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LACUNARY SEQUENCE SPACES DEFINED BY
A MUSIELAK-ORLICZ FUNCTION

KULDIP RAJ - SUNIL K. SHARMA

In this paper we introduce lacunary sequence spaces defined by a
Musielak-Orlicz function M = (Mk) and a sequence of modulus func-
tions F = ( fk). We also make an effort to study some topological proper-
ties and inclusion relations between these spaces.

1. Introduction and Preliminaries

Let l∞ and c denote the Banach spaces of bounded and convergent sequences
x= (xk) normed by ‖x‖= supk |xk|, respectively. Let σ be a one-to-one mapping
of the set of positive integers into itself such that σm(n) = σ(σm−1(n)),m =
1,2,3, · · · . A continuous linear functional ϕ on l∞ is said to be an invariant
mean or a σ−mean if and only if

1. ϕ(x)≥ 0 when the sequence x = (xn) has xn ≥ 0 for all n,

2. ϕ(e) = 1, where e = (1,1,1, · · ·) and

3. ϕ({xσ(n)}) = ϕ({xn}) for all x ∈ l∞.
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For certain kinds of mappings σ every invariant mean ϕ extends the limit func-
tional on the space c, in the sense that ϕ(x) = limx for all x ∈ c. The set of all
σ−convergent sequences will be denoted by Vσ . If x = (xn), set T x = (T xn) =
(xσ(n)). It can be shown in [20] that

Vσ =
{

x ∈ l∞ : lim
m

tmn(x) = le uniformly in n, l = σ − limx
}
, (1)

where tmn(x)= (xn+T xn+ ...+T mxn)/(m+1). The special case of (1) in which
σ(n) = n+1 was given by Lorentz [7]. Several authors including Schaefer [20],
Mursaleen [12], Savaş [19] and many others have studied invariant convergent
sequences.
A bounded sequence x = (xk) is said to be strongly σ−convergent to a number l
if and only if (|xk− l|)∈Vσ with σ - limit zero (see[13]). By [Vσ ], we denote the
set of all strongly σ−convergent sequences. It is known that c⊂ [Vσ ]⊂Vσ ⊂ l∞.
By a lacunary sequence θ = (ir), r = 0,1,2, · · · , where i0 = 0, we shall mean an
increasing sequence of non-negative integers hr = (ir− ir−1)→ ∞ as r→ ∞.
The intervals determined by θ are denoted by Ir = (ir−1, ir] and the ratio ir/ir−1
will be denoted by qr. The space of lacunary strongly convergent sequences Nθ

was defined by Freedman [4] as follows:

Nθ =
{

x = (xk) : lim
r→∞

1
hr

∑
k∈Ir

|xk−L|= 0 for some L
}
.

In [6], Kızmaz defined the sequence spaces

Z(∆) =
{

x = (xk) : (∆xk) ∈ Z
}

for Z = `∞,c and c0,

where ∆x = (∆xk) = (xk− xk+1). Et and Çolak [3] generalized the difference
sequence spaces to the sequence spaces

Z(∆n) =
{

x = (xk) : (∆nxk) ∈ Z
}

for Z = `∞,c and c0,

where n ∈ N, ∆0x = (xk), ∆x = (xk− xk+1),

∆
nx = (∆nxk) = (∆n−1xk−∆

n−1xk+1).

The generalized difference sequence has the following binomial representation

∆
n(xk) =

n

∑
v=0

(−1)v
(

n
v

)
xk+v.
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An Orlicz function M : [0,∞)→ [0,∞) is convex and continuous such that
M(0) = 0, M(x) > 0 for x > 0. Let w be the space of all real or complex se-
quences x = (xk). Lindenstrauss and Tzafriri [8] used the idea of Orlicz function
to define the following sequence space,

`M =
{

x ∈ w :
∞

∑
k=1

M
( |xk|

ρ

)
< ∞

}
which is called as an Orlicz sequence space. The space `M is a Banach space
with the norm

||x||= inf
{

ρ > 0 :
∞

∑
k=1

M
( |xk|

ρ

)
≤ 1
}
.

It is shown in [8] that every Orlicz sequence space `M contains a subspace iso-
morphic to `p(p≥ 1). An Orlicz function M satisfies ∆2-condition if and only if
for any constant L> 1 there exists a constant K(L) such that M(Lu)≤K(L)M(u)
for all values of u≥ 0.
A sequenceM= (Mk) of Orlicz functions is called a Musielak-Orlicz function
(see [11], [14]). A sequence N = (Nk) defined by

Nk(v) = sup{|v|u−Mk(u) : u≥ 0}, k = 1,2, · · ·

is called the complementary function of a Musielak-Orlicz function M. For
a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space tM
and its subspace hM are defined as follows:

tM =
{

x ∈ w : IM(cx)< ∞ for some c > 0
}
,

hM =
{

x ∈ w : IM(cx)< ∞ for all c > 0
}
,

where IM is a convex modular defined by

IM(x) =
∞

∑
k=1

Mk(xk), x = (xk) ∈ tM.

