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EXISTENCE OF SOLUTIONS TO INTEGRAL TYPE BVPs FOR
SECOND ORDER ODEs ON THE WHOLE LINE

YUII LIU - XING YUAN LIU

Some integral type boundary value problems (BVPs) for second order
differential equations (ODEs) with one-dimensional p-Laplacian on the
whole line are discussed. Sufficient conditions to guarantee the existence
of solutions are established. The emphasis is put on the one-dimensional
p-Laplacian term [p(¢)®(x/(¢))]’ involving a nonnegative function p that
may satisfy p(0) = 0, and on the fact that the differential equations are
defined on the whole line.

1. Introduction

The study of multi-point boundary-value problems for linear second order ordi-
nary differential equations was initiated by II’in and Moiseev [1]. Since then,
more general nonlinear multi-point boundary-value problems were studied by
several authors, see the text books [2,3] and the survey papers [4,5] and the
references cited there.
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In [6], a class of BVPs for the second order nonlinear ordinary differential
equations on the whole line was studied. Two theorems were proved. The first
theorem in [6] is established by the use of the Schauder fixed point theorem
and concerns the existence of solutions, while the second theorem is concerned
with the existence and uniqueness of solutions and is derived by the Banach
contraction principle.

In [7], Bianconi and Papalini investigate the existence of solutions of the
following boundary value problem

(@' (1)) +alt,x(1))b(x(t),X (1)) =0, tE€R,
0 =) = 1

where @ is a monotone function which generalizes the one-dimensional p—
Laplacian operator, a, b are continuous functions. Some criteria for the existence
and non-existence of solutions of BVP(1) are established in [10].

In [8,12], Avramescu and Vladimirescu study the following boundary value
problem

X)) +2f(0)x (1) +x(¢) +g(t,x(t)) =0, t€ER,

ZEr:ll;loox(t) = _x(j:oo) = 0, (2)
i / = o0 ) —=
tgrfwx (1) =: x(£e0) =0,

where f and g are given functions. The existence of solutions of BVP(2) is
obtained in [8].
In [9], Avramescu and Vladimirescu study the following boundary value

problem
xX(t)+ f(t,x(t),x' (1)) =0, t€ER,

tl_lgloox(t) - tll)r_&x(t), 3)
lim X' (t) = lim x'(z),
f——oo t—+oo

under adequate hypothesis and using the Bohnenblust-Karlin fixed point theo-
rem, the existence of solutions of BVP(3) is established in [12].

Cabada and Cid [13] prove the solvability of the boundary value problem on
the whole line

[ (0))]' + f(2,x(1),x'(1)) =0, 1ER,

Jim x(r) = —1 )
AR =1

where f is a continuous function, ® : (—a,a) — R is a homeomorphism with

a € (0,4o0), i.e., P is singular.
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Calamai [10] and Cristina Marcelli, Francesca Papalini [11] discuss the
solvability of the following strongly nonlinear BVP:

[a(x(1))@(xX'(¢))) + f (2, x(1),X'(t)) =0, 1€R,

tli)l}lwx(t) =% )
Jim x(t) = B,

where o < B, ® is a general increasing homeomorphism with bounded do-
main (singular ®-Laplacian), a is a positive, continuous function and f is a
Carathéodory nonlinear function. Conditions for the existence and non- exis-
tence of heteroclinic solutions in terms of the behavior of y — f(¢,x,y) and
y — ®@(y) as y — 0, and of 1 — f(z,x,y) as |t| — +oo are obtained. The ap-
proach is based on fixed point techniques suitably combined to the method of
upper and lower solutions.

Motivated by mentioned papers, we consider the more general BVP for sec-
ond order differential equation on the whole line coupled with the integral type
BCs, i.e. the BVP

[p(1)®(x' (1)) + f(1,x(2), % () = O, FER,
@ lim +(0) B lim & (p()¥(0) = [ 8(o.x(5) X ()ds, o
y lim x(t)+ & lim &~ 1(p(1))x/(¢) :zh(s,x(s),x’(s))ds,

t—+o0 t—r—+oo
where

e a>0,y>0,8>0,0 > 0 are constants with

teo ]
c:a6+ay/ o ds+By>0,

(p(s))
e f.g hdefined on R? are nonnegative Carathéodory functions,

e p €C(R,(0,00)) with p(r) > O for all r € R and 1 # 0, p satisfies

0
1 1
o / S T(p) " T

1 —+oo
1 1
[omom® = | e ==

e O(s) = |s|P~2s with p > 1 is called p—Laplacian and its inverse function
is denoted by @~ (s) = |s|9~2s with % + é =1.
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The purpose is to establish sufficient conditions for the existence of a solu-
tion of BVP(6). The results in this paper generalize and improve some known
ones since the one-dimensional p-Laplacian term [p(¢)®(x'(¢))]’ involves the
nonnegative function p that may satisfy p(0) = 0.

