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CONES OF DIVISORS
OF BLOW-UPS OF PROJECTIVE SPACES

S. CACCIOLA - M. DONTEN-BURY
O. DUMITRESCU - A. LO GIUDICE - J. PARK

We investigate Mori dream spaces obtained by blowing-up the n-di-
mensional complex projective space at n+1, n+2 or n+3 points in very
general position. Using toric techniques we study the movable cone of
the blow-up of Pn at n+ 1 points, its decomposition into nef chambers
and the action of the Weyl group on the set of chambers. Moreover, using
different methods, we explicitly write down the equations of the movable
cone also for Pn blown-up at n+2 points.

1. Introduction

A complex projective normal variety X is said to be a Mori dream space if the
Cox ring

Cox(X) :=
⊕

D∈Pic(X)

H0(X ,D)

is finitely generated over C (see subsection 2.1). Mori dream spaces were intro-
duced and studied by Hu and Keel in [9]: from a Mori theory point of view they
are the best possible varieties we can think of. In fact, if we define the movable

Entrato in redazione: 30 maggio 2011

AMS 2010 Subject Classification: 14C20, 14E30, 14M25.
Keywords: Mori dream space, Movable cone, Projective space, Mori chamber, Extremal ray,
Contraction, Root system.



154 S. CACCIOLA - M. DONTEN-BURY - O. DUMITRESCU - A. LO GIUDICE - J. PARK

cone of a variety as the cone contained in the space of divisors N1(X) gener-
ated by the Cartier divisors without divisorial base components (see Definition
2.1 and Notation 2.2), then both the nef and the movable cone of a Mori dream
space are rational polyhedral (see Theorem 2.6).

Every nef divisor on a Mori dream space is semiample, i.e. it has a multiple
without base points. Moreover, we can decompose the movable cone of a Mori
dream space X in the, so called, Mori chambers, identified with the nef cones
of all the small Q-factorial modifications (SQMs) of X , i.e. Q-factorial varieties
isomorphic to X in codimension 1 (see Definition 2.4). Then we can consider
a one-to-one correspondence between faces of the movable cone and (divisorial
or fibre type) contractions from a SQM of X to a normal Q-factorial projective
variety (see Theorem 2.6 or [9, Proposition 1.11]).

These properties are connected to the fact that a Mori dream space X is a
GIT quotient of the affine variety Spec(Cox(X)) by the action of a torus and,
modifying the linearization by changing the choice of a character of the torus,
all the SQMs of X can be obtained in the same way (see [9, Proposition 2.9]).

Now consider the varieties Blq+n+1((Pn)p)) given by p copies of the projec-
tive space blown up at q+ n+ 1 points in very general position, where n ≥ 2,
p≥ 1, q≥ 0. By [4, Theorem 1.3] we have a necessary and sufficient numerical
condition on p,n,q for these varieties in order to be Mori dream spaces. In [13]
Mukai defines an inner product on the space of divisors N1(Blq+n+1((Pn)p)))
which induces a root base whose root lattice corresponds to the T -shaped root
system Tp+1,q,n+1 (see subsection 2.2) and studies the action of the Weyl group
on the root base.

In this paper we consider just the case of a single copy of the projective
space. Note that in this case the root system and the action of the Weyl group
was already studied by Dolgachev in [6].

Our aim is to describe all possible contractions from Mori dream spaces of
the form Blq+n+1(Pn) with q ≥ 0 by investigating the structure of the movable
cone, its decomposition into nef chambers and the action of the Weyl group on
the set of nef chambers.

We start from introducing preliminary definitions (section 2) and describing
the classical case of Del Pezzo surfaces (see 2.4). In section 3 we consider the
case Bln+1(Pn) for every n ∈ N, n≥ 2, which is a toric variety.

Apart from finding explicit equations of the movable cone (Proposition 3.2),
by applying the methods of toric Mori theory we are able to determine all the
extremal rays of the Kleiman-Mori cone NE(Xi) ⊆ N1(Xi) of all the SQMs Xi

of Bln+1(Pn) and understand their nature, i.e. if they correspond to a divisorial,
a fibre type or a small contraction (Theorem 3.10). As a corollary we obtain a
description of the decomposition of the movable cone Mov(Bln+1(Pn)) into nef
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chambers (Corollary 3.13). Moreover, we prove that the Weyl group fixes the
movable cone and permutes the nef chambers (Proposition 3.6). We also give
many explicit examples. Especially, we study in details the first non-trivial case,
which is Bl4(P3).

In section 4 we investigate the structure of the movable cone in a more
general setting. In Corollary 4.7 we prove that for r = n+1,n+2,n+3

Mov(Blr(Pn)) = EffR(Blr(Pn))∩EffR(Blr(Pn))∨,

where by EffR we denote the cone of effective divisors in N1(Blr(Pn)) and we
take the dual cone Eff∨R with respect to the Mukai inner product (see Definition
4.1). Thanks to this formula we are able to explicitly compute the faces of the
movable cone in the cases r = n+1 and r = n+2 (see Theorem 4.9).

2. Preliminaries

We will work over the field of complex number C. A scheme is a separated
algebraic scheme of finite type over C and a variety is a reduced, irreducible
scheme.

We denote by Pic(X) the Picard group of X and for K=Q, R, we consider
PicK(X) = Pic(X)⊗K to be the group of K-Cartier divisors.

Moreover we denote by N1(X)K the K-Neron-Severi group, defined as the
quotient of PicK(X) by the subgroup of numerically trivial K-divisors. Finally
we denote by N1(X)K the quotient group of K-1-cycles on X by the subgroup of
numerically trivial K-1-cycles. Note that there is a natural intersection pairing
between N1(X)K and N1(X)K.

Definition 2.1. Let X be a normal projective variety. A divisor D ∈ PicR(X)
is nef if (D ·C) ≥ 0 for every irreducible curve C ⊆ X . A Cartier divisor D ∈
PicR(X) is movable if its numerical class in N1(X) lies in the closure of the cone
generated by classes of Cartier divisors without divisorial base components.

Notation 2.2. We consider the following cones and semigroups.

Nef(X)⊆ N1(X)R : the closed cone of nef divisors

Mov(X)⊆ N1(X)R : the closed cone of movable divisors

EffR(X)⊆ N1(X)R : the closure of the cone of effective divisors

NE(X)⊆ N1(X)R : the closure of the cone of effective 1-cycles

Eff(X)⊆ Pic(X) : the semigroup of effective divisors.

Note that Nef(X)⊆Mov(X)⊆ EffR(X)⊆ N1(X)R, and by Kleiman’s crite-
rion Nef(X) and NE(X) are dual to each other.
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Definition 2.3. We say that a surjective morphism of projective varieties with
connected fibres f : X → Y is a divisorial contraction if f is birational and the
exceptional locus of f is a divisor.

We say that f is a fibre-type contraction if dimY < dimX .
We say that f is a small contraction if f is birational and the exceptional

locus has codimension greater than 1.

Definition 2.4. Let X be a normal projective variety. A small Q-factorial mod-
ification (SQM) of X is a birational map f : X 99K X ′ such that X ′ is projective
and Q-factorial and f is an isomorphism in codimension 1. We will use the term
SQM also for X ′.

2.1. Mori dream spaces

Definition 2.5. Let X be a normal Q-factorial projective variety whose Picard
group Pic(X) is a lattice. We define the Cox ring of X as

Cox(X) =
⊕

D∈Pic(X)

H0(X ,OX(D)),

with multiplicative structure defined by a choice of divisors whose classes form
a basis of Pic(X).

We say that X is a Mori dream space if Cox(X) is finitely generated.

Note that by [9] a Mori dream space X has finitely many small Q-factorial
modifications f : X 99K Xi. As a SQM does not affect divisors, we can iden-
tify the Neron-Severi spaces N1(X)R = N1(Xi)R, the movable cones Mov(X) =
Mov(Xi) and the effective cones EffR(X) = EffR(Xi). Moreover we identify the
cone Nef(Xi)⊆ N1(Xi)R with its pullback f ∗i (Nef(Xi))⊆ N1(X)R.

Theorem 2.6. [9, Prop.2.9+Prop 1.11] Let X be a Mori dream space and let
{ fi : X 99K Xi} be all the SQM’s of X. Then

1. Every nef Cartier divisor on X is semiample and Nef(X) is the affine hull
of finitely many semiample line bundles, the same holds for every Xi.

2. The cones Nef(Xi), together with their faces, give a fan with support
Mov(X). In particular Mov(X) =

⋃
Nef(Xi) and for every i 6= j we have

that int(Nef(Xi))∩ int(Nef(X j)) = /0.

The cones Nef(Xi) are called nef (or Mori) chambers. Two varieties
whose nef cones are two adjacent chambers are related by a flip.
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3. The faces of Nef(Xi) which are contained in proper faces of Mov(X) are
in one-to-one correspondence with the divisorial or fibre-type contrac-
tions from Xi to a normal projective variety. The correspondence is given
by

(g : Xi→ Yg) 7−→ g∗(Nef(Yg))⊆Mov(X).

In particular the faces of Mov(X) are in one-to-one correspondence with
classes of divisorial or fibre-type contractions from SQMs of X to normal
projective varieties.

2.2. Root systems of blow-ups of projective spaces

Let Tn,q,p be the following Dynkin diagram:

In [12] Manin describes how to associate the Weyl group of E6 = T3,2,2 to
the configuration of the 27 lines on a nonsingular cubic surface S ⊂ P3, that
is the blow-up of P2 at six points. Generalizing this result, in [6] Dolgachev
realizes the root system Tn+1,q,2 in the cohomogolgy group of the blow-up of Pn

in q+ n+ 1 points in very general position, denoted by Blq+n+1(Pn). In [13]
Mukai generalizes this result of Dolgachev to the root system Tn,q,p of products
of projective spaces.