We consider tM equipped with the Luxemburg norm

||x||= inf
{

k > 0 : IM
(x

k

)
≤ 1
}

or equipped with the Orlicz norm

||x||0 = inf
{1

k

(
1+ IM(kx)

)
: k > 0

}
.
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A Musielak-Orlicz function M = (Mk) is said to satisfy ∆2-condition if there
exist constants a,K > 0 and a sequence c = (ck)

∞
k=1 ∈ `1

+ (the positive cone of
`1) such that the inequality

Mk(2u)≤ KMk(u)+ ck

holds for all k ∈ N and u ∈ R+, whenever Mk(u)≤ a.
Let X be a linear metric space. A function p : X → R is called paranorm, if

1. p(x)≥ 0, for all x ∈ X ,

2. p(−x) = p(x), for all x ∈ X ,

3. p(x+ y)≤ p(x)+ p(y), for all x,y ∈ X ,

4. if (λn) is a sequence of scalars with λn → λ as n→ ∞ and (xn) is a se-
quence of vectors with p(xn− x)→ 0 as n→ ∞, then p(λnxn− λx)→
0 as n→ ∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the
pair (X , p) is called a total paranormed space. It is well known that the metric
of any linear metric space is given by some total paranorm (see [21], Theorem
10.4.2, P-183). For more detail about sequence spaces (see [2], [15], [16]) and
references therein.
A sequence space E is said to be solid or normal if (αkxk)∈E whenever (xk)∈E
and for all sequences of scalars(αk) with |αk| ≤ 1 (see [14]).
The following inequality will be used throughout the paper. If 0≤ pk ≤ sup pk =
G, K = max(1,2G−1) then

|ak +bk|pk ≤ K{|ak|pk + |bk|pk} (2)

for all k and ak,bk ∈ C. Also |a|pk ≤max(1, |a|G) for all a ∈ C.
LetM= (Mk) be a Musielak-Orlicz function and X be a locally convex Haus-
dorff topological linear space whose topology is determined by a set Q of semi-
norms q. Let p = (pk) be a bounded sequence of positive real numbers and
u = (uk) be a sequence of strictly positive real numbers. By w(X) we denotes
the space of all X-valued sequences. In this paper we define the following se-
quence spaces:[

Vσ ,∆
n,θ ,M,u, p,q

]
1

=
{

x ∈ w(X) : lim
r→∞

1
hr

∑
k∈Ir

[
Mk

(
q
(uk∆nxσ k(m)− l

ρ

))]pk
= 0,

uniformly in m, for some ρ > 0
}
,
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Vσ ,∆

n,θ ,M,u, p,q
]

0
=
{

x ∈ w(X) : lim
r→∞

1
hr

∑
k∈Ir

[
Mk

(
q
(uk∆nxσ k(m)

ρ

))]pk

= 0, uniformly in m, for some ρ > 0
}

and[
Vσ ,∆

n,θ ,M,u, p,q
]

∞

=
{

x ∈ w(X) : sup
r,m

1
hr

∑
k∈Ir

[
Mk

(
q
(uk∆nxσ k(m)

ρ

))]pk

< ∞, for some ρ > 0
}
.

If we takeM(x) = x, we get

[
Vσ ,∆

n,θ ,u, p,q
]

1
=
{

x ∈ w(X) : lim
r→∞

1
hr

∑
k∈Ir

[
q
(uk∆nxσ k(m)− l

ρ

)]pk
= 0,

uniformly in m, for some ρ > 0
}
,

[
Vσ ,∆

n,θ ,u, p,q
]

0
=
{

x ∈ w(X) : lim
r→∞

1
hr

∑
k∈Ir

[
q
(uk∆nxσ k(m)

ρ

)]pk
= 0,

uniformly in m, for some ρ > 0
}

and[
Vσ ,∆

n,θ ,u, p,q
]

∞

=
{

x ∈ w(X) : sup
r,m

1
hr

∑
k∈Ir

[
q
(uk∆nxσ k(m)

ρ

)]pk
< ∞,

for some ρ > 0
}
.

If we take p = (pk) = 1 for all k, we get

[
Vσ ,∆

n,θ ,M,u,q
]

1
=
{

x ∈ w(X) : lim
r→∞

1
hr

∑
k∈Ir

[
Mk

(
q
(uk∆nxσ k(m)− l

ρ

))]
= 0, uniformly in m, for some ρ > 0

}
,

[
Vσ ,∆

n,θ ,M,u,q
]

0
=
{

x ∈ w(X) : lim
r→∞

1
hr

∑
k∈Ir

[
Mk

(
q
(uk∆nxσ k(m)

ρ

))]
= 0,

uniformly in m, for some ρ > 0
}
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and

[
Vσ ,∆

n,θ ,M,u,q
]

∞

=
{

x ∈ w(X) : sup
r,m

1
hr

∑
k∈Ir

[
Mk

(
q
(uk∆nxσ k(m)

ρ

))]
< ∞,

for some ρ > 0
}
.