The remainder of this paper is organized as follows: the preliminary results
are given in Section 2, the main results are presented in Section 3.

2. Preliminary Results

In this section we present some background definitions and state the Nonlinear
alternative principle. Then the preliminary results are given and proved.

Definition 2.1. F defined on R* is called a Carathéodory function if

t—f <t,x, my) is measurable for any (x,y) € R?,

i) (x,y) = f (t,x, my) is continuous for a.e. r € R,

iii) for each r > 0, there exists nonnegative function ¢, € L'(R) such that
|lu|, |v] < rimplies

‘f (t,x, q)_l(lp(t))y>| < ¢,(t),a.et €R.

Lemma 2.2. [Nonlinear alternative]. Let C be a convex subset of a normed
linear space X, and U be an open subset of C, with p* € U. Then, for every
completely continuous map T : U — C, the following alternative holds:

(a) either T has a fixed point in U or

(b) there is an x € U, withx = (1 —A)p* + ATx for some 0 < A < 1.
Let us list the assumptions:

(H) f,g and h are Carathéodory functions and satisfy the following:

(i) there exist nonnegative functions a,b,c € L'(R) such that
1
(1 g )| < a0+ 00D e r )
‘ >~ (p(r))
(ii) there exist nonnegative functions ay,by,c; € L' (R) such that

1
o (1 o )| S @O nON @bl eR ®)
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(iii) there exist nonnegative functions ay, b, > such that

1
‘h (t,x, d>—‘(p(t))y> ’ < ay(t)+ ba(t)|x| 4+ c2(t)|y],t €R.

Choose

x is bounded on R
t — @ 1(p(¢))x'(¢) is continuous
and there exist the limits
0 lim x(r)
X=<xeC’(R): 1——eo

lim x(¢
t~>+oo

Jim @~ (p(
lim ®~!(p(

\ t— oo

)
1))x'(¢)
£))x'(¢)

For x € X, define the norm of x by

ol = max {sup o) supe> ()1 (1)}

One can prove that X is a Banach space with the norm ||x|| for x € X.
Denote

1

and given x € X,

o — ¥ 22 8(rx(r), ' (r))dr — e [22 h(rx(r), 2/ (r))dr
0 — o )

/fsx ))ds| —®(0p),

o) = /fsx ))ds| —®(0yp).

Lemma 2.3. Suppose that x € X and (H) holds. Then there exists a unique

Ax S [0'1,62}

135

®

(10)
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such that

~+oo

50 (4,) + ay/:’ q)l(lp(s))cpl <Ax +
o (Ax+ / +°°f<r,x<r>,x’<r>>dr)

+y/+°° (r,x(r),x' (r))dr — o +°°h(r7x(r)7x/(r))dr:0.

f(r,x(r),x’(r))dr) ds

—oo

Furthermore, it holds that
+oo .
1Ay g/ 1£(5,x(5),2 (5))ds + @ (|oo]) (11)
Proof. Since x € X, f,g,h are Carathéodory functions, then

Iel| = max{sup (o)l §glg¢-1<p<r>>|x'<r>|} < oo

teR

and

oo oo

A O, [t 0 [, 2 ()

—oo —o0 —0oo

converge. Let

G(c) = ada~(¢)
+a7/+wq) <c+/+w Flra(r ))dr>d
+ By <c+ / f(r,x(r),x'(r))dr>
+y/+w (r,x(r), ¥ (r))dr — a /+°°h(r,x(r),x'(r))dr.

—oo

It is easy to see from ¢ > 0 that G(c) is strictly increasing on R.
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On the other hand, we find that

~+oo
6o =ase! (=| [ st (o)

+ay/j q)_l(lp(s))dfl <—

—+oo

+ f(r,x(r),x’(r))dr) ds

S

—CD(GO)>

oo
f(rx(r),x (r))dr

—(ID(GQ)

+Bye! (—

[ a0 0|~ ()

—+oo
+ f(r x(r), x’(r))dr)

+oo +eo
—|—}// (r,x(r ))dr— o » h(r,x(r),x'(r))dr

_ e 1

< add ! (—D(0y)) +a}//_m ()
+By® " (—P(00))

+ y/_jog(r,x(r),x’(r))dr— (x/+mh(r,x(r),x’(r))dr =0.

