

We are ready to prove the next reduction result.

Proposition 4.8. Every divisor D is equivalent to a divisor D′ of degree d′ ∈
{0,ke1 = (0,k,0, . . . ,0),ke2 = (0,0,k,0, . . . ,0),en−1 = (0, . . . ,0,k) |k > 0}.

Proof. First we will prove that there is an equivalent divisor D′ with all degrees
equal to 0 except at most one, which is 1.

We proceed in the following way:

• when we have some coordinate δi(D)≥ 2 then we replace D by D+Ei,

• when we have all coordinates δi(D) ∈ {0,1} and at least two 1’s on co-
ordinates i, j and 0’s between them, then we replace D by D+E, where
E = Ei + · · ·+E j,

• when D has at most one nonzero coordinate which is equal to 1 we stop.

Firstly, let us observe that applying the above procedure to a nonnegative
degree we stay in the nonnegative case. Secondly, due to Lemmas 4.6 and 4.7,
it is enough to prove that the above procedure stops after finitely many steps,
because all divisors produced by this procedure are equivalent.
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Suppose that for some divisor D it is not the case. Let A = a1,a2,a3, . . . be
the infinite sequence of sets of indices of the Ei’s added in the above procedure
in the consecutive steps, and let d1,d2,d3, . . . be the consecutive degrees. We
define the new order on the Ei’s: E1 < E2 < E0 < E3 < · · · < En. Let j be
the highest coordinate (according to the new order) that appears infinitely many
times in the sets in A. There exists some n0 such that for n > n0 an contains no
element greater then j (since higher indices appear only finitely many times).
Given any degree d, let us consider the sum

S =
1
2
(d1 +d2)+ ∑

i 6=1,2
di.

Observe that in the steps of the above procedure the value of S does not increase
and after a step such that j ∈ ak it decreases by 1, additionally this sum is non-
negative. It is a contradiction with the fact that j appears infinitely many times
as an element of ai.

After having reached a divisor D′ with all multidegrees equal to 0 but one
equal to 1 (say δi(D′)) it is easy to get an equivalent divisor of the form kE j

with j = 1,2,n−1. Indeed, take E j the final component in the branch from E0
containing Ei (if i = 0, pick any of them), and apply subsequently Lemma 4.7
in the other way, i.e. with D′ as D+E. This way we move the 1 one step each
time towards E j, and each time the coefficient of E j increases by one, hence we
will end with a divisor of the form we wanted.

4.5. Reduction to 0-graded piece.

The results of the previous sections allow us to check if ΦD is an isomor-
phism for every D ∈ Pic(D̃n/Dn) ∼= Zn just checking it for the basic degrees
{0,ke1,ke2,ken−1 |k > 0}. Since we already know that Φ0 is an isomorphism
(by construction), we will reduce the remaining three cases to this (most basic)
one.

Proposition 4.9. Every degree d ∈ {ke1,ke2,ken−1 |k > 0} is equivalent to 0.

Proof. All cases being analogous, we will consider the case d = ke1 for some
k > 0 and show that it is equivalent to (k−1)e1, which is clearly enough.

First of all, recall that C1 is an affine line intersecting transversely just E1,
and that t1 is the section of L1 vanishing exactly along C1. Therefore we can
consider the exact sequence of sheaves

0−→ L⊗(k−1)
1

·t1−→ L⊗k
1 −→ L⊗k

1|C1
∼= OC1 −→ 0

where the last isomorphism holds because C1 is affine.
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As in the proofs of the previous results, there is an induced commutative
diagram

0 // R(k−1)e1

·x1 //

Φ(k−1)e1
��

Rke1
//

Φke1
��

Q //

∼=
���
�
� 0

0 // H0(D̃n,L
⊗(k−1)
1 )

·t1 // H0(D̃n,L⊗k
1 ) // H0(C1,OC1)

// H1(D̃n,L
⊗(k−1)
1 ) = 0

where as usual the first row is exact because the relation in R is irreducible and
Q is defined as the corresponding cokernel, and the second row is obviously
exact as well.

It only remains to see that the rightmost map is an isomorphism. In this
case, Q is the piece of degree ke1 of the quotient

R/x1R∼= C[x2,xn−1,y0, . . . ,yn−1]/(y2x2
2 + y3 · · ·yn−3

n−1xn−2
n−1).

Therefore, a basis of Q is given by the monomials M = xb2
2 xbn−1

n−1 ya0
0 · · ·y

an−1
n−1 of

degree ke1 which are not divisible by y2x2
2. The condition deg(M) = ke1 is

equivalent to the linear system of equations in the exponents

0 =−2a0 +a1 +a2 +a3
k = a0−2a1
0 = a0−2a2 +b2
0 = a0−2a3 +a4 = a3−2a4 +a5 = . . .= an−2−2an−1 +bn−1

which easily implies that both a0 and b2 must have the same parity as k. Both
cases being analogous, we will proof the case k odd.