In this subsection we will present the main constructions and results from
[6] and [13].

Take integers q and n such that q ≥ 0 and n ≥ 2. Let us denote by E1,
...,Eq+n+1 the exceptional divisors created by blowing up q+ n+ 1 points in
the projective space Pn, and by H the class of a general hyperplane not passing
through any of the q+n original points. If X = Blq+n+1(Pn), these divisors will
generate the Picard group, Pic(X) = Z[H]⊕Z[E1]⊕·· ·⊕Z[Eq+n+1].

On the other hand we denote by l the class of a general line on X and by fi

the class of a line in the exceptional divisors Ei. The following relations define
the usual intersection form: (H · l) = 1,(H · f j) = 0,(E j · f j) = c1(O(−1)) =−1
and (E j · fi) = 0 for i 6= j.
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Define the root base B = {α1, ...αq+n+1} of the vector space N1(X)R =
Pic(X)⊗Z R by αi := Ei − Ei+1 for 1 ≤ i ≤ q + n and αq+n+1 := H − E1 −
...−En+1.
B becomes a root base with respect to the set B∨ = {α∨1 , ...,α∨q+n+1} ⊂ N1(X)
where α∨i := fi− fi+1 for 1≤ i≤ q+n and α∨q+n+1 := (n−1)l− f1− ...− fn+1.
The Weyl group is generated by the simple reflections si(x) = x+α∨i (x)αi for
any element x in N1(X)R.

Using the intersection form defined above we obtain that the Cartan matrix
associated to this root base is:

α∨i (α j) = α∨j (αi) =


−2 i = j
0 i 6= { j−1, j+1,n+1}
1 i = j−1
1 i = j+1
1 i = n+1, j = q+n+1

We will associate the Dynkin diagram Tn+1,q,2 to the Cartan matrix, where
each vertex represents a base root. The diagonal entries of the Cartan matrix
correspond to the selfintersections, while the other entries, α∨i (α j), correspond
to the number of edges joining two vertices αi and α j.

It is easy to see that for q = 0 one obtains the root system associated to the
Dynkin diagram A1×An, An+2 for q = 1, while for q = 2 one gets Dn+3. In
the case n = 2 the Dynkin diagram Tn+1,q,2 corresponds to E6 for q = 3, E7 for
q = 4 and E8 for q = 5. The following table presents the finite root systems
associated to Blq+n+1(Pn) for small values of n:

0 3 4 5 6 7 8 9

P2 A1×A2 A4 D5 E6 E7 E8 infinite

P3 A1×A3 A5 D6 E7 infinite infinite

P4 A1×A4 A6 D7 E8 infinite

P5 A1×A5 A7 D8 infinite

Mukai extended this result to all diagrams Tn,q,p. The Picard group of
Y = Blq+n+1((Pn)p) is a Z-module of rank p+ q+ n+ 1 generated by the ex-
ceptional divisors of the blow up Ei and the pull back of the hyperplane class on
the i-th factor Hi. The anticanonical class of Y

−KY = (n+1)(H1 + ...+Hp)− (n−1)(E1 + ...+Eq+n+1).

A root base for Y is defined by {α j = E j−E j+1}1≤ j≤q+n, β = Eq+n+1,
γ = H1−E1− ...−En, {ηi = Hi−Hi+1}1≤i≤p−1, and it has the associated T-
shaped diagram.
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As in [13] we can also define a symmetric bilinear form on Pic(Y ) defined

by: (Ei,E j) =−δi, j, (Ei,H j) = 0 and (Hi,H j) =

{
n−1 i = j

n i 6= j
.

From now on we will denote by Xn
r = Blr(Pn) the blowing-up of Pn at r very

general points.

2.3. Weyl group and Cremona transformations

Recall that the standard Cremona transformation along of the projective space
Pn (along the coordinate points) is defined to be the birational map

[x0, . . . ,xn] 7−→ [x1 · · ·xn, . . . ,x0 · · ·xn−1].

Notice that this map is given by the linear system of hypersurfaces of degree n
with multiplicity n−1 at each of the n+1 coordinate points qi. In an algebraic
setting, this consists of all homogeneous polynomial of degree n for which their
partial derivatives up to order n− 2 vanish at each of the coordinate points.
Now, the condition of passing through all the coordinate points annihilates all
the coefficients of the xn

j , the condition ∂xi f (q j) = 0 annihilates the coefficient
of xn−1

j xi, and so on. Therefore this linear system has dimension n+ 1, a basis
for the space of sections being given by {∏i,i 6= j xi} j=1,...,n+1.

Also notice that on Pn this map contracts all the hyperplanes determined
by n coordinate points to a point. For example the hyperplane passing through
q2, . . . ,qn+1 will be mapped to the point q1.

In general we can fix n+1 very general points p1, . . . , pn+1 and consider the
standard Cremona transformation along these points, defined by the composi-
tion of a projective automorphism of Pn that sends them to the coordinate points
and the standard Cremona transformation along the coordinate points.

Hence we have that if r≥ n+1, and X = Xn
r , so that there exist pn+2, . . . , pr

such that X is the projective space blown-up at p1, . . . , pn+1, . . . , pr, the Cremona
transformation along p1, . . . , pn+1 induces an action on the Picard group of Xn

r
defined by sending H to nH− (n−1)E1−·· ·− (n−1)En+1 and the exceptional
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divisors E j to H−∑i 6= j Ei (see also [13, Proof of Theorem 1]), so that it induces
an element sp1,...,pn+1 of the Weyl group W of Xn

r .
Note that every element of the Weyl group W of Xn

r corresponds, in this
way, to a birational map of Pn lying in the group generated by standard Cre-
mona transformations and projective automorphisms of Pn (see for example [6,
Theorem 2]).

2.4. First example: Del Pezzo surfaces

Let us consider X2
r , a surface obtained by blowing-up P2 at 1 ≤ r ≤ 8 points

in very general position. Let us summarize briefly some results on contractions
from X2

r , root systems associated to these surfaces and the structure of Mov(X2
r ).

Since a small Q-factorial modification of a surface is an isomorphism, we
have Mov(X2

r ) =Nef(X2
r ), i.e. Mov(X2

r ) has trivial nef chamber decomposition.
A Del Pezzo surface is a smooth projective algebraic surface with ample

anticanonical divisor class.

Proposition 2.7. The followings hold.

1. Any del Pezzo surface is isomorphic to one of the followings: P2, P1×P1,
and X2

r , 1≤ r ≤ 8.

2. Let X → X ′ be any birational morphism. If X is a del Pezzo surface, then
X ′ is also a del Pezzo surface. Conversely, if X ′ is a del Pezzo surface, the
Picard number of X is ≤ 7 and every negative self-intersection curve on
X is a (−1)-curve, then X is also a del Pezzo surface.

3. Del Pezzo surfaces are Mori Dream Spaces. In particular, Nef(X2
r ) and

NE(X2
r ) are rational polyhedral cones.

Proof. For 1 and 2, see section 24 in [12]. For 3, see Corollary 2.16 in [9].

The following table contains the root systems corresponding to X2
r , which

were first constructed by Manin in [12].

X2
3 X2

4 X2
5 X2

6 X2
7 X2

8
A1×A2 A4 D5 E6 E7 E8

By Theorem 2.6, we have a bijection between the set of contractions ϕ :
X2

r → Yϕ and the set of faces of Nef(X2
r ). In particular the face of Nef(X2

r ) cor-
responding to a contraction ϕ is defined by Nef(X2

r )∩ϕ∗N1(Yϕ) = ϕ∗Nef(Yϕ).
Elementary contractions correspond to the facets.
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Instead of looking at the polyhedral cone Nef(X2
r ), we look at the polytope

∆2
r which we define as its compact section. By Γ2

r we denote its dual, a compact
section of NE(X2

r ).
The following diagram shows contractions of X2

r , which by proposition 2.7
are all possible:

P1 ← P1×P1

↖ ↖
P2 ← X2

1 ← X2
2 ← X2

3 ← ·· · ← X2
8

In [17], Stalij investigated the combinatorial structure of the polytopes Γ2
r .

Let us summarize briefly his results.

Proposition 2.8 ([17]). Faces of Γ2
r of dimension r−1 correspond to contrac-

tions of X2
r to P1 or P2.

Let us mark a vertex of ∆2
r by 0 if the dual facet of Γ2

r corresponds to a
contraction to P2 and by 1 if it corresponds to a contraction to P1.

Theorem 2.9 ([17]). ∆2
r is simple (dual to a simplex) at vertices marked by 0

and dual to a cross-polytope at vertices marked by 1.

This theorem can be restated in terms of marked polynomials.

Definition 2.10. A marked polynomial corresponding to a polytope with faces
marked with non-negative integers is a polynomial of two variables x and y such
that the coefficient at xiy j is the number of faces of codimension i marked with j.

Note that markings of the vertices of ∆2
r are in one-to-one correspondence

with markings of the faces of Γ2
r .

Theorem 2.11 ([17]). The marked polynomials P2
r (x,y) for X2

r (corresponding
to Γ2

r ) satisfy

1. ∂xP2
r (x,0) = ∂xP2

r (0,0) ·∂xP2
r−1(x,0),

2. 2(r−1)∂yP2
r (1,0) = ∂xP2

r (0,0) ·∂yP2
r−1(1,0).

