LE MATEMATICHE Vol. LXVIII (2013) – Fasc. I, pp. 33–51 doi: 10.4418/2013.68.1.4

LACUNARY SEQUENCE SPACES DEFINED BY A MUSIELAK-ORLICZ FUNCTION

KULDIP RAJ - SUNIL K. SHARMA

In this paper we introduce lacunary sequence spaces defined by a Musielak-Orlicz function $\mathcal{M} = (M_k)$ and a sequence of modulus functions $F = (f_k)$. We also make an effort to study some topological properties and inclusion relations between these spaces.

1. Introduction and Preliminaries

Let l_{∞} and *c* denote the Banach spaces of bounded and convergent sequences $x = (x_k)$ normed by $||x|| = \sup_k |x_k|$, respectively. Let σ be a one-to-one mapping of the set of positive integers into itself such that $\sigma^m(n) = \sigma(\sigma^{m-1}(n)), m = 1, 2, 3, \cdots$. A continuous linear functional φ on l_{∞} is said to be an invariant mean or a σ -mean if and only if

1. $\varphi(x) \ge 0$ when the sequence $x = (x_n)$ has $x_n \ge 0$ for all n,

- 2. $\varphi(e) = 1$, where $e = (1, 1, 1, \dots)$ and
- 3. $\varphi(\{x_{\sigma(n)}\}) = \varphi(\{x_n\})$ for all $x \in l_{\infty}$.

AMS 2010 Subject Classification: 40A05, 40C05, 40D05.

Keywords: Lacunary sequence, Difference sequence, Modulus function, Musielak-Orlicz function.

Entrato in redazione: 25 aprile 2012

For certain kinds of mappings σ every invariant mean φ extends the limit functional on the space *c*, in the sense that $\varphi(x) = \lim x$ for all $x \in c$. The set of all σ -convergent sequences will be denoted by V_{σ} . If $x = (x_n)$, set $Tx = (Tx_n) = (x_{\sigma(n)})$. It can be shown in [20] that

$$V_{\sigma} = \left\{ x \in l_{\infty} : \lim_{m} t_{mn}(x) = le \text{ uniformly in } n, \ l = \sigma - \lim x \right\},$$
(1)

where $t_{mn}(x) = (x_n + Tx_n + ... + T^m x_n)/(m+1)$. The special case of (1) in which $\sigma(n) = n+1$ was given by Lorentz [7]. Several authors including Schaefer [20], Mursaleen [12], Savaş [19] and many others have studied invariant convergent sequences.

A bounded sequence $x = (x_k)$ is said to be strongly σ -convergent to a number l if and only if $(|x_k - l|) \in V_{\sigma}$ with σ - limit zero (see[13]). By $[V_{\sigma}]$, we denote the set of all strongly σ -convergent sequences. It is known that $c \subset [V_{\sigma}] \subset V_{\sigma} \subset l_{\infty}$. By a lacunary sequence $\theta = (i_r), r = 0, 1, 2, \cdots$, where $i_0 = 0$, we shall mean an increasing sequence of non-negative integers $h_r = (i_r - i_{r-1}) \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ are denoted by $I_r = (i_{r-1}, i_r]$ and the ratio i_r/i_{r-1} will be denoted by q_r . The space of lacunary strongly convergent sequences N_{θ} was defined by Freedman [4] as follows:

$$N_{\theta} = \Big\{ x = (x_k) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} |x_k - L| = 0 \text{ for some } L \Big\}.$$

In [6], Kızmaz defined the sequence spaces

$$Z(\Delta) = \left\{ x = (x_k) : (\Delta x_k) \in Z \right\} \text{ for } Z = \ell_{\infty}, c \text{ and } c_0,$$

where $\Delta x = (\Delta x_k) = (x_k - x_{k+1})$. Et and Çolak [3] generalized the difference sequence spaces to the sequence spaces

$$Z(\Delta^n) = \left\{ x = (x_k) : (\Delta^n x_k) \in Z \right\} \text{ for } Z = \ell_{\infty}, c \text{ and } c_0,$$

where $n \in \mathbb{N}$, $\Delta^0 x = (x_k)$, $\Delta x = (x_k - x_{k+1})$,

$$\Delta^n x = (\Delta^n x_k) = (\Delta^{n-1} x_k - \Delta^{n-1} x_{k+1}).$$

The generalized difference sequence has the following binomial representation

$$\Delta^n(x_k) = \sum_{\nu=0}^n (-1)^{\nu} \begin{pmatrix} n \\ \nu \end{pmatrix} x_{k+\nu}$$