Firstly, M is not divisible by y2x2
2 if and only if either a2 = 0 or b2 ≤ 1.

Since 2a2 = a0 + b2 ≥ 2 implies a2 > 0, it must hold b2 ≤ 1, and therefore
b2 = 1. Now, the solutions of the first three equations are given by

b2 = 1, a2 = a1 +1, a0 = 2a1 + k and a3 = 2a1 +
3k−1

2
and the last row of equations implies that a0,a3,a4, . . . ,an−1,bn−1 is an arith-
metic progression of difference a3 − a0 = k−1

2 ≥ 0. Therefore, since all the
solutions are non-negative if a = a−1 ≥ 0, Q has a countable basis given by the
monomials

Ma =

(
x2x1+ n(k−1)

2
n−1 yk

0y
k+1

2
2 y

3(k−1)
2 +1

3 · · ·y
(n−1)(k−1)

2 +1
n−1

)
(x2

n−1y2
0y1y2y2

3 · · ·y2
n−1)

a.

On the other hand H0(C1,OC1)
∼= C[T ], where T is any function on C1 van-

ishing of order 1 at C1∩E1 (or any other point). Following the diagram we see
that the image of Ma is

u(t2
n−1s2

0s1s2s2
3 · · ·s2

n−1)
a
|C1
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where u is an invertible function depending only on the isomorphism L⊗k
1|C1
∼=

OC1 and t = (s2
0s1s2s2

3 · · ·s2
n−1t2

n−1)|C1 ∈ H0(C1,OC1) vanishes of order 1 at C1∩
E1 because of the factor s1 (the rest of factors do not vanish at any point of C1).
So we can divide by u take T = t to get Q∼= C[T ], finishing the proof.

We are now able to state the main result for the Dn singularities.

Theorem 4.10. The Cox ring of the Dn singularity (following Definition 2.1) is
isomorphic to

C[x1,x2,xn−1,y0,y1, . . . ,yn−1]/(y1x2
1 + y2x2

2 + y3y2
4 · · ·yn−3

n−1xn−2
n−1).

Proof. It is a simple consequence of Propositions 4.5, 4.8 and 4.9.

Remark 4.11. It is worth noting that the relation y1x2
1+y2x2

2+y3y2
4 · · ·y

n−3
n−1xn−2

n−1
can be easily read from the dual graph of the singularity. Indeed, consider the
triple node E0 as the root, and assign to each branch (extended with the extra
variable xi) the monomial on the corresponding variables with the distance to E0
as exponents. For example, the branch consisting of E1 gives the monomial y1x2

1,
and so on. Then, the relation is obtained simply by adding these monomials.
This method also works in the E case, as will be shown in the last section.

Remark 4.12. There is a good geometrical reason to justify that Cox(Dn), must
have a relation of the kind above: For each of the components E1, E2 and E3
intersecting E0, there is a section si in the Cox ring vanishing exactly along them.
Their restrictions to E0 are sections of H0(E0,OE0(1))∼= C2, so they have to be
linearly dependent. This dependence relation, once adjusted so that it defines a
global section of some line bundle (this is where the rest of the variables come
from) gives a relation in the Cox ring similar to the one we obtained. Moreover,
this argument shows that in the Cox ring of any singularity there must be at least
one relation for each node in the dual graph with degree greater than 2.

5. Singularities of type E and open questions.

In this last section, we will expose the results about type E singularities which
lead to the explicit computation of its Cox ring. We will also give some example
for which the rule explained in Remark 4.11 does not apply, and a short list of
open questions and next steps to do in the study of Cox rings of more general
surface singularities.

The (affine) En singularities are defined for n = 6,7,8 as the hypersurfaces

E6 = {x4 + y3 + z2 = 0} ⊆ C3
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E7 = {x3y+ y3 + z2 = 0} ⊆ C3

E8 = {x5 + y3 + z2 = 0} ⊆ C3

and the dual graphs of its minimal resolution is of the form

GFED@ABCE3 GFED@ABCE2 GFED@ABCE0 GFED@ABCE4 ___ ___ GFED@ABCEn−1

GFED@ABCE1

Lemma 5.1. Numbering the nodes as in the figure, considering variables yi for
each Ei and x1,x3,xn−1 as usual, and considering the action of T = C∗n given
by the corresponding (extended) intersection matrix, the rings of invariants are
as given in the table, monomials giving the isomorphisms are also included.