—o0

& (—d(0y))ds

Similarly we find that

G(0y) = asd™! ( jwf(r,x(r),x'(r))dr

+a7/+m L o (
e D (p(s))

+o0
+/ f(rx(r), x’r dr)ds

+pre”! <

—CIJ(G()))

~+oo
f(rx(r),x'(r)dr| — ®(op)

X (r))dr

—®(0p) +/ f(rx(r),x ())dr>

+Y/+°O (r,x(r ))dr — a/imh(”vx(’”)axl(”))d’”
1
@ 1(p(s))

—+oco
+ Byd~! (—D(0p)) -l—}// (r,x(r),x'(r))dr— a h(r,x(r),x' (r))dr

—oo

> add ! (—d(op)) + ay / " & (—d(op))ds

=0.
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Hence there exists a unique

o0
f(s,x(s),x' (s))ds

—+oo
f(s,x(s),x'(s))ds

= (o). - ()|

= [01,07]

such that

~+oco

) +o0 1
add 1(Ax)—|-ay/7w D 1(p(s))

+ By <A [ f(rx(r),x’(r))dr)

+)//+°° ))dr — a/_imh(r,x(r)jx/(r))dr:(),

o! <Ax+ i f(r,x(r),x’(r))dr> ds

It is easy to see that

+o0
A< [ 173064 (9)lds + @(oul)

< [ 1) 6
ro <7f*: 20X ) ) |h<r,x<r>,x'<r>>dr> |
The proof is complete. O

Define the operator 7 on X by

= B, —i—/ D (o0 ( +/+°° f(rx(r dr)ds, (12)
where A, satisfies
Fee 1
a6¢>*1(Ax)+ocy/_m WCD*I <Ax+ s
400
+Byd! (A +/ rx(r),x’(r))dr)

oo oo
+ y/ (r,x(r ))dr—a h(r,x(r),x'(r))dr =0,

—o0

~+oo

f(r,x(r),x'(r))dr> ds

and

22 g(rx(r),x' (1)) dr + B! (Ax+ [X7 f (rx(r), 2/ (r))dr)

o

B, = for o > 0,
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22 h(rx(r) () dr =8~ A~y [12 gorio @7 (At [T f(rx(r) X (r))dr )ds

I
B, = <I; (p(s) Y > 0.

Lemma 2.4. Suppose that (H) holds. Then
(i) T:X — X is well defined,

(ii) it holds that

[p()@((Tx)'(1))] + f(t,x(t),%'(t)) =0, t€ER,
o lim (Tx)(1) — B lim & (p(1))(Tx)'(1

= [27 g(s.x(s),2/(s))ds (13)
y lim (T)(1)+5 lim & (p(0)(T/(1)

= [T2h(s,x(s),% (5))ds

(iii) x € X is a solution of BVP(6) if and only if x is a fixed point of T in X,
(iv) T : X — X is completely continuous.

Proof. We consider the case & > 0. The proof of the case y > 0 is similar and
is omitted.
(1) For x € X, by Lemma 2.3, both A, and B, are unique respectively. So Tx is
defined. We need to prove Tx € X. From (12), Tx € C°(R) and there exist the
limits

lim (Tx)(t) = By,

t——oco
oo oo /
tll)l}rlm x—l—/ o0 <Ax+ i f(r,x(r),x(r))dr) ds.

Furthermore,

o0

@ )T @)= (At [ s 0)ar). b

It is easy to see that thent — @~ !(p(¢))(Tx)’ € C°(R) and there exist the limits

—+oco

lim @ '(p(1))(Tx) (1) =" <Ax+ - f(r,x(r),x’(r))dr),

t——oo

lim & (p(1))(T) (1) = & (4,).

t—+oo
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It follows that 7 : X — X is well defined.
(i1) From (12) and (14), we get

[p ()@ ((Tx)' (1)) + f(t,x(t),X' (1)) =0, 1 R,
a lim (Tx)(r) =B lim @~ (p(1))(Tx) (1)

t——oco

= 0B, — B! (Ax—|- :wf(r,x(r),x’(r))dr> = /+mg(s,x(s),x’(s))ds,

y lim (Tx)(t)+ 8 lim & '(p(t))(Tx)'(t) = :ooh(s,x(s),x’(s))ds.

t—+o0 t—r+o0 _

(iii) It is easy to see that x € X is a solution of BVP(6) if and only if x is a fixed
point of 7" in X.
(iv) First, we prove that the function A, : X — R is continuous in x.

Let {x,} € X withx, — xp asn —oo. Let {A,, }(n=1,2,...,m) be constants
decided by equation

add (A,,) + a}//_:w q)l(lp(s))cbl <Ax,, + /S+mf(r,xn(r),x;(r))dr> ds

pro (a+ [ s oar)
oo oo
+ }//700 g(rx,(r),x,(2))dr — a h(r,x,(r), x5 (r))dr =0,

corresponding to x, (n =0,1,2,...). Since x, — xp as n — oo, there exists an
M > 0 such that ||x,|| < M(n=0,1,2,---). The fact f,g,h are Carathéodory
functions means there exists ¢y € L'(R) such that

s 500 = |1 (0

< ou(t),t €R,
lg(t,xn(1),2,(t))] < Pm(2),1 €R,
|h(t,xn(t),x;(t))| < (PM(Z‘),Z‘ €R.