Using this result and knowing (by geometric arguments) that ∆2
2 is a triangle

with two vertices marked by 1 and one marked by 0, we can recover the weak
combinatorial structure for 3 ≤ r ≤ 7. That is, the numbers of faces in each
dimension can be computed, and the marking of the vertices can be described.
The proof in [17] does not work for r = 8.



162 S. CACCIOLA - M. DONTEN-BURY - O. DUMITRESCU - A. LO GIUDICE - J. PARK

Theorem 2.12 ([17]). Consider the class of polytopes P marked with 0 and 1,
closed with respect to taking faces, satisfying the equations in Theorem 2.11 (so
containing ∆2

r for 2≤ r≤ 8), and such that the only two-dimensional polytope in
P is ∆2

2. Then the weak combinatorial structure of polytopes in P is uniquely
determined in dimensions 3 ≤ r ≤ 7. Moreover, in dimensions r ≥ 9 there are
no such polytopes.

The polytopes ∆2
r are the so-called Gosset polytopes (r−4)21. In [11], Lee

constructed these polytopes in N1(X2
r ) for 3 ≤ r ≤ 8 in a more direct way. Us-

ing intersection theory on surfaces and the action of the Weyl group (obtained
from the associated root system) on Pic(X2

r ), he proved that the convex hull of
divisor classes of (−1)-curves in N1(X2

r ) (they lie in the hyperplane defined by
−KX2

r
.[D] = 1 by adjuction formula) is a Gosset polytope (r− 4)21. By this

result combined with the cone and contraction theorem, we can give another
proof of the fact that all possible contractions of X2

r for 1 ≤ r ≤ 8 are these in
the picture below.

Since Nef(X2
2 )⊆N1(X2

r ) and ϕ : X→Y gives ϕ∗ : N1(Y )→N1(X), we can
draw the diagram of marked polytopes, reverse to the diagram of contractions,
where arrows indicate inclusions of facets. Obviously, these inclusions in most
cases can be realized in a few different ways. In the picture a vertex of a polytope
is black if it corresponds to a contraction to P2 (i.e. is marked by 0) and white
if it corresponds to a contraction to P1 (i.e. is marked by 1).

For example, we construct X2
2 by blowing-up two points P and Q to (-1)-

curves EP and EQ. We have two elementary contractions to X2
1 corresponding

to blow-downs of EP or EQ and the third, to P1×P1, which is a blow-down of
the line through P and Q. Similarly, X2

3 contains six (−1)-curves: three excep-
tional divisors of blow-ups and three lines through points which are blown-up.



CONES OF DIVISORS OF BLOW-UPS OF PROJECTIVE SPACES 163

They give six divisorial contractions to X2
2 , corresponding to the facets of the

associated polytope.

3. Toric case: n+1 blow-ups of Pn

In this section we present the case of Xn
n+1 . Since Xn

n+1 is a toric variety, combi-
natorial methods can be applied to understand some part of its geometric struc-
ture. For general theory of toric varieties see [5].

3.1. Toric set-up

Let N ' Zn be a lattice and let M = Hom(N,Z) its dual by the standard pairing
〈·, ·〉. Take a standard basis e1, . . . ,en of NR = N⊗R, set e0 = −(e1 + . . .+ en)
and fi = −ei. Define a rational polyhedral simplicial fan Σn with the set of
rays Σn(1) = {e0, . . . ,en, f0, . . . , fn} by taking the cones generated by sets of n
linearly independent vectors, n− 1 of them from {e0, . . . ,en}, and adding all
their faces. The smooth toric variety associated to Σn is Xn

n+1. The rays ei give a
standard fan for Pn and the division of its cones obtained by adding the rays fi

correspond to the blowing-up at n+1 very general points.
Recall that a ray v ∈ Σn(1) corresponds to a torus-invariant prime divisor

Y (v) on Xn
n+1 and the classes of Y (v) for all v ∈ Σn generate Pic(Xn

n+1). Denote
exceptional divisors in Xn

n+1 by E0, . . . ,En and the pull-back of a hyperplane in
Pn by H. Then H,E0, . . . ,En form a basis of PicR(Xn

n+1). Note that Y (ei) =
H−∑

n
j=0 E j +Ei and Y ( fi) = Ei for 0≤ i≤ n. We have the exact sequence

0→M→ M̂ = ZΣn(1) ψ−→ Pic(Xn
n+1)→ 0

where if we write ZΣn(1) =Z · ê∗0⊕ . . .⊕Z · ê∗n⊕Z · f̂ ∗0 ⊕ . . .⊕Z · f̂ ∗0 , then the first
morphism takes u ∈M to ∑

n
i=0(< u,ei > ê∗i + < u, fi > f̂ ∗i ), and ψ(ê∗i ) = Y (ei)

and ψ( f̂ ∗i ) = Y ( fi) for 0≤ i≤ n. The dual exact sequence is

0→ Pic(Xn
n+1)

∨→ N̂ = M̂∨ π−→ N→ 0.

Note that Pic(Xn
n+1)

∨ is the free abelian group generated by 1-cycles in X , and
the natural pairing induced from 〈·, ·〉 coincides with the intersection form.

Let N̂R = N̂⊗R and denote its basis by ê0, . . . , ên, f̂0, . . . , f̂n which is dual
to ê∗0, . . . , ê

∗
n, f̂ ∗0 , . . . , f̂ ∗n . An extension of ψ (and π) to M̂R → PicR(Xn

n+1) (and
N̂R→NR) will be also called ψ (and π) by abuse of notation. Then π = ker(ψ)T .
Note that π(êi) = ei and π( f̂i) = fi for 0 ≤ i ≤ n. Thus ψ and π are explicitly
given by the following matrices.
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ψ =



1 1 · · · 1 0 0 · · · 0
0 −1 · · · −1 1 0 · · · 0
−1 0 · · · −1 0 1 · · · 0
−1 −1 · · · −1 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

−1 −1 · · · 0 0 0 · · · 1


and

π =


−1 1 0 · · · 0 1 −1 0 · · · 0
−1 0 1 · · · 0 1 0 −1 · · · 0
−1 0 0 · · · 0 1 0 0 · · · 0

...
...

...
. . .

...
...

...
...

. . .
...

−1 0 0 · · · 1 1 0 0 · · · −1

 .

Let σ+ be the positive orthant in M̂R and σ
+
i for i= 1, . . .2n+2 be its facets.

Proposition 3.1. Using the notation above,

EffR(Xn
n+1) = ψ(σ+) and Mov(Xn

n+1) =
2n+2⋂
i=1

ψ(σ+
i ).

Proof. The first formula is an easy consequence of Lemma 15.1.8 in [5]. For
the second see [5, Proposition 15.2.4].

Explicitly, the rays of EffR(Xn
n+1) are

H−∑
i∈I

Ei for all I ⊆ {0, ...,n} with |I|= n, and Ei for all i ∈ {0, ...,n}.

Proposition 3.2. Let D = dH−∑
n
i=0 miEi ∈ Pic(Xn

n+1). Then D ∈Mov(Xn
n+1) if

and only if the following inequalities are satisfied:

1. mi ≥ 0, for all i ∈ {0, ...,n};

2. (n−1)d−∑i∈I mi ≥ 0, for all I ⊆ {0, ...,n}, with |I|= n;

3. d ≥ mi, for all i ∈ {0, ...,n}.

This proposition will be proved in a more general context in Theorem 4.9.
However, the proof in the toric set-up is purely combinatorial and not very dif-
ficult.

Example 3.3. The simplest case after del Pezzo surfaces is X3
4 . Ray generators

of Mov(X3
4 ) are as follows:
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degree 4 H,3H−2E0−2E1−2E2−2E3

degree 3
H−E0,H−E1,H−E2,H−E3,

2H−2E0−E1−E2−E3,2H−E0−2E1−E2−E3,
2H−E0−E1−2E2−E3,2H−E0−E1−E2−2E3

degree 2
H−E0−E1,H−E0−E2,H−E0−E3
H−E1−E2,H−E1−E3,H−E2−E3

The degree of divisors will be defined in Definition 4.1.

3.2. Toric Mori theory

By toric Mori theory, we have an explicit description of the Kleiman-Mori cone
NE(Xn

n+1) in terms of basis of N̂R. First, let us briefly recall some facts from
toric Mori theory. For the reference see [14], [18] or the final chapter of [5]. By
the orbit-cone correspondence (see [5, Theorem 3.2.6]), a torus-invariant curve
Y (ω) on a n-dimensional Q-factorial toric variety X(Σ) is associated to a (n−
1)-dimensional cone ω in Σ generated by primitive lattice elements ε1, . . . ,εn−1.
There are two n-dimensional cones δn+1 and δn in Σ generated by ε1, . . . ,εn−1,εn

and ε1, . . . ,εn−1,εn+1 respectively, where εn and εn+1 are primitive on rays on
opposite sides of ω . Then the linear equation

a1ε1 + . . .+an+1εn+1 = 0.

has a unique solution if we set an+1 = 1. Reorder the indices so that

ai < 0 for 1≤ i≤ α,
ai = 0 for α +1≤ i≤ β ,
ai > 0 for β +1≤ i≤ n+1.