An Orlicz function $M : [0,\infty) \to [0,\infty)$ is convex and continuous such that M(0) = 0, M(x) > 0 for x > 0. Let *w* be the space of all real or complex sequences $x = (x_k)$. Lindenstrauss and Tzafriri [8] used the idea of Orlicz function to define the following sequence space,

$$\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty \right\}$$

which is called as an Orlicz sequence space. The space ℓ_M is a Banach space with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}.$$

It is shown in [8] that every Orlicz sequence space ℓ_M contains a subspace isomorphic to $\ell_p (p \ge 1)$. An Orlicz function M satisfies Δ_2 -condition if and only if for any constant L > 1 there exists a constant K(L) such that $M(Lu) \le K(L)M(u)$ for all values of $u \ge 0$.

A sequence $\mathcal{M} = (M_k)$ of Orlicz functions is called a Musielak-Orlicz function (see [11], [14]). A sequence $\mathcal{N} = (N_k)$ defined by

$$N_k(v) = \sup\{|v|u - M_k(u) : u \ge 0\}, k = 1, 2, \cdots$$

is called the complementary function of a Musielak-Orlicz function \mathcal{M} . For a given Musielak-Orlicz function \mathcal{M} , the Musielak-Orlicz sequence space $t_{\mathcal{M}}$ and its subspace $h_{\mathcal{M}}$ are defined as follows:

$$t_{\mathcal{M}} = \Big\{ x \in w : I_{\mathcal{M}}(cx) < \infty \text{ for some } c > 0 \Big\},$$
$$h_{\mathcal{M}} = \Big\{ x \in w : I_{\mathcal{M}}(cx) < \infty \text{ for all } c > 0 \Big\},$$

where $I_{\mathcal{M}}$ is a convex modular defined by

$$I_{\mathcal{M}}(x) = \sum_{k=1}^{\infty} M_k(x_k), \ x = (x_k) \in t_{\mathcal{M}}.$$

We consider $t_{\mathcal{M}}$ equipped with the Luxemburg norm

$$||x|| = \inf\left\{k > 0 : I_{\mathcal{M}}\left(\frac{x}{k}\right) \le 1\right\}$$

or equipped with the Orlicz norm

$$||x||^{0} = \inf \left\{ \frac{1}{k} \left(1 + I_{\mathcal{M}}(kx) \right) : k > 0 \right\}.$$

A Musielak-Orlicz function $\mathcal{M} = (M_k)$ is said to satisfy Δ_2 -condition if there exist constants a, K > 0 and a sequence $c = (c_k)_{k=1}^{\infty} \in \ell_+^1$ (the positive cone of ℓ^1) such that the inequality

$$M_k(2u) \le KM_k(u) + c_k$$

holds for all $k \in \mathbb{N}$ and $u \in R_+$, whenever $M_k(u) \le a$. Let *X* be a linear metric space. A function $p : X \to \mathbb{R}$ is called paranorm, if

- 1. $p(x) \ge 0$, for all $x \in X$,
- 2. p(-x) = p(x), for all $x \in X$,
- 3. $p(x+y) \le p(x) + p(y)$, for all $x, y \in X$,
- 4. if (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ as $n \to \infty$ and (x_n) is a sequence of vectors with $p(x_n x) \to 0$ as $n \to \infty$, then $p(\lambda_n x_n \lambda x) \to 0$ as $n \to \infty$.

A paranorm *p* for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [21], Theorem 10.4.2, P-183). For more detail about sequence spaces (see [2], [15], [16]) and references therein.

A sequence space *E* is said to be solid or normal if $(\alpha_k x_k) \in E$ whenever $(x_k) \in E$ and for all sequences of scalars (α_k) with $|\alpha_k| \leq 1$ (see [14]).

The following inequality will be used throughout the paper. If $0 \le p_k \le \sup p_k = G$, $K = \max(1, 2^{G-1})$ then

$$|a_k + b_k|^{p_k} \le K\{|a_k|^{p_k} + |b_k|^{p_k}\}$$
(2)

for all k and $a_k, b_k \in \mathbb{C}$. Also $|a|^{p_k} \leq \max(1, |a|^G)$ for all $a \in \mathbb{C}$.

Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function and X be a locally convex Hausdorff topological linear space whose topology is determined by a set Q of seminorms q. Let $p = (p_k)$ be a bounded sequence of positive real numbers and $u = (u_k)$ be a sequence of strictly positive real numbers. By w(X) we denotes the space of all X-valued sequences. In this paper we define the following sequence spaces:

$$\begin{bmatrix} V_{\sigma}, \Delta^n, \theta, \mathcal{M}, u, p, q \end{bmatrix}_1 = \left\{ x \in w(X) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{u_k \Delta^n x_{\sigma^k(m)} - l}{\rho} \right) \right) \right]^{p_k} = 0, \end{bmatrix}$$

uniformly in *m*, for some $\rho > 0$,

$$\begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, \mathcal{M}, u, p, q \end{bmatrix}_{0} = \left\{ x \in w(X) : \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M_{k} \left(q \left(\frac{u_{k} \Delta^{n} x_{\sigma^{k}(m)}}{\rho} \right) \right) \right]^{p_{k}} = 0, \quad \text{uniformly in } m, \text{ for some } \rho > 0 \right\}$$

$$\begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, \mathcal{M}, u, p, q \end{bmatrix}_{\infty} = \left\{ x \in w(X) : \sup_{r,m} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M_{k} \left(q \left(\frac{u_{k} \Delta^{n} x_{\sigma^{k}(m)}}{\rho} \right) \right) \right]^{p_{k}} \\ < \infty, \quad \text{for some } \rho > 0 \right\}.$$

If we take $\mathcal{M}(x) = x$, we get

$$\begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, u, p, q \end{bmatrix}_{1} = \left\{ x \in w(X) : \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[q \left(\frac{u_{k} \Delta^{n} x_{\sigma^{k}(m)} - l}{\rho} \right) \right]^{p_{k}} = 0,$$

uniformly in *m*, for some $\rho > 0 \right\},$

$$\begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, u, p, q \end{bmatrix}_{0} = \left\{ x \in w(X) : \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[q \left(\frac{u_{k} \Delta^{n} x_{\sigma^{k}(m)}}{\rho} \right) \right]^{p_{k}} = 0,$$

uniformly in *m*, for some $\rho > 0 \right\}$

and

$$\begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, u, p, q \end{bmatrix}_{\infty} = \left\{ x \in w(X) : \sup_{r,m} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[q \left(\frac{u_{k} \Delta^{n} x_{\sigma^{k}(m)}}{\rho} \right) \right]^{p_{k}} < \infty,$$
 for some $\rho > 0 \right\}.$

If we take $p = (p_k) = 1$ for all k, we get

$$\begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, \mathcal{M}, u, q \end{bmatrix}_{1} = \left\{ x \in w(X) : \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M_{k} \left(q \left(\frac{u_{k} \Delta^{n} x_{\sigma^{k}(m)} - l}{\rho} \right) \right) \right] \\ = 0, \quad \text{uniformly in } m, \text{ for some } \rho > 0 \right\},$$

$$\begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, \mathcal{M}, u, q \end{bmatrix}_{0} = \left\{ x \in w(X) : \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M_{k} \left(q \left(\frac{u_{k} \Delta^{n} x_{\sigma^{k}(m)}}{\rho} \right) \right) \right] = 0, \\ \text{uniformly in } m, \text{ for some } \rho > 0 \right\}$$

$$\begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, \mathcal{M}, u, q \end{bmatrix}_{\infty} = \left\{ x \in w(X) : \sup_{r, m} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M_{k} \left(q \left(\frac{u_{k} \Delta^{n} x_{\sigma^{k}(m)}}{\rho} \right) \right) \right] < \infty, d n \in \mathbb{N} \right\}$$
for some $\rho > 0 \right\}.$

The main purpose of this paper is to introduce and study some lacunary sequence spaces defined by a Musielak-Orlicz function. We examine some topological properties and inclusion relations between the spaces $\left[V_{\sigma}, \Delta^{n}, \theta, \mathcal{M}, u, p, q\right]_{Z}$ in the second section. Third section devoted to the study of lacunary sequence spaces defined by a sequence of modulus functions. We also examine some topological properties and inclusion relation between the spaces $\left[V_{\sigma}, \Delta^{n}, \theta, F, p, q\right]_{Z}$. Throughout the paper *Z* will denote any one of the notation 0, 1 or ∞ .