Then
| xSl < [~ ou(ridr <o
[ _letrr)ridr < [ gutr)dr <
| s X)lar < [ gur)dr <

—oo
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So

A, €

[ ’/ F(rxa(r), 2, (r)dr /frxn X (r)dr

g{/ww(r)drcb(ﬁ“ [ outspa )
| _outr dr+CI><Y+a [ pu(s)d )]

which means that {A,, } is uniformly bounded. It follows that

- ()]

oo 1 +oo

. D 1(p(s)) ‘q’“ <Axn+ f(r,xn(r>,xn’(r))dr>

< _:wq)l(lp(s))dscpl(/ om(r dr+c1><”+a [ " ow(s)d >>

Suppose that {A,, } does not converge to A,,. Then there exist two subse-
quences {Axk“)} and {Axk@)} of {A,,} with Ay, m = crand Ay o — ¢ as
n n n nk

ds

k — oo, but | # c3. By the construction of A, (n =1,2,...), we have

_ e 1
o6P I(Ax,,kU))JFO‘Y/ W

oo /
+ B! (Ax,w + | V()2 <r>>dr)
s ) (1’
+7[ s V0,V )dr—a

—o0

h(r, 0, D (), 2,V (0))dr = 0.
Let kK — oo, using Lebesgue’s dominated convergence theorem, the above equal-
ity implies

) +oo 1 -
as® ‘(C1)+0‘7/,w o 1(p(s))

ot (e [ i)

o <c1+ S f(r,xo(r),x{)(r))dr) ds

+Y/:m8(r,xo(i’)7x6(l‘))dr Oc/+ooh(r,xo(r),x6(t))dr —0.

—o0
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Since {A,,} is unique with respect to xg, we get c; = Ay,. Similarly, c; = A,,.
Thus ¢ = ¢, a contradiction. So, for any x, — xo, one has A, — A,,, which
means A, : X — X is continuous.

Second, we show that T is continuous on X. Since A, is continuous, then
B, is continuous too. From the continuity of A, and B,, and since f is a
Carathéodory function, the result follows.

Third, we show that 7" is maps bounded subsets into bounded sets. Let
D C X be a given bounded set. Then, there exists M > 0 such that D C {x € X :
||x[| < M}. Then there exists ¢y € L' (R) such that

0O = |1 (150, g @ OO0 )|

< Pu(t),t €R,
|g(t,x(),x'(1))] < dm(t),1 €R,
|A(t,x(),x'(1))] < dm(t),t €R.

So

/:o £ (rx(r), ¥ (1) |dr < /:o o (F)dr < oo,
/°° lg(r,x(r),x' (r))|dr < /_o; Onr(r)dr < oo,
/

)X Oldr < [ ou(r)dr <=

—o0

Similarly we have

A< [ outr dr+c1><7”;°‘ [ pu(s)d ><oo,

J2Z g(rx(r), ' (r))dr + B~ (As+ J25 f(r,x(r), X (r))dr)

o

o 2 ou(r)dr+ B! (27 du(r)dr +® (5% [°2 ou(5)ds))
B (04

B =

Therefore,

0] = Bx+/t q)ll))qu (AH— s+mf(r,x(r),x’(r))dr> ds

_ S ou(r)dr + B (27 gu(r)dr + @ (F5E [°Z pu(s)ds))
o

+/1mq)_1(1p(s))ds¢_l</ o (r dr+<1><7+°‘ [ " ou(s)d >>

:2M1.

|(Tx
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On the other hand, we have
@ o)) =@ (ac+ [t ¥
< ¢! <2/Z ou(r)dr+ @ <7+GO‘ :m ¢M(s)ds>> — .

Then

I7x]] = max {sup;c |(Tx) (1)], sup,cp @~ (p (1) |(Tx)' (1) } < eo.

So, {T D} is bounded.

Fourth, we prove that both {Tx : x € D} and {®~'(p)(Tx)' : x € D} are
equi-continuous on each finite subinterval on R.
Let D C {x e X :||x|]| <M}. For any K >0, 11,1 € [-K,K] with 1; <1, and
x € X , since f,g,h are Carathéodory functions, then there exists ¢y, € L'(R)
such that

‘f(tvx(t)vx/(t)” S ¢M(t)’t €R7
|g(t,x(t),x/(t))| S ¢M(t)7t ER,

(5(0), ¥ ()] < 0w (1)1 € R
Then
| 1sx )X ldr < [ gulrydr <,
[ lerx). 2 () < [ gutr)dr <
[ xn X dr < [ ourydr <
Then

‘Ax+fl+°°f(r,x(r),x’(r))dr‘ <2/[% om(r)dr+@ (VJ?T‘X [t q)M(s)ds) =:r.