Then by Proposition on p. 257 of [18],

NE(X) = ∑
ω∈Σ(n−1)

R≥0[a1ε̂1 + . . .+aα ε̂α +aβ+1ε̂β+1 + . . .+an+1ε̂n+1],

where ε̂i is an element of a chosen basis of N̂R such that π(ε̂i) = εi.
The Toric Contraction Theorem I and Remark on p. 259-260 of [18] give a

description of the contractions of extremal rays:

1. if α = 0, then the extremal ray gives a fibre type contraction whose
generic fibre is (n−β )-dimensional,

2. if α = 1, then the extremal ray gives a divisorial contraction,

3. if α > 1, then the extremal ray gives a small contraction.
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Going back to our case, every (n−1)-dimensional cone in Σn is spanned by

e j for all j ∈ J and fk such that k 6∈ J or ei for all i ∈ I

where I and J are subsets of {0, . . . ,n} such that |I| = n− 1 and |J| = n− 2.
In the first case the two adjacent cones of maximal dimension are constructed
by adding vectors ep and er such that p,r /∈ J∪{k}, and in the second case by
adding fk and f j such that k, j /∈ I. They satisfy the following linear relations:

∑
i∈I

ei− fk = 0 for k 6∈ I and − (∑
j∈J

ei)+ fk + fl = 0 for k, l 6∈ J.

Note that in the first case α = 1, so the corresponding curves give divisorial
contractions Xn

n+1→ Xn
n , and for the second case, α = n−1, so they give small

contractions.
To analyze small contractions, we need to study flips. Let R = [a1ε̂1 + . . .+

aα ε̂α +aβ+1ε̂β+1+ . . .+an+1ε̂n+1] be an extremal ray of the Kleiman-Mori cone
of a variety X , obtained from an (n− 1)-dimensional cone ω . Assume that
α > 1, so this ray gives a small contraction. Let δi be a cone generated by
{ε̂1, . . . , ε̂n+1}\{ε̂i}, and let δ (ω) be a cone generated by {ε̂1, . . . , ε̂n+1}. Then
by Lemma on p. 259 of [18], we obtain two simplicial subdivisions

δ (ω) =
n+1⋃

i=β+1

δi =
α⋃

i=1

δi.

The idea of the Toric Flip Theorem (see e.g. [18], p. 263) is that if we ex-
change one the first subdivision with the second one, we obtain a (simplicial) fan
Σ′n such that there is a birational map X(Σn) 99K X(Σ′n) which is an isomorphism
in codimension 1. This map will be called an elementary transformation with
respect to R. Thus X(Σ′n) is a SQM of Xn

n+1. By Proposition 5.7. in [7], every
SQM of Xn

n+1 is obtained by a finite succession of elementary transformations.
Since Xn

n+1 is a MDS, the movable cone Mov(Xn
n+1) has a closed convex

chamber decomposition into nef cones of SQMs of Xn
n+1 (which is studied in

section 3.4). Note that every SQM of Xn
n+1 is also a toric variety, because it

has the same Cox ring as Xn
n+1 and we use [9], 2.10. Interiors of nef cones

are disjoint, and adjacent nef cones share some faces. Let X ′ and X ′′ be SQMs
of Xn

n+1 and Nef(X ′) and Nef(X ′′) be adjacent. Then for some Cartier divisor
D ∈ Nef(X ′)∩Nef(X ′′), the linear system |D| gives a small contraction, so X ′

and X ′′ are connected by an elementary transformation. The associated fans of
SQMs of Xn

n+1 are complete simplicial fans with the set of rays Σn(1).

Example 3.4. Extremal rays of the Kleiman-Mori cone NE(X3
4 ) are
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1. of divisorial contraction type: [êi + ê j + êk− f̂l],

2. of small contraction type: [−êi− ê j + f̂k + f̂l],

where {i, j,k, l} = {0,1,2,3}. The polytope corresponding to the fan Σ3 is a
cube. It can be easily seen that every complete simplicial fan with the set of
rays Σ3(1) comes from a subdivision of this cube such that all faces are divided
into triangles.

The divisorial contraction of [ê1 + ê2 + ê3− f̂0] is the birational morphism
contracting the exceptional divisor E0.

There are successive elementary transformations X3
4 99K X(Σ′3) 99K X(Σ′′3)

99K X(Σ′′′3 ). The first one is coming from the extremal ray [−ê0− ê1 + f̂2 + f̂3].
It is performed on the facet e0 f3e1 f2 of the cube Σ3 and it is a change of a
diagonal which divides it. The second one and the third one are coming from
the extremal rays [−ê0− ê2 + f̂1 + f̂3] and [−ê1− ê2 + f̂0 + f̂3], respectively.

Note that not every ray of the type [−êi − ê j + f̂k + f̂l] is extremal. On
the facet e2 f0e3 f1 of the cube from Σ′3, it is possible change of a diagonal
which divides it. To do this, [−ê2− ê3 + f̂0 + f̂1] should be an extremal ray
of NE(X(Σ′3)). However, there are rays [ê0 + ê1− f̂2− f̂3], [−ê1− ê3 + f̂0 + f̂2]

and [−ê0− ê2 + f̂1 + f̂3] of NE(X(Σ′3)) such that

(ê0 + ê1− f̂2− f̂3)+(−ê1− ê3 + f̂0 + f̂2)+(−ê0− ê2 + f̂1 + f̂3)

=−ê2− ê3 + f̂0 + f̂1,

so [−ê2− ê3 + f̂0 + f̂1] is not extremal. Observe that if we change the diagonal
on the facet e2 f0e3 f1 of the cube from Σ′3, we get a non-projective complete
toric variety, which also can be found in Example 3.9.

Similarly, one can easily check that [ê3 + f̂3] is not an extremal ray on both
NE(X(Σ′3)) and NE(X(Σ′′3)).
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The Kleiman-Mori cone NE(X(Σ′′′3 )) has an extremal ray [ê3 + f̂3], and this
gives the fibre type contraction X(Σ′′′3 )→ X2

3 .

3.3. Weyl group action

Recall that the associated root system of Xn
n+1 is An×A1, and its Weyl group Wn

is isomorphic to Sn+1×Z/2Z. Define the Weyl group action on M̂R as follows:

ê∗i 7→ ê∗
σ(i) and f̂ ∗i 7→ f̂ ∗

σ(i) for (σ ,0) ∈ Sn+1×Z/2Z

and
ê∗i 7→ f̂ ∗

σ(i) and f̂ ∗i 7→ ê∗
σ(i) for (σ ,1) ∈ Sn+1×Z/2Z.

Clearly MR is preserved, so the action descends to PicR(Xn
n+1). By a straight-

forward computation we obtain

Lemma 3.5. The Weyl group Sn+1×Z/2Z action on PicR(Xn
n+1) is given (as in

[4, Section 2]) by

Ei 7→ Eσ(i) and H−
n

∑
i=0

Ei 7→ H−
n

∑
i=0

Ei for (σ ,0) ∈ Sn+1×Z/2Z

and

Ei 7→H−
n

∑
i=0

Ei+Eσ(i) and H−
n

∑
i=0

Ei 7→ −H+
n

∑
i=0

Ei for (σ ,1)∈ Sn+1×Z/2Z.

We consider also the dual action on N̂R, NR and PicR(Xn
n+1)

∨.
Now we study the Weyl group action on the set of fans and the set of nef

cones of SQMs of Xn
n+1. The Weyl group action on NR permutes the rays of Σn,

so Wn permutes the fans of SQMs of Xn
n+1.

Proposition 3.6. The Weyl group action on PicR(Xn
n+1) fixes Mov(Xn

n+1) and
Eff(Xn

n+1), and permutes its nef chambers in Mov(Xn
n+1).

Proof. The Weyl group action on M̂R preserves the positive orthant and per-
mutes its facets. Hence the fact that Eff(Xn

n+1) and Mov(Xn
n+1) are fixed follows

from the description of these cones in Proposition 3.1.
Let us consider the Weyl group action on the nef cones of SQMs of Xn

n+1.
Since the nef cone in N1(Xn

n+1) = PicR(Xn
n+1) is dual to Kleiman-Mori cone

in N1(Xn
n+1) = PicR(Xn

n+1)
∨, we only have to consider the Weyl group action

on Kleiman-Mori cones. By the toric Mori cone theorem, any extremal ray of
Kleiman-Mori cone is of the form

[a1ε̂1 + . . .+aα ε̂α +aβ+1ε̂β+1 + . . .+an+1ε̂n+1]
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in N̂R. Let Σ′n and Σ′′n be fans of SQMs of Xn
n+1. Suppose that for some w ∈Wn,

w : Σ
′
n→ Σ

′′
n

in NR. Since w : NR→ NR is a linear automorphism,

w(a1ε1 + . . .+an+1εn) = a1w(ε1)+ . . .+an+1w(εn).

Thus, [a1ε̂1 + . . .+ aα ε̂α + aβ+1ε̂β+1 + . . .+ an+1ε̂n+1] is an extremal ray of
NE(X(Σ′n)) if and only if

[a1w(ε̂1)+ . . .+aαw(ε̂α)+aβ+1w(ε̂β+1)+ . . .+an+1w(ε̂n+1)]

is an extremal ray of NE(X(Σ′′n)). It means that there is the isomorphism

w : NE(X(Σ′n))→ NE(X(Σ′′n)).

Hence the Weyl group permutes nef chambers in Mov(Xn
n+1).

We can think that the Weyl group Wn acts on the set

{nef chambers in Mov(Xn
n+1)}= {fans of SQMs of Xn

n+1}.

Example 3.7. Recall that the polytope corresponding to the fan Σ3 is a cube. Let
((0321),1) ∈ S4×Z/2Z, then w : Σ3 7→ Σ′3 where the toric variety X(Σ′3) is ob-
tained by blowing-up X({ f0, f1, f2, f3, and its faces}) at 4 very general points.

It is natural to ask what orbits of Weyl group action on nef chambers are.
The following proposition gives the answer.