2. Lacunary sequence spaces defined by a Musielak-Orlicz function

In this section of the paper we study very interesting properties like linearity, paranorm and some attractive inclusion relations between the spaces $\left[V_{\sigma}, \Delta^{n}, \theta, \mathcal{M}, u, p, q\right]_{Z}$.

Theorem 2.1. For any Musielak-Orlicz function $\mathcal{M} = (M_k)$ and for a bounded sequence of positive real numbers $p = (p_k)$, the spaces $\begin{bmatrix} V_{\sigma}, \Delta^n, \theta, \mathcal{M}, u, p, q \end{bmatrix}_Z$ are linear over the field of complex numbers \mathbb{C} .

Proof. Let $x = (x_k)$, $y = (y_k) \in [V_{\sigma}, \Delta^n, \theta, \mathcal{M}, u, p, q]_0$ and let $\alpha, \beta \in \mathbb{C}$. Then there exist positive numbers ρ_1 and ρ_2 such that

$$\lim_{r\to\infty}\frac{1}{h_r}\sum_{k\in I_r}\left[M_k\left(q\left(\frac{u_k\Delta^n x_{\sigma^k(m)}}{\rho_1}\right)\right)\right]^{p_k}=0$$

and

$$\lim_{r\to\infty}\frac{1}{h_r}\sum_{k\in I_r}\left[M_k\left(q\left(\frac{u_k\Delta^n y_{\sigma^k(m)}}{\rho_2}\right)\right)\right]^{p_k}=0.$$

Define $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since $\mathcal{M} = (M_k)$ is non-decreasing and con-

vex, q is a seminorm and so by using inequality (2), we have

$$\begin{split} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{\alpha u_k \Delta^n x_{\sigma^k(m)} + \beta u_k \Delta^n y_{\sigma^k(m)}}{\rho_3} \right) \right) \right]^{p_k} \\ & \leq \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{\alpha u_k \Delta^n x_{\sigma^k(m)}}{\rho_3} \right) + q \left(\frac{\beta u_k \Delta^n y_{\sigma^k(m)}}{\rho_3} \right) \right) \right]^{p_k} \\ & \leq K \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{u_k \Delta^n x_{\sigma^k(m)}}{\rho_1} \right) \right) \right]^{p_k} + K \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{u_k \Delta^n y_{\sigma^k(m)}}{\rho_2} \right) \right) \right]^{p_k} \\ & \to 0 \quad \text{as } r \to \infty \quad \text{uniformly in } m. \end{split}$$

This proves that $\left[V_{\sigma}, \Delta^{n}, \theta, \mathcal{M}, u, p, q\right]_{0}$ is a linear space. Similarly, we can prove that $\left[V_{\sigma}, \Delta^{n}, \theta, \mathcal{M}, u, p, q\right]_{1}$ and $\left[V_{\sigma}, \Delta^{n}, \theta, \mathcal{M}, u, p, q\right]_{\infty}$ are linear spaces.

Theorem 2.2. For any Musielak-Orlicz function $\mathcal{M} = (M_k)$ and $p = (p_k)$ be a bounded sequence of positive real numbers, the spaces $\begin{bmatrix} V_{\sigma}, \Delta^n, \theta, \mathcal{M}, u, p, q \end{bmatrix}_Z$ are paranormed spaces, paranormed defined by

$$g(x) = \inf \left\{ \rho^{\frac{p_n}{H}} : \left(\sup_{k \ge 1} \left[M_k \left(q \left(\frac{u_k \Delta^n x_{\sigma^k}(m)}{\rho} \right) \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1, \ \rho > 0,$$

uniformly in $m \right\},$

where $H = \max(1, \sup_k p_k)$.