The main purpose of this paper is to introduce and study some lacunary
sequence spaces defined by a Musielak-Orlicz function. We examine some
topological properties and inclusion relations between the spaces

[
Vσ ,∆

n,θ ,M,

u, p,q
]

Z
in the second section. Third section devoted to the study of lacunary

sequence spaces defined by a sequence of modulus functions. We also ex-
amine some topological properties and inclusion relation between the spaces[
Vσ ,∆

n,θ ,F, p,q
]

Z
. Throughout the paper Z will denote any one of the notation

0, 1 or ∞.

2. Lacunary sequence spaces defined by a Musielak-Orlicz function

In this section of the paper we study very interesting properties like linearity,
paranorm and some attractive inclusion relations between the spaces[
Vσ ,∆

n,θ ,M,u, p,q
]

Z
.

Theorem 2.1. For any Musielak-Orlicz functionM= (Mk) and for a bounded
sequence of positive real numbers p = (pk), the spaces

[
Vσ ,∆

n,θ ,M,u, p,q
]

Z
are linear over the field of complex numbers C.

Proof. Let x = (xk), y = (yk) ∈
[
Vσ ,∆

n,θ ,M,u, p,q]0 and let α,β ∈ C. Then
there exist positive numbers ρ1 and ρ2 such that

lim
r→∞

1
hr

∑
k∈Ir

[
Mk

(
q
(uk∆nxσ k(m)

ρ1

))]pk
= 0

and

lim
r→∞

1
hr

∑
k∈Ir

[
Mk

(
q
(uk∆nyσ k(m)

ρ2

))]pk
= 0.

Define ρ3 = max(2|α|ρ1,2|β |ρ2). SinceM= (Mk) is non-decreasing and con-
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vex, q is a seminorm and so by using inequality (2), we have

1
hr

∑
k∈Ir

[
Mk

(
q
(αuk∆nxσ k(m)+βuk∆nyσ k(m)

ρ3

))]pk

≤ 1
hr

∑
k∈Ir

[
Mk

(
q
(αuk∆nxσ k(m)

ρ3

)
+q
(βuk∆nyσ k(m)

ρ3

))]pk

≤ K
1
hr

∑
k∈Ir

[
Mk

(
q
(uk∆nxσ k(m)

ρ1

))]pk
+K

1
hr

∑
k∈Ir

[
Mk

(
q
(uk∆nyσ k(m)

ρ2

))]pk

→ 0 as r→ ∞ uniformly in m.

This proves that
[
Vσ ,∆

n,θ ,M,u, p,q
]

0
is a linear space. Similarly, we can

prove that
[
Vσ ,∆

n,θ ,M,u, p,q
]

1
and

[
Vσ ,∆

n,θ ,M,u, p,q
]

∞

are linear spaces.

Theorem 2.2. For any Musielak-Orlicz functionM= (Mk) and p = (pk) be a
bounded sequence of positive real numbers, the spaces

[
Vσ ,∆

n,θ ,M,u, p,q
]

Z
are paranormed spaces, paranormed defined by

g(x) = inf
{

ρ
pn
H :
(

sup
k≥1

[
Mk

(
q
(uk∆nxσ k(m)

ρ

))]pk
) 1

H ≤ 1, ρ > 0,

uniformly in m
}
,

where H = max(1,supk pk).

Proof. We shall prove the result for the case
[
Vσ ,∆

n,θ ,M,u, p,q
]

∞

. Clearly

g(x) = g(−x) and g(θ) = 0 where θ is the zero sequence of X . Let x = (xk), y =
(yk)∈

[
Vσ ,∆

n,θ ,M,u, p,q
]

∞

. Then there exist positive numbers ρ1 and ρ2 such
that

sup
k≥1

[
Mk

(
q
(uk∆nxσ k(m)

ρ1

))]pk
≤ 1, uniformly in m

and

sup
k≥1

[
Mk

(
q
(uk∆nyσ k(m)

ρ2

))]pk
≤ 1, uniformly in m.
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Let ρ = ρ1 +ρ2 and by using Minkowski’s inequality, we have

sup
k≥1

[
Mk

(
q
(uk∆nxσ k(m)+uk∆nyσ k(m)

ρ

))]pk

= sup
k≥1

[
Mk

(
q
(uk∆nxσ k(m)+uk∆nyσ k(m)

ρ1 +ρ2

))]pk

≤
(

ρ1

ρ1 +ρ2

)
sup
k≥1

[
Mk

(
q
(uk∆nxσ k(m)

ρ1

))]pk

+
(

ρ2

ρ1 +ρ2

)
sup
k≥1

[
Mk

(
q
(uk∆nyσ k(m)

ρ2

))]pk

≤ 1, uniformly in m.