Since ®~!(s) is uniformly continuous on [—ry,r(], then for each £ > 0 there
exists 4 > 0 such that |s; —s| < u with 5,5, € [—r,71] implies that |®~!(s1) —
@! (S2)| < E&.

Since

lp(t11)@((Tx)'(11)) — p(2)P((Tx)'(12))]|
/t1 Ff(r,x(r),x'(r))dr

5]

5]
< / Op (r)dr — 0 uniformly as t; — 1,
1
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then there exists ¢ > 0 such that |, —#;| < G implies that |p(¢;)®((Tx)'(#;)) —
p(tz)CD((Tx)’(tz))\ < W. Thus ‘ll —lz‘ < Eimplies that

@ (p(1))(Tx) (1) — @~ (p(12))(Tx) (12)] < e. (15)

On the other hand, we have
(1) = (Tx) ()] = 27 (515 ) @ (Ac+ 7 F(rx(r) 2 (1)) dr ) ds

< 20 (kg ) ds @ (207 ou()dr + @ (555 72 gu(5)ds) )
— O uniformly as t; — 1.

Then there exists & > 0 such that |¢; — ;| < & implies

(Tx) (1) = (Tx)(12)| <& (16)

Then (15) and (16) imply both {Tx : x € D} and {®~'(p)(Tx)" : x € D} are

equi-continuous on [—K,K]. So both {Tx: x € D} and {® '(p)(Tx)' : x € D}
are equi-continuous on each finite subinterval on R.

Now, we show that both {Tx : x € D} and {®~!(p)(Tx)": x € D} are equi-

convergent at oo and —oo respectively.
Since

p()P((Tx) (1)) = Al = |7 (rx(r), X' (r))dr| < [ ua (r)dr — 0
uniformly as t — oo, we get similarly that
@7 (p(1))(Tx)' (1) = @71 (Ax)] = 0
uniformly as # — 0. In fact, for any € > 0, there exists > 0 such that |s; —

52| < p implies that [®~ " (s;) — P! (s2)| < §. So there exists 7} ¢ > 0 such that
t > T ¢ implies that |p (t)®((Tx)'(t)) — Ax| < p. Hence

@ (p())(Tx) (1) = & (4)| = [&! (p()@((Tx) (1)) ) &~} (A)] < 5
for all t > T ¢. Then

@~ (p(n)(Tx)' (1) = @7 (p(22))(T) ()| < &, 11,02 >The. (A7)
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On the other hand, we have

‘(Tx)(t)—Bx— :‘X’q)](lp ( x+/+w frx(r ))dr)d

— /t+°°c1>—1 <pgs)> o! <Ax—|—/ f(r,x(r),x’(r))dr> ds
< iwcpl <p(ls)>dsq>l</ om(r dr+c1>(”+a _ " ou(s)d >>

— 0 uniformly as t — +-oo.

Then there exists 7> ¢ > 0 such that
|(Tx)(t1) — (Tx) ()| <&, t>The. (18)

So (17) and (18) imply that both {®~!(p)(Tx)" : x € D} and {Tx : x € D} are
equiconvergent at +oo.

Similarly we can prove that both {Tx : x € D} and {®~!(p)(Tx)": x € D}
are equiconvergent at —oo. The details are omitted.

Therefore, the operator 7 : X — X is completely continuous. The proof is
complete. O

3. Main Theorems

Let X and the operator 7 on X be defined in Section 2. Denote

C - 1, g€ (1,2],
T 4072 g > 2,

1, g€ (1,2],
D1 :{ 2072 ¢ >2.

The primary inequalities are as follows:
ki +ko+ ks + ka7 < Coy([ka |77+ [k | 4 ka7 + [ka|h),  (19)

and
Ik + ko |97 < Doy ([ |77 + ko 971). (20)
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Theorem 3.1. Suppose that & > 0 and (H) holds. Then BVP(6) has at least one
solution if

o> /_ J:obl(s)ds—i—Cq_l { [qucpl ( /_ J:ob(s)ds) +g _:wbl(s)ds
v msias| (o [ e | )
+ [24%1:1 </_+ ds> 7'/+°° s)ds+ & /+°° ]
x <a—/:mb1(s)ds>}.

Proof. From Lemma 2.4, T : X — X is a completely continuous operator and x
is a solution of BVP(6) if and only if x is a fixed point of T in X.

To apply Lemma 2.2, choose p* = 0. Let A € (0,1), consider the equation
= (1—A)p*+ATx. Then

o (5t [ g0 (e [ st ).