Proof. We shall prove the result for the case $[V_{\sigma}, \Delta^n, \theta, \mathcal{M}, u, p, q]_{\infty}$. Clearly g(x) = g(-x) and $g(\theta) = 0$ where θ is the zero sequence of *X*. Let $x = (x_k)$, $y = (y_k) \in [V_{\sigma}, \Delta^n, \theta, \mathcal{M}, u, p, q]_{\infty}$. Then there exist positive numbers ρ_1 and ρ_2 such that

$$\sup_{k\geq 1} \left[M_k \left(q \left(\frac{u_k \Delta^n x_{\sigma^k}(m)}{\rho_1} \right) \right) \right]^{p_k} \leq 1, \text{ uniformly in } m$$

and

$$\sup_{k\geq 1} \left[M_k \left(q \left(\frac{u_k \Delta^n y_{\sigma^k}(m)}{\rho_2} \right) \right) \right]^{p_k} \leq 1, \text{ uniformly in } m.$$

Let $\rho = \rho_1 + \rho_2$ and by using Minkowski's inequality, we have

$$\begin{split} \sup_{k\geq 1} & \left[M_k \left(q \left(\frac{u_k \Delta^n x_{\sigma^k}(m) + u_k \Delta^n y_{\sigma^k}(m)}{\rho} \right) \right) \right]^{p_k} \\ &= \sup_{k\geq 1} \left[M_k \left(q \left(\frac{u_k \Delta^n x_{\sigma^k}(m) + u_k \Delta^n y_{\sigma^k}(m)}{\rho_1 + \rho_2} \right) \right) \right]^{p_k} \\ &\leq \left(\frac{\rho_1}{\rho_1 + \rho_2} \right) \sup_{k\geq 1} \left[M_k \left(q \left(\frac{u_k \Delta^n x_{\sigma^k}(m)}{\rho_1} \right) \right) \right]^{p_k} \\ &+ \left(\frac{\rho_2}{\rho_1 + \rho_2} \right) \sup_{k\geq 1} \left[M_k \left(q \left(\frac{u_k \Delta^n y_{\sigma^k}(m)}{\rho_2} \right) \right) \right]^{p_k} \\ &\leq 1, \text{ uniformly in } m. \end{split}$$

Hence

$$\begin{split} g(x+y) &= \inf\left\{ (\rho_1 + \rho_2)^{\frac{p_n}{H}} : \left(\sup_{k \ge 1} \left[M_k \left(q \left(\frac{u_k \Delta^n x_{\sigma^k}(m) + u_k \Delta^n y_{\sigma^k}(m)}{\rho} \right) \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1, \\ \rho > 0, \text{ uniformly in } m \right\} \\ &\leq \inf\left\{ (\rho_1)^{\frac{p_n}{H}} : \left(\sup_{k \ge 1} \left[M_k \left(q \left(\frac{u_k \Delta^n x_{\sigma^k}(m)}{\rho_1} \right) \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1, \\ \rho_1 > 0, \text{ uniformly in } m \right\} \\ &+ \inf\left\{ (\rho_2)^{\frac{p_n}{H}} : \left(\sup_{k \ge 1} \left[M_k \left(q \left(\frac{u_k \Delta^n y_{\sigma^k}(m)}{\rho_2} \right) \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1, \end{split}$$

$$\rho_2 > 0$$
, uniformly in m

$$=g(x)+g(y).$$

Finally, we prove that the scalar multiplication is continuous. Let λ be any complex number. By definition, we have

$$g(\lambda x) = \inf \left\{ \rho^{\frac{p_n}{H}} : \left(\sup_{k \ge 1} \left[M_k \left(q \left(\frac{\lambda u_k \Delta^n x_{\sigma^k}(m)}{\rho} \right) \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1,$$

$$\rho > 0, \text{ uniformly in } m \right\}$$

$$= \inf \left\{ \left(|\lambda|t \right)^{\frac{p_n}{H}} : \left(\sup_{k \ge 1} \left[M_k \left(q \left(\frac{u_k \Delta^n x_{\sigma^k}(m)}{t} \right) \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1, \ t > 0,$$

uniformly in $m \right\},$

where $t = \frac{\rho}{|\lambda|}$. This completes the proof of the theorem.

Theorem 2.3. Let $\mathcal{M}' = (\mathcal{M}'_k)$ and $\mathcal{M}'' = (\mathcal{M}'_k)$ be two Musielak-Orlicz functions. Then we have $\begin{bmatrix} V_{\sigma}, \Delta^n \theta, \mathcal{M}', u, p, q \end{bmatrix}_Z \cap \begin{bmatrix} V_{\sigma}, \Delta^n, \theta, \mathcal{M}'', u, p, q \end{bmatrix}_Z \subseteq \begin{bmatrix} V_{\sigma}, \Delta^n, \theta, \mathcal{M}' + \mathcal{M}'', u, p, q \end{bmatrix}_Z$.