Hence

g(x+ y)

= inf
{
(ρ1 +ρ2)

pn
H :
(

sup
k≥1

[
Mk

(
q
(uk∆nxσ k(m)+uk∆nyσ k(m)

ρ

))]pk
) 1

H ≤ 1,

ρ > 0, uniformly in m
}

≤ inf
{
(ρ1)

pn
H :
(

sup
k≥1

[
Mk

(
q
(uk∆nxσ k(m)

ρ1

))]pk
) 1

H ≤ 1,

ρ1 > 0, uniformly in m
}

+ inf
{
(ρ2)

pn
H :
(

sup
k≥1

[
Mk

(
q
(uk∆nyσ k(m)

ρ2

))]pk
) 1

H ≤ 1,

ρ2 > 0, uniformly in m
}

= g(x)+g(y).

Finally, we prove that the scalar multiplication is continuous. Let λ be any
complex number. By definition, we have

g(λx) = inf
{

ρ
pn
H :
(

sup
k≥1

[
Mk

(
q
(

λuk∆nxσ k(m)

ρ

))]pk
) 1

H ≤ 1,

ρ > 0, uniformly in m
}

= inf
{
(|λ |t)

pn
H :
(

sup
k≥1

[
Mk

(
q
(uk∆nxσ k(m)

t

))]pk
) 1

H ≤ 1, t > 0,

uniformly in m
}
,

where t = ρ

|λ | . This completes the proof of the theorem.
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Theorem 2.3. LetM′ = (M′k) andM′′ = (M′′k ) be two Musielak-Orlicz func-

tions. Then we have
[
Vσ , ,∆

nθ ,M′,u, p,q
]

Z
∩
[
Vσ ,∆

n,θ ,M′′,u, p,q
]

Z
⊆[

Vσ ,∆
n,θ ,M′+M′′,u, p,q

]
Z
.

Proof. The proof is easy so we omit it.

Theorem 2.4. Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a
bounded sequence of positive real numbers and q1, q2 are two seminorms on X.
Then [

Vσ ,∆
n,θ ,M,u, p,q1

]
Z
∩
[
Vσ ,∆

n,θ ,M,u, p,q2

]
Z
6=∅.

Proof. The zero elements belongs to
[
Vσ ,∆

n,θ ,M,u, p,q1

]
Z

and[
Vσ ,∆

n,θ ,M,u, p,q2

]
Z
, thus the intersection is non empty.

Theorem 2.5. For any Musielak-Orlicz functionM = (Mk), let q1, q2 be two
seminorms on X . Then the following results holds:
(i) If q1 is stronger than q2, then[

Vσ ,∆
n,θ ,M′,u, p,q1

]
Z
⊂
[
Vσ ,θ ,M′,u, p,q2

]
Z
,

(ii)[
Vσ ,∆

n,θ ,M,u, p,q1

]
Z
∩
[
Vσ ,∆

n,θ ,M,u, p,q2

]
Z

⊂
[
Vσ ,θ ,M,u, p,q1 +q2

]
Z
.

Proof. The proof is easy so we omit it.

Theorem 2.6. LetM= (Mk) be a Musielak-Orlicz function. Then[
Vσ ,∆

n,θ ,M,u, p,q
]

0
⊂
[
Vσ ,∆

n,θ ,M,u, p,q
]

1
⊂
[
Vσ ,∆

n,θ ,M,u, p,q
]

∞

.

Proof. The inclusion
[
Vσ ,∆

n,θ ,M,u, p,q
]

0
⊂
[
Vσ ,∆

n,θ ,M,u, p,q
]

1
is obvi-

ous. Let x = (xk) ∈
[
Vσ ,∆

n,θ ,M,u, p,q
]

1
. Then we have

1
hr

∑
k∈Ir

[
Mk

(
q
(uk∆nxσ k(m)

ρ

))]pk

≤ K
hr

∑
k∈Ir

[
Mk

(
q
(uk∆nxσ k(m)−l

ρ

))]pk
+

K
hr

∑
k∈Ir

[
Mk

(
q
( l

ρ

))]pk

≤ K
hr

∑
k∈Ir

[
Mk

(
q
(uk∆nxσ k(m)−l

ρ

))]pk
+K max

{
1,
[
Mk

(
q
( l

ρ

))]G}
.
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Thus x = (xk) ∈
[
Vσ ,∆

n,θ ,M,u, p,q
]

∞

. This completes the proof of the theo-
rem.

Theorem 2.7. LetM = (Mk) be a Musielak-Orlicz function and θ = (ir) be a
lacunary sequence. Then the following result holds:
(i) If liminf

r
qr > 1, then

[
Vσ ,∆

n,M,u, p,q
]

Z
⊂
[
Vσ ,∆

n,θ ,M,u, p,q
]

Z
,

(ii) If limsup
r

qr < ∞, then
[
Vσ ,∆

n,θ ,M′,u, p,q1

]
Z
⊂
[
Vσ ,∆

n,M′,u, p,q2

]
Z
,

(iii) If 1 < liminf
r

qr ≤ limsup
r

qr < ∞, then[
Vσ ,∆

n,M,u, p,q
]

Z
=
[
Vσ ,∆

n,θ ,M,u, p,q
]

Z
.