(21)
Hence Lemma 2.4 (ii) implies that

[p ()@ (1)) +Af(t,x(1), % (1)) =0, 1€R,

. SN T /
a lim x(t) — B lim & '(p(¢))x' (1) —l_{og(s,x(s),x (s))ds, (22)

t—>—oo t—>—oo

t—>+o0 t—>+oo

y lim x(t) 48 lim ® !'(p(t))x'(t) = A th(s,x(s),x’(s))ds.
Then use (H), we get

|—‘/ ds+11mx

té “p(s)X (s)ds
<] o e e

LA J22 8(s,x(5), %' (5))ds + Blimy e @~ (p (1))’ (1)
o
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+oo
1 _ /
< / 5o e PO

teR

n S22 18(s,x(s),2/ (s))|ds + B sup,cp @ (p (1)) ¥ (1)
(04

B, 1 VS
< (a +_£ Wd) sup @~ (p (1) (1)

N J2Zlar(s) +b1(s) le(s) [ + 1 ()" (p(s)) |1/ (s)[1ds
(04

B, [ 1 : :
< (a +£ q,l(p@)ds> sup@~! (p (1) ¥ (1)

o L a(5)ds 412 by (5)ds supycg +(1)
(04
| L erdssup, e (o) 1Y ()]
o

It follows that

supla()] < ([ gt ) swpe (o))

teR teR

n S22 a(s )ds+f+°°b1( s)dssup,cg |x(1)]

f+ 1(s)dssup,cg P~ (P( ))’xl(t)’

o
Since the assumption in Theorem implies that
~+oo
o >/ bi(s)ds,
then
sup |x(1)] <
1€R
2 ei(s)d oo oo
o (Bl o b ds ) supyc @ (P ()X (0)] + [ @ ()ds

a— [ZZbi(s)ds
(23)



148 YUIJILIU - XING YUAN LIU

Now, we consider sup,.,®~'(p(¢))[x/(t)|. By Lemma 2.3, one has

o0

@ o0 =0 (4t [ st Ve

<! (2/_:00 ]f(r,x(r),x’(r))\dr
(yf_t‘: |g(rx(r), X (r))ldr+ o [ \h(r,x<r>,x'<r>>rdr>>

+®
c

<o (2 [ 7 [ats) + )21 + )@@ () (5))
(W:’|g<nx<r>,x'<r>>|dr+af+;°|h<nx<r>,x'<r>>|dr>>

+P
o

<! (z/ a(s) de/*"“ (s)dssupp () (1Y (1)])

teR

—|—2 b (s)dssup®(|x(t)])
t€R

o (wt, 50, Pl 5 |h<r,x<r>,x’<r>>dr>> |

(0

Using (18), we have

supe (o) ()] <2071, ([ atoys)

teR

+2171c, 17! </J:oc(s)ds> sup® ! (p (1) (1)]

teR

+217 ¢, 17! (/:wb(s)ds> sug |x(7)]
+oo / oo /
e, (wg 055(r), () dr + 0 12 () <r>>rdr>

o

~+oo
<217c, 17! (/ a(s)ds>

r2c, 7 ([ eas ) swpe (o))

oo

—+oo
+2171¢, 17! (/ b(s)ds) sup |x(7)|

teR
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+Co1g [ lar(s) +ou(s)|x(s)|+er(s)P (p(s)) ¥ (s)[]ds

+ 2 [ laas) +ha(6)x(5)| + ex(s) @ (p(s)I (5) s

It follows from (22) that
sup,cp @' (p (1)) ¥ (1)] < 297 Cp1 @7 (27 als)ds)

12971C, @ ([ e(s)ds) sup, @ (p (1) (1)
12071C, @7 (117 b(s)ds) sup, g ()|

G L [T ar(s)ds + Cyy LIS by(s)dssup,cg ()|
FC, 1 LT er(s)dssup,cp @ (p(0) Y (1)

Gyt [T an(s)ds + Cy 1 & [ ba(s)dssupycg 1)

+Cqm1§ 5 ca(s)dssup, g @' (p (1)) ¥ (1))

=2071C, 1 @7 ([T a(s)ds) + Cpr L [T2ar(s)ds +Cyp1 e [T ar(s)ds
+Cyo1 [297107 ([T b(s)ds) + L [T by (s)ds

+& J22 ba(s)ds] supep |x(r)]

+Cy1 297107 ([T c(s)ds) + L [T ¢ (s)ds

+& [12 ea(s)ds] sup,er @ (p (1)) (1)