Proof. The proof is easy so we omit it.

Theorem 2.4. Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function, $p = (p_k)$ be a bounded sequence of positive real numbers and q_1 , q_2 are two seminorms on X. Then

$$\begin{bmatrix} V_{\sigma}, \Delta^n, \theta, \mathcal{M}, u, p, q_1 \end{bmatrix}_Z \cap \begin{bmatrix} V_{\sigma}, \Delta^n, \theta, \mathcal{M}, u, p, q_2 \end{bmatrix}_Z \neq \varnothing.$$

Proof. The zero elements belongs to $\begin{bmatrix} V_{\sigma}, \Delta^n, \theta, \mathcal{M}, u, p, q_1 \end{bmatrix}_Z$ and $\begin{bmatrix} V_{\sigma}, \Delta^n, \theta, \mathcal{M}, u, p, q_2 \end{bmatrix}_Z$, thus the intersection is non empty.

Theorem 2.5. For any Musielak-Orlicz function $\mathcal{M} = (M_k)$, let q_1 , q_2 be two seminorms on X. Then the following results holds: (i) If q_1 is stronger than q_2 , then

$$\left[V_{\sigma},\Delta^{n},\theta,\mathcal{M}',u,p,q_{1}\right]_{Z}\subset\left[V_{\sigma},\theta,\mathcal{M}',u,p,q_{2}\right]_{Z},$$

(ii)

$$egin{split} \left[V_{m{\sigma}},\Delta^n,m{ heta},\mathcal{M},u,p,q_1
ight]_Z \cap \left[V_{m{\sigma}},\Delta^n,m{ heta},\mathcal{M},u,p,q_2
ight]_Z \ &\subset \left[V_{m{\sigma}},m{ heta},\mathcal{M},u,p,q_1+q_2
ight]_Z. \end{split}$$

Proof. The proof is easy so we omit it.

Theorem 2.6. Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function. Then

$$\begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, \mathcal{M}, u, p, q \end{bmatrix}_{0} \subset \begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, \mathcal{M}, u, p, q \end{bmatrix}_{1} \subset \begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, \mathcal{M}, u, p, q \end{bmatrix}_{\infty}.$$
Proof. The inclusion $\begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, \mathcal{M}, u, p, q \end{bmatrix}_{0} \subset \begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, \mathcal{M}, u, p, q \end{bmatrix}_{1}$ is obvious. Let $x = (x_{k}) \in \begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, \mathcal{M}, u, p, q \end{bmatrix}_{1}$. Then we have
$$\frac{1}{h_{r}} \sum_{k \in I_{r}} \begin{bmatrix} M_{k} \left(q \left(\frac{u_{k} \Delta^{n} x_{\sigma^{k}(m)}}{\rho} \right) \right) \end{bmatrix}^{p_{k}}$$

$$\leq \frac{K}{h_{r}} \sum_{k \in I_{r}} \begin{bmatrix} M_{k} \left(q \left(\frac{u_{k} \Delta^{n} x_{\sigma^{k}(m)-l}}{\rho} \right) \right) \end{bmatrix}^{p_{k}} + \frac{K}{h_{r}} \sum_{k \in I_{r}} \begin{bmatrix} M_{k} \left(q \left(\frac{u_{k} \Delta^{n} x_{\sigma^{k}(m)-l}}{\rho} \right) \right) \end{bmatrix}^{p_{k}}$$

$$\leq \frac{K}{h_{r}} \sum_{i \in I} \begin{bmatrix} M_{k} \left(q \left(\frac{u_{k} \Delta^{n} x_{\sigma^{k}(m)-l}}{\rho} \right) \right) \end{bmatrix}^{p_{k}} + K \max \left\{ 1, \begin{bmatrix} M_{k} \left(q \left(\frac{l}{\rho} \right) \right) \end{bmatrix}^{G} \right\}.$$

41

Thus $x = (x_k) \in [V_{\sigma}, \Delta^n, \theta, \mathcal{M}, u, p, q]_{\infty}$. This completes the proof of the theorem.