Proof. The proof is easy so we omit it.

Theorem 2.8. Let 0 < pk ≤ tk and
( tk

pk

)
be bounded. Then[

Vσ ,∆
n,θ ,M,u, t,q

]
Z
⊂
[
Vσ ,∆

n,θ ,M,u, p,q
]

Z
.

Proof. We shall prove it for the case Z = 1. Let x = (xk) ∈
[
Vσ ,∆

n,θ ,M,u,

t,q
]

1
. We write

Sk =
1
hr

∑
k∈Ir

[
Mk

(
q
(uk∆nxσ k(m)− l

ρ

))]pk

and (µk) =
( pk

tk

)
for all k ∈ N. Then 0 < µk ≤ 1 for all k ∈ N. Take 0 < µ < µk

for all k ∈ N. Define the sequence uk and vk as follows:
For Sk ≥ 1, let uk = Sk and vk = 0 and for Sk < 1, let uk = 0 and vk = Sk. Then
clearly for all k ∈ N, we have Sk = uk + vk,S

µk
k = uµk

k + vµk
k . Now it follows that

uµk
k ≤ uk ≤ Sk and vµk

k ≤ vµ

k . Therefore,

1
hr

∑
k∈Ir

Sµk
k =

1
hr

∑
k∈Ir

(uµk
k + vµk

k )≤ 1
hr

∑
k∈Ir

Sk +
1
hr

∑
k∈Ir

vµ

k .

Now for each k,

1
hr

∑
k∈Ir

vµ

k = ∑
k∈Ir

( 1
hr

vk

)µ( 1
hr

)1−µ

≤
(

∑
k∈Ir

[( 1
hr

vk

)µ] 1
µ
)µ(

∑
k∈Ir

[( 1
hr

)1−µ] 1
1−µ
)1−µ

=
( 1

hr
∑
k∈Ir

vk

)µ
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and so
1
hr

∑
k∈Ir

Sµk
k ≤

1
hr

∑
k∈Ir

Sk +
( 1

hr
∑
k∈Ir

vk

)µ

.

Hence x = (xk) ∈
[
Vσ ,∆

n,θ ,M,u, p,q
]

1
. Similarly we can prove other cases.

Theorem 2.9. The sequence space
[
Vσ ,∆

n,θ ,M,u, p,q
]

∞

is solid.

Proof. Let x = (xk) ∈
[
Vσ ,∆

n,θ ,M,u, p,q
]

∞

, that is

1
hr

∑
k∈Ir

[
Mk

(
q
(uk∆nxσ k(m)

ρ

))]pk
< ∞.

Let (αk) be a sequence of scalars such that |αk| ≤ 1 for all k ∈N. Thus we have

1
hr

∑
k∈Ir

[
Mk

(
q
(αkuk∆nxσ k(m)

ρ

))]pk
≤ 1

hr
∑
k∈Ir

[
Mk

(
q
(uk∆nxσ k(m)

ρ

))]pk

< ∞.

This shows that (αkxk) ∈
[
Vσ ,∆

n,θ ,M,u, p,q
]

∞

for all sequences of scalars

(αk) with |αk| ≤ 1 for all k∈N, whenever (xk)∈
[
Vσ ,∆

n,θ ,M,u, p,q
]

∞

. Hence

the space
[
Vσ ,∆

n,θ ,M,u, p,q
]

∞

is a solid sequence space. This completes the
proof of the theorem.

Corollary 2.10. The sequence space
[
Vσ ,∆

n,θ ,M,u, p,q
]

∞

is monotone.

Proof. It is easy to prove so we omit the details.

3. Lacunary sequence spaces defined by a sequence of modulus functions

A modulus function is a function f : [0,∞)→ [0,∞) such that

1. f (x) = 0 if and only if x = 0,

2. f (x+ y)≤ f (x)+ f (y) for all x≥ 0, y≥ 0,

3. f is increasing

4. f is continuous from right at 0.
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It follows that f must be continuous everywhere on [0,∞). The modulus func-
tion may be bounded or unbounded. For example, if we take f (x) = x

x+1 , then
f (x) is bounded. If f (x) = xp, 0 < p < 1, then the modulus f (x) is unbounded.
Subsequentially, modulus function has been discussed in ([1], [9], [10], [17],
[18]) and references therein.
Let F = ( fk) be a sequence of modulus function, X be a locally convex Haus-
dorff topological linear space whose topology is determined by a set Q of semi-
norms q. Let p = (pk) be a bounded sequence of positive real numbers and
u = (uk) be a sequence of strictly positive real numbers. By w(X) be denote
the space of all X-valued sequences. In this section we define the following
sequence spaces:

[
Vσ ,∆

n,θ ,F, p,q
]

1
=
{

x= (xk)∈w(X) : lim
r→∞

1
hr

∑
k∈Ir

[
fk

(
q
(∆nxσ k(m)− l

ρ

))]pk

= 0, uniformly in m, for some ρ > 0
}
,

[
Vσ ,∆

n,θ ,F, p,q
]

0
=
{

x = (xk) ∈ w(X) : lim
r→∞

1
hr

∑
k∈Ir

[
fk

(
q
(∆nxσ k(m)

ρ

))]pk

= 0, uniformly in m, for some ρ > 0
}

and[
Vσ ,∆

n,θ ,F, p,q
]

∞

=
{

x = (xk) ∈ w(X) : sup
r,m

1
hr

∑
k∈Ir

[
fk

(
q
(∆nxσ k(m)

ρ

))]pk

< ∞, for some ρ > 0
}
.

If we take F(x) = x, we get

[
Vσ ,∆

n,θ , p,q
]

1
=
{

x = (xk) ∈ w(X) : lim
r→∞

1
hr

∑
k∈Ir

[
q
(∆nxσ k(m)− l

ρ

)]pk
= 0

uniformly in m, for some ρ > 0
}
,

[
Vσ ,∆

n,θ , p,q
]

0
=
{

x = (xk) ∈ w(X) : lim
r→∞

1
hr

∑
k∈Ir

[
q
(∆nxσ k(m)

ρ

)]pk
= 0,

uniformly in m, for some ρ > 0
}
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and[
Vσ ,∆

n,θ , p,q
]

∞

=
{

x = (xk) ∈ w(X) : sup
r,m

1
hr

∑
k∈Ir

[
q
(∆nxσ k(m)

ρ

)]pk
< ∞,

for some ρ > 0
}
.

If we take p = (pk) = 1 for all k, we get

[
Vσ ,∆

n,θ ,F,q
]

1
=
{

x = (xk) ∈ w(X) : lim
r→∞

1
hr

∑
k∈Ir

[
fk

(
q
(∆nxσ k(m)− l

ρ

))]
= 0, uniformly in m, for some ρ > 0

}
,

[
Vσ ,∆

n,θ ,F,q
]

0
=
{

x = (xk) ∈ w(X) : lim
r→∞

1
hr

∑
k∈Ir

[
fk

(
q
(∆nxσ k(m)

ρ

))]
= 0,

uniformly in m, for some ρ > 0
}

and[
Vσ ,∆

n,θ ,F,q
]

∞

=
{

x = (xk) ∈ w(X) : sup
r,m

1
hr

∑
k∈Ir

[
fk

(
q
(∆nxσ k(m)

ρ

))]
< ∞,

for some ρ > 0
}
.

The main purpose of this section is to study some topological properties and
some inclusion relations between of the spaces

[
Vσ ,∆

n,θ ,F, p,q
]

Z
.

Theorem 3.1. Let F = ( fk) be a sequence of modulus functions and p = (pk)

be a bounded sequence of positive real numbers. Then the spaces
[
Vσ ,∆

n,θ ,F,

p,q
]

Z
, Z = 0,1,∞ are linear over the field of complex numbers C.

Proof. We shall prove the result for the case
[
Vσ ,∆

n,θ ,F, p,q
]

0
. Let x = (xk),

y = (yk) ∈
[
Vσ ,∆

n,θ ,F, p,q
]

0
and let α,β ∈ C. Then there exist positive num-

bers ρ1 and ρ2 such that

lim
r→∞

1
hr

∑
k∈Ir

[
fk

(
q
(∆nxσ k(m)

ρ1

))]pk
= 0, uniformly in m
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and

lim
r→∞

1
hr

∑
k∈Ir

[
fk

(
q
(∆nyσ k(m)

ρ2

))]pk
= 0, uniformly in m.

Define ρ3 =max(2|α|ρ1,2|β |ρ2). Since F = ( fk) is non-decreasing, q is a semi-
norm and so by using inequality (2), we have

1
hr

∑
k∈Ir

[
fk

(
q
(α∆nxσ k(m)+β∆nyσ k(m)

ρ3

))]pk

≤ 1
hr

∑
k∈Ir

[
fk

(
q
(α∆nxσ k(m)

ρ3
)+q(

β∆nyσ k(m)

ρ3

))]pk

≤ K
1
hr

∑
k∈Ir

[
fk

(
q
(∆nxσ k(m)

ρ1

))]pk
+K

1
hr

∑
k∈Ir

[
fk

(
q
(∆nyσ k(m)

ρ2

))]pk
→ 0

as r→ ∞ uniformly in m.

This proves that
[
Vσ ,∆

n,θ ,F, p,q
]

0
is a linear space. Similarly, we can prove

that
[
Vσ ,∆

n,θ ,F, p,q
]

1
and

[
Vσ ,∆

n,θ ,F, p,q
]

∞

are linear spaces.