<2071C, @7V ([T a(s)ds) + Cpr L [T ar(s)ds + Cy1 & [T ax(s)ds

f+ al()dv
a— [T b(s)ds

+Cor {27717 (ST b(s)ds) + L [ by (s)ds+ & [T by(s)ds] x

B+/S er(s)ds+a [12 ords e
T 2 e ([T e(s)ds)

+ 22D ei(s)ds + & J2Z ea(s)ds} sup,ep @7 (p (1)) (1))
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It follows that
(0= [7Z b1(s)ds) sup,cg @' (p(2))[x'(¢)]

< [2971C, @7 (ST a(s)ds) +Cyr L [T ai(s)ds

e (s)ds o0
+Cy13 jofaz(s)ds—f—%} (a— [T2bi(s)ds)

+Co1 {[297 @7 (S22 b(s)ds) + L [T b1 (s)ds+ & [72 by(s)ds] x
(B+ 1T c(s)ds + [ ol
+ [2”_1@_1 (fj:c(s)ds) —|—%fj: c1(s)ds+ %fi: cz(s)ds] X

(a— 22 bi(s)ds) } sup,cg @' (p (1)) X' (1))-

This inequality in Theorem and (22) imply that there exists a constant My > 0
such that

||x|| = max {sup lx(¢)], sup® ! (p (t))x’(t)\} < M. (24)
teR teER

It follows that (24) holds for all x € X satisfying x = (1 — A)p* + ATx with

A €(0,1).

Choose U = {x€ X : ||x|]| < Mp+ 1} and C = U. Taking p* = 0 in Lemma
2.2, forany x € dU, x = (1 —A)p* + ATx (0 < A < 1) does not hold. Thus
Lemma 2.2 implies that the operator 7" has at least one fixed point in U. So
BVP(6) has at least one solution. The proof is complete. O

Theorem 3.2. Suppose that y > 0 and (H) holds. Then BVP(6) has at least one
solution if

Y> [T2bo(s)ds+Cyy { 2771071 ([T b(s)ds) + L [T by (s)ds

+2 [ ba(s)ds] (84 [ er(s)ds +7 [ gy ds)

+ 29717 ([XT e(s)ds) + L [T er(s)ds + & 1T ea(s)ds] x

(y— [t bz(s)ds) }

Proof. Similar to the proof of Theorem 3.1, we see that



EXISTENCE OF SOLUTIONS TO INTEGRAL TYPE BVPs 151

x(1)] = |limy— e x(t) — [ (s)ds)|

<1 @ P )X (s)ds|

A I h(sx(s) X (5))ds—81lim,_, o D (p(£))x (1)
Y

*]

< 22 e dssuper @ (P (1)) (1)]

J2Z (s x(s).X' (5))ds+8 sup,cp @' (P ()Y (1)]
Y

< ($+ +<:<1> I ())ds> sup,cr @ (p (1)) (1)]

_|_

J2Z a2 () +ba (5)[x(s) [ +c2 ()" (P (5)) I (5) [} ds

+ Y

g(%* e T ow) (())ds)sup,eR<I> (p(1)) ¥ (2)]

+.ff (8)ds+ /" ba(s)dssup,cp (1) [+ /15 ca(s)ds sup,cr @~ (p (1) | (1)]
¥ .

It follows that
supyc [¥(1)| < (&4 [ g yds ) sup,cg @ (p (1) ¥ (1)

+ J22Z ax(s)ds+ ]2 ba(s)dssup,cg [x(0) [+ /"5 ca(s)dssup,ep @ (p (1)) 1Y (1)
¥ .

Hence

+m(.‘ s)ds
(P s s ® OO T (o)
SUP;cr |)C(t)| < y— f+ by(s)ds .

(25)
The remainder of the proof is similar to that of the proof of Theorem 3.1 and is
omitted. The proof is complete. O

Corollary 3.3. Suppose that o0 >0, f,g,h are Carathéodory functions and there
exists r > 0 such that

J et <3 o 38 )]
[ (. P T Sy A
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~+oo
<P
- <3X2q qu1< +/ b

where x,y € [—ry,r1]. Then BVP(6) has at least one solution lf

B[t 1
&+[W WdSZI

Proof. From Lemma 2.4, T : X — X is a completely continuous operator. Now

we define U = {x € PX : ||x|| < r1}. Forany x € dU, ||x|| = r;. So
sup x(1)| < ri, sup®@~ (p (1) X' (1)] < 1.
teR

teR

By the assumptions, using Lemma 2.3 and (20), we have

sup |(7x)(1)]
teR

= sup
teR

t 1
B &1 (p(s)

- (Ax+ :w f(r,x(r),x'(r))dr> ds

< J22 Ng(rx(r),x' (1) dr + B |71 (Ax + [25 frx(r), 2 (r

(04

e [T st 0)ar ) as

< fi‘ffIg(mC(r)»X/(f))|d'”Jr ([3+ te ] )

ot ) e ®) "

(04
@t (2] I )l
o (vf*:: e(at) )lr + of's |h<r,x<r>,x/<r>>|dr>>

< [T 1g(rx(r), X' (r)|dr N <[3+ o0 1 )

o

20,007 ([ It
Y8,

ot e ™)

iar)+ (B4 [ s

X (r)|dr+ o 23 |h(r,x(r), ' (r)|dr

X Dq—l

(o

) ).