Proposition 3.8. Isomorphism classes of SQMs of Xn
n+1 in the category of toric

varieties (i.e. isomorphism classes of fans of SQMs) form the orbits of the Weyl
group action.
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Proof. Let Σ′n and Σ′′n be fans of SQMs of Xn
n+1 and X(Σ′n) ' X(Σ′′n) as toric

varieties. Then there is a linear automorphism θ : NR → NR compatible with
Σ′n and Σ′′n . The automorphism θ permutes rays of Σ′n and Σ′′n , and because of
the linear relations between the rays there is w ∈Wn such that w : NR → NR
coincides with θ .

Let Σ′n and Σ′′n be fans of SQMs of Xn
n+1. If X(Σ′n) ' X(Σ′′n) as abstract

varieties, then we say that Σ′n and Σ′′n are the same type. By the proposition, we
have

the number of Weyl group orbits = the number of types of fans of SQMs.

Example 3.9. An elementary transformation between SQMs of X3
4 can be per-

formed on each face of a cube and it is a change of a diagonal which divides
it. Therefore we have 64 candidates for SQMs of X3

4 . However, not all subdivi-
sions of the cube lead to a projective variety. In the following picture one can
easily check that both have nef cones which are not full dimension, so that the
corresponding toric varieties are not projective.

Note that they cannot be obtained by successive elementary transformations
from X3

4 . The number of elements of the Weyl group orbit of the left one is 6,
and the number of elements of Weyl group orbit of the right one is 12, so we
have 46 SQMs of X3

4 . They can be divided into 5 types of triangulations, which
correspond to isomorphism classes of the models, as in the picture.

We give the numbers of elements in orbits corresponding to the triangulation
types 1-5.

Type1 Type2 Type3 Type4 Type5
2 12 24 4 4
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3.4. SQMs and flopping classes

It seems quite difficult to generalize the argument in Example 3.9 to higher
dimensional cases. The set of simplicial fans with rays Σn(1) for n > 3 is too
complicated to write down, so we try to attack the problem in a different method.

Theorem 3.10. An extremal ray of the Kleiman-Mori cone of some SQM of
Xn

n+1 is one of the following:

1. divisorial type: [∑i∈{0,...,n}\{k} êi − f̂k] or [∑i∈{0,...,n}\{k} f̂i − êk] for k ∈
{0, . . . ,n}

2. fibre type: [êi + f̂i] for i ∈ {0, . . . ,n}

3. small type: ±[∑i∈I êi−∑ j∈J f̂ j] where I∪ J = {0, . . . ,n}, I and J are dis-
joint, and |I|, |J| ≥ 2.

Moreover, they all appear on some SQM of Xn
n+1.

Proof. By toric Mori cone theorem, every extremal ray of the Kleiman-Mori
cone of a SQM of Xn

n+1 is obtained by an (n−1)-dimensional common face of
two adjacent n-dimensional cones with rays in Σn(1) = {e0, . . . ,en, f0, . . . , fn}.
Let σ0, σ1 be two such cones with the sets of generators {ε1, . . .εn−1,εn} and
{ε1, . . .εn−1,εn+1}. Assume that the cone generated by ε1, . . .εn−1 gives a curve
in an extremal ray. Set an+1 = 1 and take a unique rational solution ai of the
linear equation

a1ε1 + . . .+an+1εn+1 = 0.

First consider the case when the set {ε1, . . . ,εn+1} contains the rays ei and
fi for some i. This is possible only if {ei, fi} = {εn,εn+1}, because σ0 and σ1
are strictly convex. Then a0 = . . .= an−1 = 0 and an = 1, so the considered ray
gives a fibre type contraction by Remark on p. 260 of [18].

Now assume that the set {ε1, . . . ,εn+1} does not contain any pair ei, fi. Per-
muting the rays with the Weyl group action (which clearly does not change the
types of extremal rays listed in the theorem) we can consider only the case when
εn+1 = e0. Then {ε1, . . . ,εn} ⊂ {e1, . . . ,en, f1, . . . , fn} and, as ε1 + . . .+ εn =
−e0 = e1 + . . .+ en, from each pair ei, fi exactly one is in {ε1, . . . ,εn}. Obvi-
ously ei appear with coefficient 1 and fi with −1. Also, it cannot happen that
{ε1, . . . ,εn+1}= {e0, . . . ,en}, because a cone spanned by any n of these vectors
contains some vector fi in the interior. Thus we obtain a sum of the type 1 or
3 from the list above and, by Remark on p. 260 of [18], the corresponding ray
gives a divisorial or a small contraction respectively.

Rays of the first type appear on Xn
n+1. In Examples 3.11 and 3.12 the con-

structions of SQMs of Xn
n+1 having rays of types 2 and 3 are explained. In case
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of types 1 and 2 it is sufficient to show only one example, because using the
Weyl group action we obtain all other possible configurations within each type.
In case of type 3 by Proposition 5.2 of [16] and linear relations between rays
we only have to prove the existence of SQMs of Xn

n+1 with a ray of the form
[−∑

n
i=k êi +∑

k−1
j=0 f̂ j] for all k ∈ {2, . . . ,n−1}. Then we also obtain the remain-

ing configuration acting with the Weyl group.

Example 3.11. Consider the n-dimensional cones in Σn generated by e2, . . . ,en,
f1 and e2, . . . ,en, f0. The common face is a cone in Σn generated by e2, . . . ,en.
The associated extremal ray [−ê2− . . .− ên+ f̂1+ f̂0] gives an elementary trans-
formation X(Σn) 99K X(Σ

(1)
n ). Now there is an extremal ray of NE(X(Σ

(1)
n ))

[−ê1− ê3− . . .− ên + f̂2 + f̂0]

and an associated elementary transformation X(Σ
(1)
n ) 99K X(Σ

(2)
n ). Repeat this

process. Then we obtain the fan Σ
(n)
n , and a SQM X(Σ

(n)
n ) of Xn

n+1. Using

Theorem 4.10 in [15], it is easy to check that [ê0 + f̂0] in NE(X(Σ
(n)
n )) is a

contractible class, because there is only one primitive collection containing e0

or f0. By Lemma 1 in [2], [ê0 + f̂0] is an extremal ray of NE(X(Σ
(n)
n )).

Example 3.12. We use notations as in the previous example. We assume that
n ≥ 4. In Σ

(2)
n , we can find n-dimensional cones generated by f0,e3, . . . ,en, f1

and f0,e3, . . . ,en, f2, and the common face is an (n−1)-dimensional cone gen-
erated by f0,e3, . . . ,en. Thus the associated ray is [−ê3− . . .− ên+ f̂0+ f̂1+ f̂2].
In the similar way, we can obtain desired rays.

Corollary 3.13. Nef chamber decomposition of Mov(Xn
n+1) is determined by

hyperplanes
ψ(±(∑

i∈I
êi−∑

j∈J
f̂ j)
⊥) =±ψ(∑

i∈I
êi−∑

j∈J
f̂ j)
⊥

where I∪ J = {0, . . . ,n}, I and J are disjoint, and |I|, |J| ≥ 2.

Proof. ¿From the Mori theory, the common face of adjacent nef chambers con-
sists of divisors giving small contractions. Thus the result follows from Theorem
3.10.

We have described flopping classes giving nef chamber decomposition of
Mov(Xn

n+1), but we still do not know many things for general n such as (1)
which fans with the set of rays Σn(1) represents nef chambers, (2) how many
orbits of Weyl group action there are, and (3) how many elements are in each
orbit?
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3.5. Contractions and marked polynomials

We have studied the inner structure (nef chamber decomposition) of Mov(Xn
n+1).

In Proposition 3.2 and Theorem 4.9 we give an explicit formula for the rays of
the movable cone (in the cases of n+1 and n+2 points blown-up). In this sec-
tion we describe the structure of Mov(Xn

n+1) using the marked polynomials (see
Definition 2.10). As seen in del Pezzo surfaces case, the marked polynomials of
Xn

n+1 for Mov(Xn
n+1) plays an important role in understanding outer structure of

Mov(Xn
n+1) and contractions of Xn

n+1. The idea of describing contractions in the
form of marked polynomials comes from [1].

Theorem 3.14. The marked polynomial of Xn
n+1 for Mov(Xn

n+1) is

Pn
n+1(x,y) =

n−2

∑
m=0

(
n+1

m

)
Bn−m(x)xmym +

(
n+1
n−1

)
xn+1yn−1

where

Bk(x) = 1+2(k+1)x+(k+1)2x2 +2
k+1

∑
i=3

(
k+1

i

)
xi.

Proof. We only have to count the numbers of contractions from Xn
n+1. For con-

venience, we denote the class of all SQMs of Xm
k by Xm

k . By Proposition 1.11
in [9] and duality between nef cone and Kleiman-Mori cone, every contraction
from Xm

k dropping the Picard number by one is coming from some extremal ray
of the Kleiman-Mori cone of some SQM of Xm

k .
First, consider divisorial contractions from Xn

n+1. By Theorem 3.10, [∑i6=k êi−
f̂k] or [∑i 6=k f̂i− êk] for k ∈ {0, . . . ,n} gives Xn

n+1→ Xn
n. It can be understood as

eliminating 1 ray from either {e0, · · · ,en} or { f0, · · · , fn} in Σn(1). More gener-
ally, a birational contraction Xn

n+1→Xn
n+1−i for 1≤ i≤ n+1 can be understood

as taking off i rays from either {e0, · · · ,en} or { f0, · · · , fn} in Σn(1). The num-
ber of type (1) contractions associated to codim i faces of Mov(Xn

n+1) is 2
(n+1

i

)
,

which is the number of choices of i rays from either {e0, · · · ,en} or { f0, · · · , fn}.
Note that there is one exceptional case. In Xn

n, there exists Xn
n→ P1×·· ·×P1

(n-times). The contraction Xn
n+1 → P1× ·· · ×P1 (n-times) can be thought of

as eliminating a pair (ei, fi) of rays. The associated faces of Mov(Xn
n+1) are

of codim 2, and the number is n+ 1. Thus the divisorial part of the marked
polynomial is

Bn(x) = 1+2∑
n+1
i=1

(n+1
i

)
xi +(n+1)x2

= 1+2(n+1)x+(n+1)2x2 +2∑
n+1
i=3

(n+1
i

)
xi.