Theorem 3.2. Let F = ( fk) be a sequence of modulus functions and p = (pk) be
a bounded sequence of positive real numbers. Then the spaces

[
Vσ ,∆

n,θ ,F, p,

q
]

Z
are paranormed spaces, paranormed defined by

g∗(x) = inf
{

ρ
pn
H :
[

sup
k≥1

fk

(
q
(

∆nxσ k(m)

ρ

))pk
] 1

H ≤ 1,ρ > 0 uniformly in m
}
,

where H = max(1,supk pk).

Proof. We shall prove the theorem for the case
[
Vσ ,∆

n,θ ,F, p,q
]

∞

. Clearly,

g∗(x) = g(−x) and g∗(θ) = 0 where θ is the zero sequence of X . Let x =

(xk),y = (yk) ∈
[
Vσ ,∆

n,θ ,F, p,q
]

∞

. Then there exist positive numbers ρ1 and
ρ2 such that

sup
k≥1

fk

(
q
(

∆nxσ k(m)

ρ1

))pk
≤ 1, uniformly in m

and

sup
k≥1

fk

(
q
(

∆nyσ k(m)

ρ2

))pk
≤ 1, uniformly in m.
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Let ρ = ρ1 +ρ2 and by using Minkowski’s inequality, we have

sup
k≥1

fk

(
q
(

∆nxσ k(m)+∆nyσ k(m)

ρ

))pk
= sup

k≥1
fk

(
q
(

∆nxσ k(m)+∆nyσ k(m)

ρ1 +ρ2

))]pk

≤
(

ρ1

ρ1 +ρ2

)
sup
k≥1

fk

[
q
(

∆nxσ k(m)

ρ1

)]pk
+
(

ρ2

ρ1 +ρ2

)
sup
k≥1

fk

[
q
(

∆nyσ k(m)

ρ2

)]pk

≤ 1,uniformly in m.

Hence

g∗(x+ y) = inf
{
(ρ1 +ρ2)

pn
H :
(

sup
k≥1

fk

(
q
(

∆nxσ k(m)+∆nyσ k(m)

ρ

))pk
) 1

H

≤ 1,ρ > 0, uniformly in m
}

≤ inf
{
(ρ1)

pn
H :
(

sup
k≥1

fk

(
q
(

∆nxσ k(m)

ρ1

))pk
) 1

H ≤ 1,ρ1 > 0,

uniformly in m
}

+ inf
{
(ρ2)

pn
H :
(

sup
k≥1

fk

(
q
(

∆nyσ k(m)

ρ2

))pk
) 1

H ≤ 1,ρ2 > 0,

uniformly in m
}

= g∗(x)+g∗(y).

Finally, we prove that the scalar multiplication is continuous. Let λ be any
complex number. By definition, we have

g∗(λx) = inf
{

ρ
pn
H :
(

sup
k≥1

fk

(
q
(

λ∆nxσ k(m)

ρ

))pk
) 1

H ≤ 1, ρ > 0,

uniformly in m
}

= inf
{
(|λ |t)

pn
H :
(

sup
k≥1

fk

(
q
(

∆nxσ k(m)

t

))pk
) 1

H ≤ 1, t > 0,

uniformly in m
}
,

where t = ρ

|λ | . This completes the proof of the theorem.

Theorem 3.3. Let F ′ = ( f ′k) and F ′′ = ( f ′′k ) be two sequences of modulus func-
tions. Then we have[

Vσ ,∆
n,θ ,F ′, p,q

]
Z
∩
[
Vσ ,∆

n,θ ,F ′′,u, p,q
]

Z
⊆
[
Vσ ,∆

n,θ ,F ′+F ′′,u, p,q
]

Z
.
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Proof. The proof is easy so we omit it.

Theorem 3.4. Let F = (Fk) be a sequence of modulus functions and p = (pk)
be a bounded sequence of positive real numbers. Then for any two seminorms
q1 and q2 on X , we have

[
Vσ ,∆

n,θ ,F, p,q1

]
Z
∩
[
Vσ ,∆

n,θ ,F, p,q2

]
Z
6= φ .

Proof. Since the zero element belongs to
[
Vσ ,∆

n,θ ,F, p,q1

]
Z

and[
Vσ ,∆

n,θ ,F, p,q2

]
Z

and thus the intersection is non empty.

Theorem 3.5. Let F = (Fk) be a sequence of modulus functions. Then[
Vσ ,∆

n,θ ,F, p,q
]

0
⊂ [Vσ ,∆

n,θ ,F, p,q
]

1
⊂ [Vσ ,∆

n,θ ,F, p,q
]

∞

.

Proof. The inclusion
[
Vσ ,∆

n,θ ,F, p,q
]

0
⊂
[
Vσ ,∆

n,θ ,F, p,q
]

1
is obvious.