(26)

)

2o, (B [ q,ld) ot ([Tt K lar)

~+oo
D
+{+q1<+/¢ S

o
+Dq7]* <ﬁ+
o\« —
r ri r

)] /+m|g(rvx(r)7x’(r))|dr

@ <p< ))"s) /:o"’(”( ), (r))dr
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Furthermore, use (26), we get similarly that

supe (p(0)|(T2) ()] =suplo (4t [ 7). ()ar) |

teR teR

<297'Dg 1 @7 ([Z7 1 f (rx(r) X' (r) ldr)

o0 ’ oo /
( 4t - 1 ds) YLN |g(rx(r) x (r))\a'r;t%.ll°° [(rx(r) ¥ (r))|dr

=207y (B [ gy ds) @7 (S22 11 (60, (1) )
5D E (B2 gy ds) | 112 18r(r) 2 (1)

D12 (B J22 Gorbsyds) [ 1h(r (), (1)l

<3+3+3=n.

Choose p* =0, U ={x € X :||x|| <r 4+ 1} and C=U. It is easy to see that
||Tx|| < ||x|| for all x € dU. Similarly as the process in Theorem 3.1, the result
follows. The proof is complete. O

Corollary 3.4. Suppose that o. > 0, f,g,h are Carathéodory functions and

max, ye[—d,d] SUP;er fj:f (Sv 7m )dt

li =0
d—1>IJIrloo dr—1 ’
~ o MaXyyel-d,d] fj:g (taxv W)O dt
lim =0,
d—s+oo d
o MaXyyel—d,q] fj:h (taxv m)o dt
lim =0.
d—s+oo d
Then BVP(6) has at least one solution if (26) holds.

Proof. Let
* 11 -
€ :mm{3[a+ ( +f°o¢l ds)} ,

1 B +oo !
o6 (6 s ds)

-1
1 B +oo 1
® (M“Dql (6 RS ¢*'<p<s>>ds) )}
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Then, there exists » > 0, such that

12 (ton gty ) i <3 [L Dyt £ (B 12 geetys) ]
P20 () < i & (842 )

Foo B oo 1 !
121 (65 s o) d’“’(m‘f s (6 S sl ) >

By Corollary 3.3, BVP(6) has at least one solution. The proof is complete. []

The proofs of the following two corollaries are similar to those of Corollar-
ies 3.3 and 3.4 and the details are omitted.

Corollary 3.5. Suppose that y > 0, f,g,h are Carathéodory functions and there
exists ri > 0 such that

-1
+oo 1 r 1
f—oog(tuxamy) dt <3 [77+Dq—1%< +22 = 1(p )ds)] )
1

oo S _n_o (Bt
.Lwh(“%¢4mmﬂodt§3dqy<a+' e ((”dQ ’

2 (» 7q>1(p()))’>dt<q)<3X2q1D1 (%-1— _JZOMds)l),

where x,y € [—r1,r1]. Then BVP(6) has at least one solution if

—+oo
7+/ - dﬁﬂ. Q7)
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Proof. By the assumptions, use Lemma 2.3 and (20), we have

sup,eg | (TX)(1)] =

U ci [B+ [ gy ® 1 (At [ £ralr) 2 (1) dr) ds|

< [t \h(m(r),x/(z)y) |dr+58]| @1 (A,)]

= lp(s))CI)_1 (Ac+ 7 f(rx(r), X (r))dr) ds
<200 (8 22 Gy ds ) @7 (7S [ (rx(r) 2 (1))
54D & (S 4+ 122 sy ds) | 2 1), ¢ (1)l
D1 L (B4 172 gy ds) 72 le(ralr) X (1) dr

r r ro__
<Ft+3+F=r.
The remainder of the proof is omitted. O

Corollary 3.6. Suppose that v > 0, f,h,h are Carathéodory functions and

. maxy ye[—d,d) SUPrer fj: f (W%m}’) dt
llmd*%koo dpf] =Y,

oo 1
. maxy ye(—q.q [ o &\ 1%z~ ¥ ) dt
llmd_>+oo * d< @~ (p(r) ) =0,

=0.

1
. max | dd]j S h(txX,——y)dt
llmdﬁJ,»oo d< @ (p(1) )

Then BVP(6) has at least one solution if (27) holds.
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