Now consider fibre type contractions from Xn
n+1. Note that every contraction

Xn
n+1→Xk

l for k, l−1< n factors through a contraction Xn
n+1→Xk

k+1. The case
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of Xn
n+1→ P1×·· ·×P1 is similar. Thus we only have to count the number of

contractions Xn
n+1→Xk

k+1 for 1 < k < n. This number is equal to the number of
choices of n−k pairs (ei, fi), so

(n+1
n−k

)
. Hence the part of the marked polynomial

associated to a contraction Xn
n+1→ Xk

k+1 is(
n+1
n− k

)
Bkxn−kyn−k

for 1 < k < n. Note that this part of the marked polynomial also counts contrac-
tions Xn

n+1→ P1×·· ·×P1 (k times).
Finally the number of the contractions Xn

n+1→ P1 is
(n+1

n−1

)
. Thus we obtain

the marked polynomial Pn
n+1(x,y) of Xn

n+1.

Example 3.15. We can count the number of contractions as in the proof of the
theorem, so we can obtain the marked polynomial of X3

4 for Mov(X3
4 )

P3
4 (x,y) = (1+8x+16x2 +8x3 +2x4)+4(1+6x+9x2 +2x3)xy+6x4y2.

Thus we have the numbers of faces of Mov(X3
4 ). This number can be directly

checked by computer program (for example Macaulay2) using the explicit ray
generators given in Example 3.3.

4-dim faces 3-dim faces 2-dim faces 1-dim faces
8+4 16+24 8+36 2+8+6

4. The structure of the movable cone

In this section we study the shape of the movable cone of Xn
r for n ≥ 2 and

r = n+1, n+2, n+3 . Note that in this case Xn
r is a Mori dream space by [4,

Theorem 1.3].
In Theorem 4.7 we show that the movable cone is the intersection of the

cone of effective divisors with its dual (Definition 4.1). Moreover we will also
give explicit equations of the movable cone in the standard basis of the N1 when
r = n+1, n+2 (see Theorem 4.9).

Note that throughout the section we will not distinguish between classes
of linear equivalence of divisors and the divisors themselves. We hope that no
confusion will arise.

Let n ∈ N, n ≥ 2 and let X = Xn
r be the blowing-up of Pn at r very gen-

eral points, with r ≥ n+ 1. Let us consider the standard basis of the Picard
group Pic(X) given by {H,E1, . . . ,Er}, where we denote by H the pullback of
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an hyperplane section and the Ei’s are the exceptional divisors. Consider the
symmetric bilinear form (·, ·) on Pic(X), already defined in a more general con-
text in subsection 2.2:

(H,E j) = 0, (H,H) = n−1, (Ei,E j) =−δi, j.

Definition 4.1. (cf. [4, Def. 2.5]) If D∈ Pic(X) and KX is class of the canonical
divisor in Pic(X), we define the degree of D as

deg(D) =
1

n−1
(D,−KX).

Moreover we denote by EffR(X)∨ the dual of the cone of classes of effective
R-divisors with respect to the simmetric bilinear form (·, ·). In other words

EffR(X)∨ = {[D] ∈ N1(X) : (D,F)≥ 0 for all [F ] ∈ EffR(X)}.

4.1. Some general considerations about linear systems on very gen-
eral blowing-ups of Pn

The aim of this subsection is to prove lemma 4.3 and lemma 4.4, that we will
use to prove the main results of the section.

Lemma 4.2. Let n,r ≥ 2 be natural numbers. Consider r very general points
p1, . . . , pr ∈ Pn.

For every (d,m1, . . . ,mr) ∈ Nr+1 let us denote by Ld(pm1
1 , . . . , pmr

r ) the lin-
ear series of hypersurfaces of Pr of degree d having multiplicity at least mi in pi

for every i = 1, . . . ,r. If Ld(pm1
1 , . . . , pmr

r ) 6= /0 then the general hypersurface in
Ld(pm1

1 , . . . , pmr
r ) has multiplicity exactly mi in pi for every i.

Proof. Let us fix k ∈ {1, . . . ,r} and (d,m1, . . . ,mr) such that Ld(q
m1
1 , . . . ,qmr

r ) 6=
/0 if the qi’s are general. Note that by semicontinuity this property does not
depend on the choice of the points.

We will prove that there exists an open subset Ud,m1,...,mr,k ⊆ (Pn)r such that
the general hypersurface in Ld(pm1

1 , . . . , pmr
r ) has multiplicity exactly mk in pk

if (p1, . . . , pr) ∈Ud,m1,...,mr,k.
This will imply that if (p1, . . . , pr) ∈ U :=

⋂
Ud,m1,...,mr,k – where the in-

tersection is taken on k ∈ {1, . . . ,r} and (d,m1, . . . ,mr) ∈ Nr+1 such that, for
general qi’s, Ld(q

m1
1 , . . . ,qmr

r ) 6= /0 – then whenever Ld(pm1
1 , . . . , pmr

r ) 6= /0 we
have that the general hypersurface in Ld(pm1

1 , . . . , pmr
r ) has multiplicity exactly

mi in pi for every i, so that the theorem holds. For simplicity we put k = r.
Up to restricting to an affine open subset An ⊆ Pn we have that r points have

the form p1 = (x1,1, . . . ,x1,n), . . . , pr = (xr,1, . . . ,xr,n), where the xi, j are affine
coordinates.
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At the same time the restriction to An of an hypersurface of degree d will
be defined by a polinomial of degree d, say f (y1, . . . ,yn) = ∑aIyI , where y =
(y1, . . . ,yn) and I is a multi-index such that |I| ≤ d.

Let us consider the ring of polynomials

R := C[{xi, j}0≤i≤r
0≤ j≤n

,{aI}|I|≤d ]

and let AN = Spec(R).
Let a⊆ R be the ideal generated by the partial derivatives

∂
yL

f (x1,1, . . . ,x1,n), for every multi-index L such that 0≤ |L| ≤ m1−1,

. . . . . .

∂
yL

f (xr−1,1, . . . ,xr−1,n), for every multi-index L such that 0≤ |L| ≤ mr−1−1,

∂
yL

f (xr,1, . . . ,xr,n), for every multi-index L such that 0≤ |L| ≤ mr−1,

and let c⊆ R be the ideal generated by the set

∂
yL

f (xr,1, . . . ,xr,n), for every multi-index L such that 0≤ |L| ≤ mr.

With this notation we have that a hypersurface of degree d defined by a polino-
mial f (y1, . . . ,yn)=∑aIyI lies in Ld(pm1

1 , . . . , pmr
r ) if and only if ({xi, j},{aI})∈

Z := Z (a)⊆ AN .
Denote by W := Z (c) ⊆ AN . Then an hypersurface in Ld(pm1

1 , . . . , pmr
r )

has multiplicity at least mr +1 in pr if and only if the corresponding polynomial
f ∈W .

Let AM = ({xi, j}) = (An)r be the linear subspace of AN parametrizing r-
uples of points in An and let φ : AN → AM be the natural projection.

We are reduced to prove that Y := φ(Z∩ (AN \W )) contains an open subset
of AM.

On the other hand for every choice of

p1 = (x1,1, . . . ,x1,n), . . . , pr−1 = (xr−1,1, . . . ,xr−1,n),

by applying [3, prop. 2.3] to the linear series Ld(pm1
1 , . . . , pmr−1

r−1 ) we know
that there exists an open subset Ur ⊆ An =

{
(xr,1, . . . ,xr,n)

}
such that the set

(p1, . . . , pr− 1)×Ur is contained in Y . This implies that Y is not contained in

any proper closed subset of AM, so that YAM

= AM.
By the proof of [8, Theorem 3.16] we have that Y contains an open subset of

its closure in a PM containing AM. Hence it contains an open subset of YAM

=
AM, so that we are done.
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Lemma 4.3. Let n≥ 2 and let X = Xn
r , with r≥ n+1. Let D = dH−∑

r
j=1 m jE j

be an effective Cartier divisor and let i ∈ {1, . . . ,r}. Then

mi < 0⇐⇒ Ei ⊆ Bs(|D|).

Proof.

(⇒) 0 > mi = (D,Ei) = (D · ei), where ei is a line in the exceptional divisor Ei.
This implies that ei ⊆ Bs(|D|), so that Ei ⊆ Bs(|D|), because we can cover Ei

with all the deformations of ei.

(⇐) Suppose, by contradiction, that mi ≥ 0. We can write

D = ∑dH− ∑
j∈J1

m jE j + ∑
j∈J2

n jE j,

where J2 = { j ∈ {1, . . . ,r} : m j < 0}, J1 = {1, . . . ,r}\J2, n j =−m j ≥ 0 for all
j ∈ J2, and, by assumption, i ∈ J1.

Let us put
D′ = ∑dH− ∑

j∈J1

m jE j.

Then Ei ⊆ Bs(|D|) implies that Ei ⊆ Bs(|D′|), i.e. |D′| = Ei + |D′−Ei|, so that
dim |D′| = dim |D′ − Ei|. This means that for every hypersurface L ⊆ Pn of
degree d such that multp j L≥m j for every j ∈ J1, we have that multpiL≥mi+1.
This is a contradiction by lemma 4.2.

