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UNIVALENT HARMONIC FUNCTIONS DEFINED BY
SALAGEAN INTEGRAL OPERATOR WITH RESPECT TO
SYMMETRIC POINTS

MOHAMED K. AOUF - RABHA M. EL-ASHWAH
ALI SHAMANDY - SHEZA M. EL-DEEB

In this paper, we define and investigate a subclass of univalent har-
monic functions defined by Salagean integral operator with respect to
symmetric points. We obtain coefficient conditions, extreme points, dis-
tortion bounds, convex combinations for this family of harmonic univalent
functions.

1. Introduction

A continuous complex-valued function f = u+iv defined in a simply-connected
complex domain D is said to be harmonic in D if both u# and v are real harmonic
in D. In any simply-connected domain we can write

f=h+g, (1)

where h and g are analytic in D. We call & the analytic part and g the co-analytic
part of f. A necessary and sufficient condition for f to be locally univalent and
sense-preserving in D is that |k (z)| > |g'(z)] in D (see [3]).

Denote by Sy the class of functions f of the form (1) that are harmonic
univalent and sense-preserving in the unit disc U = {z: |z| < 1} for which
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f(0) = £.(0) =1 =0. Then for f =h+g € Sy we may express the analytic
functions & and g as

h(z) =z+ Zakzk, g(z) = Zbkzk, |by| < 1. 2)
k=2 =1

In 1984 Clunie and Shell-Small [6] investigated the class Sy as well as its
geometric subclasses and obtained some coefficient bounds. Since then, there
have been several related papers on Sy and its subclasses.

For f = h+g given by (2), we define the modified integral Salagean operator
of f as

I"f(z) =I"h(z) + (—1)"I"g(z) (me Ng =NU{0}, N={1,2,...}), (3)

where

I"h(z) =z+ Z k™" ay 2* and I"g(z) = Z k" by -
k=2 k=1
The integral operator I was introduced by Salagean [10](see also [2], [3] and
[7D.

Definition 1.1. For 0 < a < 1, m € Ny and z = re® € U, let SH,(m; &) denote
the family of harmonic functions f of the form 2 such that

2I" f(z)
Re{ ) —I’"“f(—Z)} > @

where [ f is defined by (3).
We denote by SH,(m; o) the subclasses of harmonic functions f,, = h+g,,
in SH,(m; &) such that i and g,, are of the form

hz)=z-Y ad, gu(z) = ()" Y b2, |b1] < 1. (5)
k=2 k=1

Remark 1.2. If the co-analytic part of f = h+ 3 is zero, then SH,(—1; ) turns
out to be the class S} () of starlike functions with respect to symmetric points
which was introduced by Sakaguchi [9]. Also, SHy(—2, @) turns out to be the
class K;(cot) of convex functions with respect to symmetric points which was
introduced by Das and Singh [8].

Also, we note that SHy(—n— 1, ) = SHy(n, ) and SHy(—n—1, &) = SH,(n, o)
(n € Ny), which were studied by AL-Khal and Al-Kharsani [1].

In this paper, we extend the above results to the classes SH(m; o) and
SH,(m;a). We also obtain coefficient conditions, extreme points, distortion
bounds, convolution conditions and convex combinations for SH,(m; @).
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2. Coefficient characterization

Unless otherwise mentioned, we assume throughout this paper that m € Ny,
a; =1and 0 < a < 1. We begin with a sufficient condition for functions in the
class SH;(m; o).

Theorem 2.1. Let f = h+g be such that h and g are given by (2). Furthermore,
let

y {(2k_ D" 2k — 1 — ) |agei |+ (26) " ]
k=1
(2= 1) k= 14 @) b+ (26) " b f <2(1- ). (6)

Then f is sense-preserving, harmonic univalent in U and f € SHy(m; ).

Proof. Note that f is sense-preserving in U. Now we show that f € SH(m; t).
We only need to show that if (6) holds then the condition (4) is satisfied.