Let x = (xk) ∈
[
Vσ ,∆

n,θ ,F, p,q
]

1
. Then we have

1
hr ∑

k∈Ir

[
fk

(
q
(∆nxσ k(m)

ρ

))]pk

≤ K
1
hr

∑
k∈Ir

[
fk

(
q
(∆nxσ k(m)−l

ρ

))]pk
+K

1
hr

∑
k∈Ir

[
fk

(
q
( l

ρ

))]pk

≤ K
hr

∑
k∈Ir

[
fk

(
q
(∆nxσ k(m)−l

ρ

))]pk
+K max

{
1,
[

fk

(
q
( l

ρ

))]G}
.

Thus x = (xk) ∈
[
Vσ ,∆

n,θ ,F, p,q
]

∞

. This completes the proof of the theorem.

Theorem 3.6. Let F = ( fk) be a sequence of modulus functions and let θ = (ir)
be a lacunary sequence. Then the following result holds:
(i) If liminf

r
qr > 1. Then

[
Vσ ,∆

n,F, p,q
]

Z
⊂
[
Vσ ,∆

n,θ ,F, p,q
]

Z
,

(ii) if limsup
r

qr < ∞. Then
[
Vσ ,∆

n,θ ,F, p,q
]

Z
⊂
[
Vσ ,∆

n,F, p,q
]

Z
,

(iii) if 1 < liminf
r

qr ≤ limsup
r

qr < ∞. Then

[
Vσ ,∆

n,F, p,q
]

Z
=
[
Vσ ,∆

n,θ ,F, p,q
]

Z
.

Proof. It is easy to prove so we omit it.
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Theorem 3.7. Let 0 < pk ≤ tk and ( tk
pk
) be bounded. Then[

Vσ ,∆
n,θ ,F, t,q

]
Z
⊂
[
Vσ ,∆

n,θ ,F, p,q
]

Z
.

Proof. We will prove it for the case Z = 1. Let x = (xk) ∈
[
Vσ ,∆

n,θ ,F, t,q
]

1
.

We write

Sk =
1
hr

∑
k∈Ir

[
fk

(
q
(∆nxσ k(m)

ρ

))]pk

and (µk) =
( pk

tk

)
for all k ∈ N. Then 0 < µk ≤ 1 for all k ∈ N. Take 0 < µ < µk

for all k ∈ N. Define the sequence uk and vk as follows:
For Sk ≥ 1, let uk = Sk and vk = 0 and for Sk < 1, let uk = 0 and vk = Sk. Then
clearly for all k ∈ N, we have Sk = uk + vk,S

µk
k = uµk

k + vµk
k . Now it follows that

uµk
k ≤ uk ≤ Sk and vµk

k ≤ vµ

k . Therefore

1
hr

∑
k∈Ir

Sµk
k =

1
hr

∑
k∈Ir

(uµk
k + vµk

k )≤ 1
hr

∑
k∈Ir

Sk +
1
hr

∑
k∈Ir

vµ

k .

Now for each k,

1
hr

∑
k∈Ir

vµ

k = ∑
k∈Ir

( 1
hr

vk

)µ( 1
hr

)1−µ

≤
(

∑
k∈Ir

[( 1
hr

vk

)µ] 1
µ
)µ(

∑
k∈Ir

[( 1
hr

)1−µ] 1
1−µ
)1−µ

=
( 1

hr
∑
k∈Ir

vk

)µ

and so
1
hr

∑
k∈Ir

Sµk
k ≤

1
hr

∑
k∈Ir

Sk +
( 1

hr
∑
k∈Ir

vk

)µ

.

Hence x = (xk) ∈
[
Vσ ,∆

n,θ ,F, p,q
]

1
. Similarly we can prove for other cases.

Theorem 3.8. The sequence space
[
Vσ ,∆

n,θ ,F, p,q
]

∞

is solid.

Proof. Let x = (xk) ∈
[
Vσ ,∆

n,θ ,F, p,q
]

∞

. Then

1
hr

∑
k∈Ir

[
fk

(
q
(∆nxσ k(m)

ρ

))]pk
< ∞.
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Let (αk) be a sequence of scalars such that |αk| ≤ 1 for all k ∈N. Thus we have

1
hr

∑
k∈Ir

[
fk

(
q
(αk∆nxσ k(m)

ρ

))]pk
≤ 1

hr
∑
k∈Ir

[
fk

(
q
(∆nxσ k(m)

ρ

))]pk

< ∞.

This shows that (αkxk) ∈
[
Vσ ,∆

n,θ ,F, p,q
]

∞

for all sequences of scalars (αk)

with |αk| ≤ 1 for all k ∈ N, whenever (xk) ∈
[
Vσ ,∆

n,θ ,F, p,q
]

∞

. Hence the

space
[
Vσ ,∆

n,θ ,F, p,q
]

∞

is a solid sequence space. This completes the proof
of the theorem.

Corollary 3.9. The sequence space
[
Vσ ,∆

n,θ ,F, p,q
]

∞

is monotone.

Proof. It is easy to prove so we omit the details.
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