Lemma 4.4. Let n≥ 2 and let X = Xn
r , with r≥ n+1. Let D = dH−∑

r
j=1 m jE j

be an effective Cartier divisor, let I ⊆ {1, . . . ,r} be a subset with |I| = n. Then
(n−1)d−∑ j∈I m j ≥ 0 if and only if the base locus of |D| does not contain the
strict transform of the hyperplane through all the points in the set {p j : j ∈ I}.

Proof. Let I ⊆ {1, . . . ,r} be such that |I| = n. Let us denote by HI the strict
transform of the hyperplane through the points {p j : j ∈ I}, so that HI ∈ |H−
∑ j∈I E j|. Let sI be the standard Cremona transformation based on the the points
{p j : j ∈ I} and on p j0 , where we choose j0 6∈ I. Then sI induces an action on
Pic(X) that lies in the Weyl group of X (see subsection 2.3). With a slight abuse
of notation we denote it again by sI .

Then we know that Bs(|D|)⊇ HI if and only if Bs(|sI(D)|)⊇ sI(HI). But

sI(D)= (dn− ∑
j∈I∪{ j0}

m j)H− ∑
j∈I∪{ j0}

(
(n−1)d− ∑

k∈I∪{ j0}
k 6= j

mk
)
E j− ∑

j 6∈I∪{ j0}
m jE j,

and sI(HI) = E j0 .
Then, by Lemma 4.3, we have that Bs(|sI(D)|)⊇ sI(HI) = E j0 if and only if

(n−1)d−∑k∈I mk < 0 and the claim is proved.
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4.2. Case r = n+1, n+2, n+3

Lemma 4.5. Let n ≥ 2 and let X = Xn
r , with r = n + 1 n + 2, n + 3. Then

Mov(X)⊆ EffR(X)∩EffR(X)∨.

Proof. Let W be the Weyl group of X and let Er ∈ Pic(X) be the class of an
irreducible exceptional divisor. By [4, Theorem 2.7] we know that EffR(X) is
generated as a cone by the divisors in the orbit W ·Er, so that D ∈ EffR(X)∨ if
and only if (D,w(Er))≥ 0 for all w ∈W .

Now take a Cartier divisor D ∈ Mov(X). Then D ∈ EffR(X) because D
is effective. Suppose, by contradiction, that D 6∈ EffR(X)∨. Then there exists
w ∈W such that (D,w(Er)) < 0. But (D,w(Er)) = (w−1(D),Er) because the
Weyl group is a group of isometries with respect to the pairing (·, ·). By defini-
tion (w−1(D),Er) = (w−1(D) · er), where er is a general line in the exceptional
divisor Er. Then we have that (w−1(D) · er) < 0, which implies that a general
line in Er is contained in the base locus of w−1(D), so that Er ⊆ Bs(|(w−1(D)|),
and w−1(D) is not movable. But D is movable and the Weyl group fixes the
movable cone. Hence w−1(D) is also movable and we get a contradiction.

We will use the following theorem to show the reverse inclusion of lemma
4.5. Note that the same result immediately follows from [4, Theorem 2.7] by
using some representation theory (classification of minuscule representations,
cf. [4, Remark 2.8]). On the other hand in our proof we just use elementary
geometric facts.

Theorem 4.6. Let n≥ 2 and let X = Xn
r , with r = n+1, n+2, n+3. Let W be

the Weyl group of X and let Er be an exceptional divisor. Then the Weyl orbit

W ·Er = {D ∈ E f f (X) : deg(D) = 1}.

Proof. Note that degEr = 1 and the degree is W -invariant, so that every divisor
in the orbit W ·Er has degree 1. Let us show that every divisor of degree 1 is in
the orbit of Er.

We denote by H the pullback of an hyperplane section on X , by E1, . . . ,Er

the irreducible exceptional divisors.

Claim. Suppose D = dH −∑
r
j=1 m jE j ∈ Pic(X) is effective. Then there

exists w ∈W such that w(D) = f H−∑
r
j=1 q jE j, verifies q1 ≥ q2 ≥ ·· · ≥ qr and

f (n−1)−∑
n+1
j=1 q j ≥ 0.

Proof of the claim. First of all, we may assume, after reordering, that m1 ≥
m2 ≥ . . .≥ mr. If d(n−1)−∑

n+1
j=1 m j ≥ 0, we are done.
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If this is not the case, let us denote by s0 the standard Cremona transforma-
tion based on E1, . . . ,En+1, so that

s0(D) = (nd−
n+1

∑
j=1

m j)H−
n+1

∑
i=1

(
(n−1)d− ∑

k≤n+1
k 6= j

mk
)
E j− ∑

j≥n+2
m jE j.

Note that, by hypothesis, nd−∑
n+1
j=1 m j < d so that ordHs0(D)< ordHD.

Now we reorder the E ′js with respect to the new coefficients and we repeat
the procedure until we obtain the required inequality.

Note that we will achieve it after a finite number of steps, because otherwise
we would construct an element s ∈W such that ordHs(D) < 0, so that s(D)
would not be effective. But this is not possible because D is effective and the
Weyl group fixes the effective cone. This proves the claim.

Now let D ∈ Pic(X) be an effective divisor of degree 1. Then there exists
w ∈W such that w(D) = f H−∑q jE j satisfies the following inequalities:

1. f ≥ 0;

2. f ≥ q1 ≥ q2 ≥ ·· · ≥ qr;

3. f (n−1)−∑
n+1
j=1 q j ≥ 0 ;

4. f (n+1) = 1+∑
r
j=1 q j.

In fact 1, 2 and 3 follow by the claim and by the effectiveness of w(D). As
for the forth inequality, it is verified because degw(D) = degD, so that

1 = degw(D) =
1

n−1
(w(D),−KX) = f (n+1)−

r

∑
j=1

q j.

If r = n+1, from these conditions we obtain that 2 f ≤ 1, so that f = 0. Then
∑

r
j=1 q j =−1 and 0≥ q1 ≥ q2 ≥ ·· · ≥ qr. Hence w(D) = Er, so that D ∈W ·Er.

If r = n+ 2, we get that 2 f ≤ 1+ qn+2 ≤ 1+ f , so that f ≤ 1. Moreover
if f = 1, then qn+2 = 1, so that q1 = · · · = qn+2 = 1, and w(D) is not effective.
Hence we must have f = 0, so that, as in the previous case, we get that w(D) =
En+2 = Er.

If r = n+3, then we get 2 f ≤ qn+2 +qn+3 +1. Then, if f > 0 we have that
q1 = · · ·= qn+2 = f , and qn+2 ∈ { f , f +1}. In any case we get that w(D) is not
effective. Thus we must have f = 0, so that, as before, w(D) = En+3 = Er, and
we are done.

Theorem 4.7. Let n ≥ 2 and let X = Xn
r , with r = n+ 1, n+ 2, n+ 3. Then

Mov(X) = EffR(X)∩EffR(X)∨.
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Proof. By Theorem 4.5 we know that one inclusion is always verified. Then it
suffices to prove that EffR(X)∩EffR(X)∨ ⊆Mov(X).

By [4, Theorem 2.7] we have that EffR(X) is generated as a cone by the
divisors in the Weyl orbit of an exceptional divisor Er and Eff(X) is generated
as a semigroup by the effective divisors of degree 1. Hence, by Theorem 4.6,
Eff(X) is generated, as a semigroup, by the divisors in W ·Er.

Moreover, note that if F is an irreducible fixed divisor, then F cannot be
written as a sum of two Cartier divisors in Eff(X), so that we must have F ∈
W ·Er.

Now let D ∈ EffR(X)∩EffR(X)∨ be a Cartier divisor. Then (D,w(Er))≥ 0
for every w ∈W , so that (w(D),Er)≥ 0 for every w ∈W .

Hence, as D is effective and W fixes the effective cone, thanks to Lemma
4.3 we get that, for every w ∈W , Er 6⊆ Bs(|w(D)|), which in turn implies that
w−1(Er) 6⊆ Bs(|D|).

This shows that the linear series |D| does not contain in its base locus any
divisor in the orbit W ·Er. Therefore it is movable, because we have proved that
every irreducible fixed divisor is in the W -orbit of Er.

4.3. Case r = n+1, n+2

Lemma 4.8. Let n≥ 2 and let X = Xn
r , with r ∈ {n+1,n+2}. Let

• E = {Ei : i ∈ {1, . . . ,r}},

• H = {H−∑ j∈I E j : I ⊆ {1, . . . ,r}, |I|= n}.

Then Eff(X)⊆ Pic(X) is generated as a semigroup by the classes of divisors in
E and H .

Proof. Let us denote by {p1, . . . , pr} the very general points blown-up on Pn.
By [4, Theorem 2.7] we have that the semigroup of effective divisors is

generated by effective divisors of degree 1. Let D = dH−∑m jE j be a class in
Pic(X). Then D has degree 1 if and only if

1 =
1

n−1
(D,−KX) = d(n+1)−

r

∑
j=1

m j.

Note that the effectiveness of D implies that d ≥ 0.
If d = 0, then m j ≤ 0 for every j because D is effective and ∑

r
j=1 m j = 1

because of the above formula. Then in this case D ∈ E .
If d > 0 then the effectiveness of D implies that m j ≤ d for every j ∈

{1, . . . ,r}.
If r = n+1, then the above formula implies that
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D = mH +∑
j 6=i

mE j− (m−1)Ei,

for some i ∈ {1, . . . ,n+1} and for some m ∈ N.
If m = 1 then D∈H . Suppose then m≥ 2 and define D′ = mH+∑ j 6=i mE j.