Using the fact that Rew > « if and only if |1 —a+w| > |1+ o —w|, it
suffices to show that

20" f(2) + (1 =) (1" f () = 1" (=)
—[21"f (@) = AL+ o)1 f(2) = 1" f(=2)]| >0 (D)
Substituting for I f(z) and I""*! f(z) in (7) yields, by using (6) and 0 < o < 1,

we obtain

22— a)z+ i fm=1 [2k+ (1—a)(1— (—1)’6)} a2
k=2

=1y i fm=1 [2k— (1—a)(1— (—1)")] bzt
k=1

—20z+ i kot {Zk— (I+a)(l— (—l)k)] arZ*
k=2

S Y 2k () (1 ()Y B
k=1

22-a)z+2Y) {(2k —2) May %2
k=2

FRk—1) " 2k 1—at 1]a2k,1z2k*1} -
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™ty {(2k)‘”’b2kz2'<+ 2k—1)"""2k—1+a—1] b2k1z2k1}|
k=1

—20z+2Y {(Zk— 2) " agy 22
k=2
S k=1 2k 1o 1]a2k,1z2k*1} -

'"+1Z{ (2k) " b2 + (2k — 1) ml[zk—1+a+1]b2k_1z2kl}|

o)lz| - 42{ (2k —2) ™" az o [2*
F k=1 k-1 — o] jazei| IZI”H}

Z{ 2k m‘b HZ’Zk ( 1)—m—1 [2k—1+a”b2k71|‘Z’2k71}

oo

>4(1—a)—4 [Z {(2/(—2)”” lasi_a] + (2k— 1) 2k —1— ] yaZk_1|}
k=2

+ i {(2k)’”’ lbog| + 2k — 1) 2k — 1+ @] bekl\}] .
k=1

This last expression is non-negative by (6).
The harmonic univalent functions

flz) =z+
> 11—«
- " x ZQk 2+ X, ZQk—]
Z_:{ 2k o) H2 k- 1) " T 2h—1—a)

X |-« I
+ —n Y2k + Yo 224715, (8)
,;{(Zk) S k) N2k — 1)

where Y (\ng 2|+ [ Xok—1]) + Z (|Yak] + |Yax—1|) = 1, show that the coeffi-

cient bound given by (6) is sharp The functions of the form (8) are in SH;(m; o)
because

o —m—1
Z{ (2k — 2) ‘02k72|+(2k71) (2k1a)’a2kl‘}

l-o

—m—1
+Z{ |b2k| (2k_1) (Zk_1+a) ’b2kl‘}

1-«a
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oo

=Y (Xl + X1+ Y (Yarl + [Yaea ) = 1.
k=2

This completes the proof. OJ

Putting m = —n—1 (n € Np) in Theorem 2.1, we obtain the following corol-
lary, correcting the results obtained by AL-Khal and Al-Kharsani [1, Theorem
2.1].

Corollary 2.2. Let f = h-+g with h and g given by (2). Furthermore, let

Z{zk_1 (2k —1— &) |aze_1| + (2k)" " ]
2k —1)" (2k — 1+ ) |bog_1| + (2k)"F! \b2k|} <2(1-a).

Then f is sense-preserving, harmonic univalent in U and f € SH,(n, o).

In the following theorem, it is shown that the condition (6) is also necessary
for functions f;, = h+g,,, where h and g,, are of the form (5).

Theorem 2.3. Let f,, = h+g,, be such that h and g,, are given by (5). Then
fm € STHS(m, o) if and only if

y {(Zk)”" lang] + 2k — 1) (2k — 1 — ) |ases| + (2k) "™ |b]
k=1
FRk—1) " 2k -1+ ) |b2k_1|} <2(1—a). (9)

Proof. Since SH(m; ) C SHy(m; &), we only need to prove the “only if” part
of the theorem. To this end, for functions f;, of the form (5), we notice that the

. 21" fin(2)
condition Re
{Im+1fm(z) 7Im+1fm(7z)

