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ON THE SOLUTIONS OF FRACTIONAL
REACTION-DIFFUSION EQUATIONS

JAGDEV SINGH - DEVENDRA KUMAR - SUSHILA RATHORE

In this paper, we obtain the solution of a fractional reaction-diffusion
equation associated with the generalized Riemann-Liouville fractional
derivative as the time derivative and Riesz-Feller fractional derivative as
the space-derivative. The results are derived by the application of the
Laplace and Fourier transforms in compact and elegant form in terms of
Mittag-Leffler function and H-function. The results obtained here are of
general nature and include the results investigated earlier by many au-
thors.

1. Introduction

Fractional calculus is a field of applied mathematics that deals with derivatives
and integrals of arbitrary orders. In recent years, it has turned out that many
phenomena in engineering, physics, chemistry and other sciences can be de-
scribed very successfully by models using mathematical tools from fractional
calculus. For example, the nonlinear oscillation of earthquake can be modeled
with fractional derivatives and the fluid-dynamic traffic model with fractional
derivatives can eliminate the deficiency arising from the assumption of con-
tinuum traffic flow. Fractional derivatives are also used in modeling of many
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chemical processes, mathematical biology and many other problems in physics
and engineering. These findings invoked the growing interest of studies of the
fractional calculus in various fields such as physics, chemistry and engineering.
Fractional reaction-diffusion models are studied due to their usefulness and im-
portance in many areas of science and engineering. The reaction-diffusion equa-
tions arise naturally as description models of many evolution problems in the
real world, as in chemistry [25,27], biology [18], etc. As is well known, com-
plex behavior is peculiarity of systems modeled by reaction-diffusion equations
and the Belousov-Zhabotinskii reaction [17,28] provides a classic example. The
reaction-diffusion equations describes a population of diploid individuals (i.e.,
the ones that carry two genes) distributed in a two-dimensional habitat. The self-
organization phenomena are mainly modeled on the base of nonlinear reaction-
diffusion systems. At the same time, a separate non-uniform linear equation
of reaction-diffusion (considered in the manuscript) also represents a scientific
interest and has important applications in different area of science. General
models for reaction-diffusion systems are investigated in [5,6,8,14,15] and oth-
ers.
In the present article, we investigate the solution of a unified fractional reaction-
diffusion equation associated with the generalized Riemann-Liouville fractional
derivative and the Riesz-Feller derivative. This new model provides the exten-
sions of the models discussed by Mainardi et al. [12], Haubold et al. [9,10] and
Saxena et al. [22-24].
The right-sided Riemann-Liouville fractional integral of order α is defined by
Miller and Ross [16, p.45], Samko et al. [20]:

RL
a D−α

t f(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1 f(τ)dτ, (t > a) (1)

where Re(α) > 0.
The right-sided Riemann-Liouville fractional derivative of order α is defined as

RL
a Dα

t f(t) =

(
d
dt

)n

(In−α
a f(t)) (Re(α) > 0, n = [Re(α)] +1), (2)

where [α] represents the integer part of the number α .
By denoting the Laplace transform of a sufficiently well-behaved (generalized)
function f (t), f̄(s) = L{ f (t);s} =

∫
∞

0 e−st f (t)dt, Re(s) > 0, the Caputo time-
fractional derivative of order α (m−1 < α ≤ m,m ∈ N) turns out to be defined
through

L {C
0 Dα

t f(t); s} = sα f̄(s) −
m−1

∑
r=0

sα−1−r f(r)( 0+), m−1 < α ≤ m. (3)
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This leads to define, see e.g. [7,19],

C
0 Dα

t f(t) =

{
1

Γ(m−α)

∫ t

0

f(m)(τ) dτ

(t−τ)α+1−m , m−1 < α < m
dm

dtm f(t), α = m.
(4)

The generalization of the Riemann-Liouville fractional derivative operator (2)
and Caputo fractional derivative operator (4) is made by Hilfer [11], by intro-
ducing a right-sided fractional derivative operator of two parameters of order α

(0 < α < 1) and type β (0 ≤ β ≤ 1) in the form

0Dα,β
a+ f(t) =

(
Iβ (1−α)
a+

d
dt
(I(1−β )(1−α)

a+ f(t))
)
, (5)

It is interesting to observe that for β = 0, (5) reduces to the classical Riemann-
Liouville fractional derivative operator (2). On the other hand, for β = 1 it yields
the Caputo fractional derivative operator defined by (4). The Laplace transform
formula for this operator is given by Hilfer [11]

L {0Dα,β
0+ f(t) ; s} = sα f̄(s) − sβ (α−1) I(1−β )(1−α)

0+ f(0+), (0 < α < 1), (6)

where the initial value term I(1−β )(1−α)
0+ f(0+), involves the Riemann-Liouville

fractional integral operator of order (1−β ) (1−α) evaluated in the limit as t
→ 0+. This derivative is also called the Hilfer fractional derivative. For more
details and properties of this operator see Tomovski et al. [26].
Following Feller [3,4], it is conventional to define the Riesz-Feller space-frac-
tional derivative of order α and skewness θ in terms of its Fourier transform
as

F {xD
α

θ f(x) ; k} = − ψ
θ
α (k) f∗(k) , (7)

where

ψ
θ
α (k) = | k |α exp

[
i (signk)

θπ

2

]
, 0 < α ≤ 2, |θ | ≤ min {α,2−α}.