Then by Lemma 4.4 we have that Bs(|D′|) contains Hi with multiplicity m, so
that D′ is the fixed divisor given by the strict transform of the hyperplane through
p1, . . . , pi−1, pi+1, . . . , pn+1, with multiplicity m. Thus, thanks to the generality
of the point, this hyperplane does not contain pi, so that, equivalently, D′−Ei is
not effective. But m≥ 2 implies that D≤D′−Ei, whence D is also not effective.
Therefore we must have m = 1 and the theorem follows.

Let r = n+ 2. Then we can consider a rational normal curve of degree n,
say C ⊆ Pn, such that C passes through p1, . . . , pn+2 and C 6⊆ Supp(µ∗(D)). In
fact we know that for every choice of n+ 3 points in Pn there exists a rational
normal curve of degree n passing through all of them. Then we have that the
strict transform of C is not contained in Supp(D).

This implies that (D · (nl− e1−·· ·− en+2)) ≥ 0, where we denote by l the
pullback of a line in X and by e j a general line in the exceptional divisor E j, for
every j ∈ {1, . . . ,n+2}. Thus

0≤ ((dH−
n+2

∑
j=1

m jE j) · (nl−
n+2

∑
j=1

e j)) = nd−
n+2

∑
j=1

m j.

Then, using the fact that D has degree 1, we obtain that 1≥ d(n+1)−dn =
d. Therefore D ∈ E if d = 0 and D ∈H if d = 1, and we are done.

Thanks to corollary 4.7 we can use the previous lemma to give explicit equa-
tions of the movable cone of Xn

n+1 and Xn
n+2. This generalizes Prop. 3.2.

Theorem 4.9. Let n ≥ 2 and let X = Xn
r , with r ≥ n+ 1. Let us denote by

(d,m1, . . . ,mr) the coordinates in N1(X) with respect to the standard basis.
Consider the following inequalities:

1. m j ≥ 0, for all j ∈ {1, ...,r};

2. (n−1)d−∑ j∈I m j ≥ 0, for all I ⊆ {1, ...,r}, with |I|= n;

3. d ≥ m j, for all j ∈ {1, ...,r};

4. nd−∑
r
j=1 m j ≥ 0.

Let M1(X)⊆ N1(X) be the cone defined by inequalities 1,2,3, and let M2(X)⊆
N1(X) be the cone defined by inequalities 1,2,3,4. Then, M1(X) = M2(X) =
Mov(X) if r = n+1 and M2(X) = Mov(X) if r = n+2.
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Proof. By Corollary 4.7 we know that Mov(X) = EffR(X)∩EffR(X)∨.
Let r ∈ {n+1,n+2} and let

D = dH−
r

∑
j=1

m jE j

be a movable Cartier divisor. Then d ≥ m j, for all j ∈ {1, ...,r} because D is
effective.

Moreover, as D ∈ E f fR(X)∨, we have that for every j ∈ {1, . . . ,r}

0≤ (D,E j) = m j,

and, for every I ⊆ {1, . . . ,r}, with |I|= n,

0≤ (D,H−∑
j∈I

E j) = (n−1)d−∑
j∈I

m j.

Thus D satisfies inequalities 1,2,3. Hence Mov(X)⊆M1(X).
Now let D ∈M2(X). Then D is effective by [4, Lemma 4.24]. By Lemma

4.8 we know that the divisors in H and E generate Eff(X) as a semigroup, so
that they also generate EffR(X) as a cone. By the given inequalities we have
that the intersection of D with all the divisors in H and E is non negative. Thus
D ∈ EffR(X)∨, so that D ∈Mov(X). Hence M2(X)⊆Mov(X).

Suppose now r = n+1 and let D = dH−∑
n+1
j=1 m jE j be a Cartier divisor in

M1(X). Then

nd−
n+1

∑
j=1

m j = (n−1)d−∑
j 6=1

m jE j +d−m1 ≥ (n−1)d−∑
j 6=1

m jE j ≥ 0.

Thus D∈M2(X). Hence we get that M1(X)=M2(X)=Mov(X) if r = n+1.
Finally take r = n+2. We have to prove that Mov(X) ⊆M2(X). Note that

we have already proved that Mov(X) ⊆M1(X), so that it just remains to show
that movable divisors satisfy inequality 4.

Let D ∈Mov(X) be a Cartier divisor. Then D ∈ Eff(X). Hence, by Lemma
4.8, we can write

D =
r

∑
i=1

aiEi + ∑
|I|=n

bI(H−∑
j∈I

E j),

with ai,bI ∈ N. Then

d = ordHD = ∑
|I|=n

bI;

r

∑
j=1

m j =−
r

∑
j=1

ordE j D =−ai + ∑
|I|=n

bIn≤ ∑
|I|=n

bIn = dn.

Thus inequality 4 is verified and the theorem is proved.
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Remark 4.10. Note that in Theorem 3.14 by toric methods we computed the
marked polynomial Pn

n+1(x,y). From it we can easily compute the number of
facets of the movable cone that correspond either to fiber type contractions, i.e.
the coefficient of xy, or to divisorial contractions, i.e. the coefficient of x. Thus,
for every n > 2 and r = n+1, the number of divisorial contractions is 2(n+1),
while the fiber type contractions are n+ 1. Hence the toric count arising by
theorem 3.14, 3(n+1), matches the number of facets of the movable cone, that
are given explicitly in theorem 4.9 by the boundary hyperplanes associated to
conditions marked with 1,2 and 3 in the theorem.

Contractions given by divisors in the boundary of Eff(X) i.e. associated to
conditions of type 3 (and 4, for r = n+2) are of fiber type (they are projections
to lower dimensional MDS) while divisors in the interior of the effective cone,
i.e. such that equality is attained in one condition of type 1 and 2, are associated
to divisorial contractions.

We also remark that in dimension 2 conditions of type 3 (and 4) follow from
those of type 1 and 2 and in fact that are no fiber type elementary contractions
(see section 2.4).

4.4. Case r = n+3

In the following proposition we give generators of Eff(Xn
n+3) as a semigroup.

Unfortunately we are not able to use them to give explicit equations of the mov-
able cone in this case.

Proposition 4.11. Let n≥ 2 and let X = Xn
n+3.

Then Eff(X)⊆ Pic(X) is generated as a semigroup by the classes of divisors
in

A = {dH−∑
j∈I

dE j−∑
j 6∈I
(d−1)E j : |I|= n+2−2d, 0≤ d ≤ n+2

2
}.

Proof. By Lemma 4.6 we have that W ·E1 = {D∈ Eff(X) : degD = 1}. We will
show that A = W ·E1 = {D ∈ Eff(X) : degD = 1}, so that the lemma follows
by [4, Theorem 2.7].

We begin by showing that {D ∈ Eff(X) : degD = 1} ⊆A :
Write D = dH−∑m jE j. Up to a permutation of the indices we can suppose

that m1 ≥ ...≥ m3. Note that

1 = deg(D) = d(n+1)−
r

∑
j=1

m j.

Moreover, as in the proof of Lemma 4.8 we know that D intersects non
negatively the strict transform of a rational normal curve through p1, . . . , pn+2,
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so that

nd−
n+2

∑
j=1

m j ≥ 0.

Then 0≤ nd−∑
n+2
j=1 m j = 1+mn+3−d, so that mn+3 ≥ d−1. This implies

that m j ∈ {d− 1,d} for every j = 1, . . . ,n+ 3. In other words there exists k ∈
{0, . . . ,n+3} such that

D = dH−∑
j≤k

dE j−
n+3

∑
j=k+1

(d−1)E j.

Hence we have that 1 = deg(D) = d(n+1)− kd−
(
(n+3)− k

)
(d−1), so

that k = n+2−2d.
On the other hand we must have k ≥ 0, which implies that d ≤ n+2

2 . There-
fore D ∈A . In order to conclude we prove that A ⊆W ·E1.

As W contains all permutations of exceptional divisors it suffices to consider
divisors of the form

Ad := dH− ∑
j≤n+2−2d

dE j−
n+3

∑
j=n+3−2d

(d−1)E j,

with 0≤ d ≤ n+2
2 . We will show by induction on d that all these divisors are

in the orbit of E1.
If d = 0, then A0 = En+3 ⊆W ·E1 because W contains all permutations of

exceptional divisor.
Now suppose 1 ≤ d ≤ n+2

2 and suppose, by induction, that Ad−1 ∈W ·E1.
Then

L := (d−1)H−
2d−1

∑
j=1

(d−2)E j−
n+3

∑
j=2d

(d−1)E j ∈W ·E1.

Let s0 be the standard Cremona transformation based on E1, . . . ,En+1. We
will show that Ad can be obtained from s0(L) by a permutation of the exceptional
divisors. Note that d ≤ n+2

2 implies that 2d−1≤ n+1. Then

ordHs0(L) = (d−1)n− (d−2)(2d−1)− (d−1)(n+1−2d +1) = d.

If 1≤ j ≤ 2d−1, then

ordE j s0(L) = (n−1)(d−1)−(d−2)(2d−2)−(d−1)(n+1−2d+1) = d−1.

If 2d ≤ j ≤ n+1, then

ordE j s0(L) = (n−1)(d−1)− (d−2)(2d−1)− (d−1)(n+1−2d) = d.

Finally, if n+2≤ j ≤ n+3, then ordE j s0(L) = d.
Therefore we get Ad by applying a suitable permutation to s0(L).
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