} > o is equivalent to

2(1-a)z— ¥,k [2k—a(1—(—1)})]ark = (— 120D k= ka1 (— 1)) F
Re k=2 - k=1 S > 0

2= ¥k (1= (=) )+ (120§ ko (1= (<)) b
k=2 k=1

which implies that

(1-a)z— ¥ {(2k72)_ma2k_212k_2+ (2k—1)"""2k—1—a] azk_lsz_l}
k=2

-y (2k—1)7n171a2k71Z2k7]+(—1) (m+1) Z( —1)” m*1b2k71Z2k71
k=2 k=1

Re
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(=020 ¥ {(20) " b (k= 1) 2k~ 1+ o by 21|
k=1
— >0

o

— ¥ (2k=1)"  ag 1 2 4 (=120 Y (2k— 1) gy 24
k=2 k=1

(10)

The above required condition (10) must hold for all values of z in U. Upon

choosing the values of z on the positive real axis where 0 < z =r < 1, we must
have

(1) = ¥ {(2k=2) " an o3+ (2k— 1) 7" 2~ 1 — o a1 2}
k=2

=3

1— Y (2k—1)" ay_r2k2+ f (2k — 1) by k2
k=2 k=1

an

y {(21()*’” by 4 (2k— 1) 2k — 1+ o] by rZH}
k=1
> 0.

_kzz (Zk— l)fmfl a2k_1r2k72 _|_k2 (Zk— 1)*)7171 ka—l r2k72
= =1

If the condition (9) does not hold, then the numerator in (11) is negative for r
sufficiently close to 1. Hence there exists zo = r¢ in (0, 1) for which the quotient
in (11) is negative. This contradicts the required condition for f,, € SHy(m; )
and so the proof of Theorem 2 is completed. O

Putting m = —n— 1 (n € Np) in Theorem 2, we obtain the following corol-
lary, correcting the result obtained by AL-Khal and Al-Kharsani [1, Theorem
2.2].

Corollary 2.4. Let f;, = h+3, be given by (5). Then f, € SHy(n, Q) if and only
if
Z { (2k —1)" (2k — 1 — ) |az_1] + (26)" " |ax]

F(2k—1)" (2k—1+a) |byi| + (2k)""! |b2k|} <2(1—a).

3. Extreme points and distortion theorem

Our next theorem is on the extreme points of convex hulls of SH;(m; &) denoted
by clco SH(m; @).
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Theorem 3.1. Let f,, = h+g,, be such that h and g, are given by (5). Then
fn € SHy(m; &) if and only if

= Y [(Xak—1 hoi—1(2) + Xox hor(2)) + (Yar—18my, () + Yougmay (2)) ]

k=1 )
where hi(z) =z,
1—a
hop1(2) = 7 — 21 (k> 2),
1l Qk—1)""2%k—-1-a) (k=2)
1—a _
hok-2(2) ZZ—WZZk : (k>12),
and
-«
my 1 (2) =2+ (=1)" 2= (k>1),
g 2k—]( ) ( ) (Zk—l)imil (Zk_1+a) ( )
m =0 o
gmy(2) =2+ (—1) T —m< (k>1),

(2k)
X >0,Y%>0, Y (Xpe 1+ X +Yo 1 +Yy)=1.
=

In particular; the extreme points of SHy(m; o) are {hy—_1}, {hoa—2}, {8my_, }
and {gm,, }-

Proof. For functions f, of the form (12), we have

fm(2)

> 11—« 2%k—2 l-—a 2k—1
=z— Xy 27 Xok_12
,;2{(21(—2) m k2 2k—1) " T 2k—1—a)
- 11—« 11—«
F(ED"Y ] e Y1260
(=1) ,;{ak) T k) N 2k ta)

+(2k—1)””1’_1((12k_1_a) ((2k 1),;11 z X2k71)}
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+1; { (%k_);m <(21’596m Y2k> + (2k—1)””1’_‘&2k—1+a)' ((2k71)”"1;a2k71+a) Yz}‘*l)}

:Z(XZk—2+X2k 1 Z Yor+Yu-1)=1-X; <1
=2 !