2. Fractional reaction-diffusion equation

In this section, we will investigate the solution of the fractional reaction-diffu-
sion equation (8). This system is a generalized form of the reaction-diffusion
equation recently studied by Manne et al. [13]. The result is given in the form
of the following Theorem.
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Theorem 2.1. Consider the fractional reaction-diffusion equation associated
with the generalized Riemann-Liouville fractional derivative and Riesz-Feller
fractional derivative in the form

0Dα,β
t N(x, t) = η xDγ

θ
N(x, t) + φ(x, t), (8)

where η , t > 0, x ∈ R; γ,θ ,α,β are real parameters with the conditions 0 <
γ ≤ 2, |θ | ≤min (γ,2− γ), 0 < α ≤ 1, 0 < β ≤ 1 and the initial conditions

I(1−β )(1−α)
0+ N (x,0+) = f(x) ; for x ∈ R, lim

|x | →±∞

N (x, t) = 0, t > 0, (9)

η is diffusion constant, φ (x,t) is a nonlinear function belonging to the area of
reaction-diffusion, 0Dα,β

t is the generalized Riemann-Liouville fractional de-
rivative operator, defined by (5), I(1−β )(1−α)

0+ N(x,0+), involves the Riemann-
Liouville fractional integral operator of order (1−β )(1−α) evaluated in the
limit as t→ 0+. Then for the solution of (8), subject to the above constraints,
there holds the formula

N (x, t) =
1

2π

∫ ∞

−∞

f∗(k)tα−β (α−1)−1Eα,α−β (α−1)[−η ψ
θ
γ (k)t

α ] exp(− ikx)dk

+
1

2π

∫ t

0

uα−1du
∫ ∞

−∞

φ
∗(k, t−u) E

α,α [−η ψ
θ
γ (k)u

α ] exp (− ikx) dk. (10)

In equation (10) and following, Eα,β (z) denotes the generalized Mittag-Leffler
function [1,2,21].

Proof. Applying the Laplace transform with respect to the time variable t and
using the initial conditions (9), we find that

sαN̄(x,s)− sβ (α−1) f(x) = η xDγ

θ
N̄(x,s) + φ̄(x,s). (11)

If we apply the Fourier transform with respect to space variable x and use the
formula (7), it yields

sαN̄∗(k,s)− sβ (α−1)f∗(k) =−η ψ
θ
γ (k) N̄∗(k,s) + φ̄

∗(k,s). (12)

Solving for N̄∗(k,s), it gives

N̄∗(k,s) =
f∗(k) sβ (α−1)

sα + η ψθ
γ (k)

+
φ̄ ∗(k,s)

sα +η ψθ
γ (k)

. (13)

If we take the inverse Laplace transform of (13) and apply the formula

L−1

[
sβ−1

sα +a
; t

]
= tα−β Eα,α−β+1 (−a tα), (14)
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where Re (s)> 0, Re (α−β +1)> 0, it is seen that

N∗(k, t) = f∗(k) tα−β (α−1)−1E
α,α−β (α−1)[−η ψ

θ
γ (k) tα ]

+
∫ t

0

φ
∗(k, t−u) uα−1 Eα,α [−η ψ

θ
γ (k)u

α ]du. (15)

Finally, the required solution (10) is obtained by taking inverse Fourier trans-
form of (15).

3. Special Cases

If we set β = 0, then the Hilfer fractional derivative (5) reduces to a Riemann-
Liouville fractional derivative (2) and the theorem yields the following result
derived by Haubold et al. [10].

Corollary 3.1. Consider the fractional reaction-diffusion model

RL
0 Dα

t N(x, t) = η xDγ

θ
N(x, t) + φ(x, t), (16)

where η , t > 0, x ∈ R; γ,θ ,α are real parameters with the constraints 0 <
γ ≤ 2, |θ | ≤ min (γ,2− γ), 0 < α ≤ 1, and the initial conditions

RL
0 Dα−1

t N (x,0) = f(x) ; for x ∈ R, lim
|x | →±∞

N (x, t) = 0, t > 0, (17)

where RL
0 Dα

t is the Riemann-Liouville fractional derivative operator of order α

defined by (2), [RL
0 Dα−1

t u(x,0)] means the Riemann-Liouville fractional partial
derivative of u(x,t) with respect to t of order α−1 evaluated at t = 0, η is a
diffusion constant and φ (x,t) is a nonlinear function belonging to the area of
reaction-diffusion. Then the solution of (16), subject to the above initial condi-
tions, is given by

N (x, t) =
1

2π

∫ ∞

−∞

f∗(k)tα−1Eα,α [−η ψ
θ
γ (k)t

α ] exp(− ikx)dk

+
1

2π

∫ t

0

uα−1du
∫ ∞

−∞

φ
∗(k, t−u) E

α,α [−η ψ
θ
γ (k)u

α ] exp (− ikx) dk. (18)