n Ring of invariants Isomorphism
Z1 = y3

0y2
1y2

2y3y2
4y5x1

6 C[Z1,Z2,Z3,Z4]/(Z3
2 −Z3Z4) Z2 = y4

0y2
1y3

2y2
3y3

4y2
5x3x5

Z3 = y6
0y3

1y4
2y2

3y5
4y4

5x3
3

Z4 = y6
0y3

1y5
2y4

3y4
4y2

5x3
5

Z1 = y4
0y2

1y3
2y2

3y3
4y2

5y6x3
7 C[Z1,Z2,Z3,Z4]/(Z2

2 −Z3Z4) Z2 = y12
0 y7

1y8
2y4

3y9
4y6

5y3
6x2

1
Z3 = y9

0y5
1y6

2y3
3y7

4y5
5y3

6x1x6
Z4 = y6

0y3
1y4

2y2
3y5

4y4
5y3

6x2
6

Z1 = y15
0 y8

1y10
2 y5

3y12
4 y9

5y6
6y3

7x1
8 C[Z1,Z2,Z3] Z2 = y6

0y3
1y4

2y2
3y5

4y4
5y3

6y2
7x7

Z3 = y1
00y5

1y7
2y4

3y8
4y6

5y4
6y2

7x3

As for the Dn cases, we need to intersect the variety corresponding to the
previous rings with some hypersurface in order to obtain (surfaces isomorphic
to) the singularities. The choices are summarized in the next

Lemma 5.2. We have:

• E6 is isomorphic to the intersection of {Z3
2 −Z3Z4 = 0} with H6 = {Z2

1 +
Z3 +Z4 = 0}.

• E7 is isomorphic to the intersection of {Z2
2 −Z3Z4 = 0} with H7 = {Z3

1 +
Z2

3 +Z4 = 0}.

• E8 is isomorphic to H8 = {Z5
2 +Z3

2 +Z2
1 = 0}.
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Substituting in the equations of Hn the corresponding expressions of the Zi

in terms of xi and yi, and then cutting common factors of the yi, we obtain in the
three cases the expression

y1x2
1 + y2y2

3x3
3 + y4y2

5 · · ·yn−3
n−1xn−2

n−1 = 0,

which is analogous to those obtained in the previous cases. Since the reduction
results (lemmas and propositions in the previous sections) are still true (with
minor changes) in these three cases, we conclude with next

Theorem 5.3. The Cox ring of the En singularity (following Definition 2.1) is
isomorphic to

C[x1,x2,xn−1,y0,y1, . . . ,yn−1]/(y1x2
1 + y2y2

3x3
3 + y4y2

5 · · ·yn−3
n−1xn−2

n−1).

Remark 5.4. The rule of Remark 4.11 is not valid of every singularity, even
those with just one trivalent node. For example, consider the singularity X ob-
tained as the contraction of the configuration of (−2)-curves shown in the next
figure, with three branches of lenght 2. In this case, the Cox ring is not iso-
morphic to the analogous candidate C[x2,x4,x6,y0, . . . ,y6]/(y1y2

2x3
2 + y3y2

4x3
4 +

y5y2
6x3

6). Indeed, what is not true are the reduction Lemmas. For example, we
will show that Lemma 4.6 does not hold. Suppose we have a divisor D of de-
gree 2e7 (according to the numbering shown in the figure) and we try to reduce
to the degree e6 by adding E7. If we look at the two cokernels in the diagram
(5), the second one is H0(E7,O(0) ∼= C , and so Q should be one dimensional.
However, it is easy to see that there is no monomial of degree e6 with no y7 (so
that it does not belong to the image of multiplication by y7). The reason is that
the other leaves are “too long”, and then the conditions of the exponents to be
non-negative are too restrictive.

GFED@ABCE2 GFED@ABCE1 GFED@ABCE0 GFED@ABCE5 GFED@ABCE6 GFED@ABCE7

GFED@ABCE3

GFED@ABCE4

We finish the paper with some open questions, which were also posed to
us by Prof. Wiśniewski but we have not been able to answer yet. All of them
concern more complicated kinds of singularities, so they would lead to general-
izations of our results.
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Question 5.5. Compute Cox rings of Hirzebruch-Jung singularities (see [2],
III.5), which are singularities whose dual graph is still a line, like in the An

case, but some of the exceptional curves have self-intersection smaller than −2.

Question 5.6. Compute Cox rings of singularities all whose exceptional curves
are still (−2)-curves, but whose dual graph is not a Dynkin diagram. For exam-
ple,

1. if the tree has just a trivalent node, what happens if there is no branch of
lenght 1? (as in Remark 5.4)

2. what happens if there are more than one trivalent node in the dual graph,
but still no node with higher valency?

3. what happens if there is still one node with valency greater than 2, but it
has valency 4,5,6,...?

4. what happens in general case?
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