and so f;, € SH;(m; ot).
Conversely, if f,, € clco SHy(m; ). Setting

2k—1)""12%k-1-a 2k—2)""
Xoj—1 = ( ) ( axk—1, Xok—2 = ( ) axy (k> 2),
-« 1—
and
2k—1)"""" 2k —1+a) (2k)™™
Yor_1 = bok—1, Yoo = by (k>1).
241 - 21, Yok = b (k2 1)
We obtain
fn(2) =Y [(Xok—1 har—1(2) + Xox har(2)) + (Yak—18ma, (2) 4 Yougmy (2)) ]
k=1
as required. O

The following theorem gives the distortion bounds for functions in the class
SH,(m; @) which yields a covering result for this class.

Theorem 3.2. Let f,, = h+g,, be such that h and g,, are given by (5) be in the
class SHy(m; @). Then for |z| = r < 1 we have

1 l-a 1+a
)l < (D e {5 = 5 % 1l b,

and

1 1— 1
D T 1] 1

Proof. We only prove the right-hand inequality. The proof for the left-hand
inequality is similar and will be omitted. Let f,,(z) € SH;(m;a). Taking the
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absolute value of f;;, we have

Un(@)] < (14 |b1|>r+ki<|ak| T el

< (1 [or))r+ 72 Y (lax] + [ok])

k=2
(l1—a) & 27
= (1ol + 5 Y (al + )
k=2

1 l-a 1+«
< Wbt o |52 5 ]|

The bounds given in Theorem 3.2 for functions f,, = h+ g, of form (5) also
hold for functions of the form (2) if the coefficient condition (6) is satisfied.
The upper bound given for f,, € SHy(m; ) is sharp and the equality occurs for
the functions

1 l-a 1+«
fnz) =z+b17+ [ — bl] z,

2-m—1 2 2
and . . .
B _ —a l+a, ],
fm(z) =z—b1Z 2_m_1[ 5 7 b1]z
show that the bounds given in Theorem 3.2 are sharp. O

The following covering result follows from the left hand inequality in The-
orem 3.2.

Corollary 3.3. Let the functions f,, defined by (5) belong to the class SH(m; @0).

Then s N

M_lta 2"—l+a
)

ww| <

4. Convolution and convex combination

For our next theorem, we need to define the convolution of two harmonic func-
tions. For harmonic functions of the form:

fn(2) —Z—Zakz—i- Zbkz,yb]y<1 (13)

and

Fu(2) —z—ZAkz +( ZBkz (Ag > 0; B, > 0) (14)
k=2 k=1
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we define the convolution of two harmonic functions f;, and F, as

(fin % Fn)(2) = fin(2) * Fn(2) —Z*ZakAkZ +(— Z Bz (15)

Using this definition, we show that the class SH;(m; @) is closed under convo-
lution.

Theorem 4.1. For 0 < f < a < 1, let f,, € SHy(m;) and F,, € SH(m; 3).
Then fy, * Fy, € SHy(m; o) C SHy(m; B).

Proof. Let the function f;,(z) defined by (13) be in the class SH,(m; o) and let
the function F,,(z) defined by (14) be in the class SH,(m; 8). Then the convolu-
tion f, * Fy, is given by (15). We wish to show that the coefficients of f, * F,
satisfy the required condition given in Theorem 2.3. For F,, € SH,(m;3) we
note that 0 < A; <1 and 0 < By < 1. Now, for the convolution function f,, * F,
we obtain

- _ —m—1
)y {(Zk_z) laok—2| Aok + (2k-1) Gk=1-Pp) !azk—l\AZk_l}

k=2 B 1-B
oo —m—1
+Z{ \b2k132k+(2k_1) 1_(gk_l+ﬂ) |b2k—1|32k—1}
k=1
oo —m—1
< Z 2k 2 ’Clzk—z‘+ (2k—1) (2k—1-B) P
k=2 1-B
= (2k—1)""""(2k—1+B)
b by
+1§1{1 |bok| + 1—B |bak 1|}
) —m—1
. Z{ (2k—2)" ’azk—2‘+(2k_1) 1 (2k—1—a) ’a%l}
k=2 —a

-«

oo — —m—1
Z{ ‘bm k—1)""" 2k—1+a) \b2k1!}§1

since 0 < B < a <1 and f,, € SHy(m; ). Therefore f,, * F,, € SHy(m; o) C
SH,(m; B). O

Now, we show that the class SH,(m; o) is closed under convex combinations
of its members.