If we take β = 1, then the Hilfer fractional derivative (5) reduces to a Caputo
fractional derivative operator (4) and it yields the following result which is the
similar result as derived by Haubold et al. [9].
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Corollary 3.2. Consider the fractional reaction-diffusion model

C
0 Dα

t N(x, t) = η xDγ

θ
N(x, t) + φ(x, t), (19)

where η , t > 0, x ∈ R; γ,θ ,α are real parameters with the constraints 0 <
γ ≤ 2, |θ | ≤ min (γ,2− γ), 0 < α ≤ 1, and the initial conditions

N (x,0) = f(x) ; for x ∈ R, lim
|x | →±∞

N (x, t) = 0, t > 0, (20)

where C
0 Dα

t is the Caputo fractional derivative operator of order α , η is a
diffusion constant and φ (x,t) is a nonlinear function belonging to the area of
reaction-diffusion. Then the solution of (19), subject to the above initial condi-
tions, is given by

N (x, t) =
1

2π

∫ ∞

−∞

f∗(k)E
α,1[−η ψ

θ
γ (k)t

α ] exp(− ikx)dk

+
1

2π

∫ t

0

uα−1du
∫ ∞

−∞

φ
∗(k, t−u) E

α,α [−η ψ
θ
γ (k)u

α ] exp (− ikx) dk. (21)

Next, if we set β = 1, f(x) = δ (x) and φ (x,t) = 0, where δ (x) is the Dirac-delta
function, then we arrive at the following interesting result obtained by Mainardi
et al. [12].

Corollary 3.3. The solution of the fractional diffusion equation

∂ α N(x, t)
∂ tα

= η xDγ

θ
N(x, t), η > 0, x ∈ R, 0 < α ≤ 1,0 < γ ≤ 2, (22)

with the initial conditions

N (x,0) = δ (x) , lim
x→±∞

N (x, t) = 0, (23)

where η is a diffusion constant and δ (x) is the Dirac-delta function, is given by

N (x, t) =
1

γ |x |
H

2,1

3,3

[
|x |

(η tα)1/γ

∣∣∣(1,1/γ),(1,α/γ),(1,ρ)

(1,1/γ),(1,1),(1,ρ)

]
,γ > α, (24)

where ρ = γ−θ

2γ
.

If we set α = 1, 0 < γ < 2; θ ≤ min {γ,2− γ}, then equation (22) reduces
to a space-fractional diffusion equation

∂ N(x, t)
∂ t

= η xDγ

θ
N(x, t), η > 0, x ∈ R, (25)
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with the initial conditions N (x,0) = δ (x) , lim
x→±∞

N(x, t) = 0, where η is a

diffusion constant and δ (x) is the Dirac-delta function. Then the solution of
equation (25) is given by

Lθ
γ (x) =

1

γ(η t)1/γ
H

1,1

2,2

[
(η t)1/γ

|x |

∣∣∣(1,1),(ρ,ρ)
(1/γ,1/γ),(ρ,ρ)

]
, 0 < γ < 1, |θ | < γ, (26)

where ρ = γ−θ

2γ
.

The density represented by the above expression is known as γ-stable Lévy
density.
Finally, if we take α = 1/2, β = 1, in equation (8), then we get the following
result which is the same result as derived by Haubold et al. [9].

Corollary 3.4. Consider the following fractional reaction-diffusion model

D1/2
t N(x, t) = η xDγ

θ
N(x, t) + φ (x, t), (27)

where η , t > 0, x ∈ R ; γ , θ are real parameters with the constraints 0 < γ ≤ 2,
|θ |≤ min (γ , 2−γ), and the initial conditions

N (x,0) = f(x) , for x ∈ R , lim
x→±∞

N(x, t) = 0. (28)

Here η is diffusion constant and φ (x,t) is a nonlinear function belonging to the
area of reaction-diffusion. Then for the solution of (27), subject to the above
initial conditions, there holds the formula

N(x, t) =
1

2π

∫ ∞

−∞

f∗(k) E1/2,1(−η tα ψ
θ
γ (k)) exp (− ikx) dk

+
1

2π

∫ t

0

u−1/2du
∫ ∞

−∞

φ
∗(k, t−u) E 1

2 ,
1
2
(−η u1/2

ψ
θ
γ (k)) exp (− ikx) dk. (29)

If we take θ = 0 in (29), then it reduces to the result obtained by Saxena et
al. [22] for the fractional reaction-diffusion equation.

4. Conclusions

In this paper, we have presented a solution of a fractional reaction-diffusion
equation. The solution has been developed in terms of the generalized Mittag-
Leffler and H-functions in a compact and elegant form with the help of Laplace
and Fourier transforms and their inverses. Most of the results obtained are in a
form suitable for numerical computation. The importance of the derived results
lies in the fact that numerous results on fractional reaction, fractional diffusion,
anomalous diffusion problems, and fractional telegraph equations scattered in
the literature can be derived, as special cases, of the results investigated in this
article.
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