Theorem 4.2. The class SHy(m; &) is closed under convex combination.
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Proof. Fori=1,2,..., let f,,, € SHy(m; ), where f,, is given by
Jmi(2) =z— Z akizk+ (_])m Z bkizk(|bli| <l;ze U)'
k=2 k=1

Then by using Theorem 2.3, we have

= [ (2k—2)™"™ 2%k—1)" 2% —-1-a
Z {(l—o)c |ai,2k—2| + ( ) ( ) ’ai,Zk—1|}

-«

> )" 2%—-1)""" (2%k-1+a
Z { |biok| + ( ) 1—(oc ) |bi,2k—l|} <1l (6

For ) t;=1,0 <¢; <1, the convex combination of f,,,, may be written as
i=1

t: | by )2 (17)

itifmi(z)zz_z (Z” |a"|>z +(=D" i
i=1 k=1

k=2

nMg

Then, by using (16), we have

i{ (2k—2) (Zf, |@i 2k 2|>
2
—m—1

L2k 1(2k (Z i i 1\>}

+Z{ —m <it |bi72k’>
i=1

k=D "2k—1+2) (&
+ - (l; i \bz,2k1\> }

0 o —m —m—1
- Z ki [Z {(2161__20)6 |ajpk—a| + k1) @k—1-a) \ai,zkll}

k=2 -«

—m —m—1
{(lzk)a bl + 2k—1)"" 2%k —1+a) Ib,;zml}]

11—«

this is the condition required by (9) and so ): tifm;(z) € SHy(m; @). This com-
Pt}

pletes the proof of Theorem 6. O
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5. Properties of an integral operator

Finally, we study properties of an integral operator.

Theorem 5.1. Let the functions f,,(z) defined by (5) be in the class SHy(m; o)
and let ¢ be a real number such that ¢ > —1. Then the function F,,(z) defined by

R = L [ g 18)

ZC
0
belongs to the class SHy(m; Q).

Proof. From the representation of F,,(z), it follows that

Folz) = < /Ztc-‘ {h(t) +gm(t)}dt

7€
0

Z Z
c+1 / 1 —
= =Y at” ) de+( 1’"/t0*1 btk | dt
£ (fr (Bt s cor [ (£

0 k=1

Z
_C+1 L+k1 - / dk—1
= /t dt — Z / dt+ (— ; retk=1gy
—Z—ZAkZ +(-1) ZBkz,

1
where A, = et ag, By =
c

ﬂ " k . Therefore

y {(Zk— 2) " Aggn + (2k— 1) (2k—1— oc)AZk_l}
k=2

+ i {(2k)7m32k +(k—1)" 2k -1+ O‘)sz—l}
k=1
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oo

= Y {2k =2)" (G50) az

k=2
k=1 k= 1= @) () x|

+ Y {07 (S5 b+ (k= 1) k= 1) (555 bt |
k=1

oo

<y {(2k—2)‘ma2k,2+ k—1)"" 2k —1— a)az,H}
f—

[\

oo

+Yy {(2k)’mb2k+ k—1)"" 2k 1 +oc)b2k_1} <1-o
k=1

Since f,,(z) € SH(m; ), therefore by Theorem 2.3 F,,(z) € SH,(m; ). O

Remark 5.2. Puttingm = —n—1 (n € Ny) in Theorems 3.1, 3.2, 4.1, 4.2 and
5.1, we obtain the results obtained by AL-Khal and Al-Kharsani [1] in Theorems

2.7,

2.3,2.5, 2.6, and 2.8, respectively.
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