Theorem 2.7. Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function and $\theta = (i_r)$ be a lacunary sequence. Then the following result holds: (i) If $\liminf_r q_r > 1$, then $\left[V_{\sigma}, \Delta^n, \mathcal{M}, u, p, q\right]_Z \subset \left[V_{\sigma}, \Delta^n, \theta, \mathcal{M}, u, p, q\right]_Z$, (ii) If $\limsup_r q_r < \infty$, then $\left[V_{\sigma}, \Delta^n, \theta, \mathcal{M}', u, p, q_1\right]_Z \subset \left[V_{\sigma}, \Delta^n, \mathcal{M}', u, p, q_2\right]_Z$, (iii) If $1 < \liminf_r q_r \le \limsup_r q_r < \infty$, then

$$\begin{bmatrix} V_{\sigma}, \Delta^n, \mathcal{M}, u, p, q \end{bmatrix}_Z = \begin{bmatrix} V_{\sigma}, \Delta^n, \theta, \mathcal{M}, u, p, q \end{bmatrix}_Z$$

Proof. The proof is easy so we omit it.

Theorem 2.8. Let $0 < p_k \le t_k$ and $\left(\frac{t_k}{p_k}\right)$ be bounded. Then

$$\left[V_{\sigma},\Delta^{n},\boldsymbol{\theta},\mathcal{M},u,t,q\right]_{Z}\subset\left[V_{\sigma},\Delta^{n},\boldsymbol{\theta},\mathcal{M},u,p,q\right]_{Z}$$

Proof. We shall prove it for the case Z = 1. Let $x = (x_k) \in [V_{\sigma}, \Delta^n, \theta, \mathcal{M}, u, t, q]_1$. We write

$$S_k = \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{u_k \Delta^n x_{\sigma^k(m)} - l}{\rho} \right) \right) \right]^{p_k}$$

and $(\mu_k) = \left(\frac{p_k}{t_k}\right)$ for all $k \in \mathbb{N}$. Then $0 < \mu_k \le 1$ for all $k \in \mathbb{N}$. Take $0 < \mu < \mu_k$ for all $k \in \mathbb{N}$. Define the sequence u_k and v_k as follows:

For $S_k \ge 1$, let $u_k = S_k$ and $v_k = 0$ and for $S_k < 1$, let $u_k = 0$ and $v_k = S_k$. Then clearly for all $k \in \mathbb{N}$, we have $S_k = u_k + v_k$, $S_k^{\mu_k} = u_k^{\mu_k} + v_k^{\mu_k}$. Now it follows that $u_k^{\mu_k} \le u_k \le S_k$ and $v_k^{\mu_k} \le v_k^{\mu}$. Therefore,

$$\frac{1}{h_r} \sum_{k \in I_r} S_k^{\mu_k} = \frac{1}{h_r} \sum_{k \in I_r} (u_k^{\mu_k} + v_k^{\mu_k}) \le \frac{1}{h_r} \sum_{k \in I_r} S_k + \frac{1}{h_r} \sum_{k \in I_r} v_k^{\mu}.$$

Now for each k,

$$\frac{1}{h_r} \sum_{k \in I_r} v_k^{\mu} = \sum_{k \in I_r} \left(\frac{1}{h_r} v_k\right)^{\mu} \left(\frac{1}{h_r}\right)^{1-\mu}$$
$$\leq \left(\sum_{k \in I_r} \left[\left(\frac{1}{h_r} v_k\right)^{\mu}\right]^{\frac{1}{\mu}}\right)^{\mu} \left(\sum_{k \in I_r} \left[\left(\frac{1}{h_r}\right)^{1-\mu}\right]^{\frac{1}{1-\mu}}\right)^{1-\mu}$$
$$= \left(\frac{1}{h_r} \sum_{k \in I_r} v_k\right)^{\mu}$$

and so

$$\frac{1}{h_r}\sum_{k\in I_r}S_k^{\mu_k}\leq \frac{1}{h_r}\sum_{k\in I_r}S_k+\left(\frac{1}{h_r}\sum_{k\in I_r}v_k\right)^{\mu_r}$$

Hence $x = (x_k) \in \left[V_{\sigma}, \Delta^n, \theta, \mathcal{M}, u, p, q\right]_1$. Similarly we can prove other cases.

Theorem 2.9. The sequence space $\left[V_{\sigma}, \Delta^{n}, \theta, \mathcal{M}, u, p, q\right]_{\infty}$ is solid.

Proof. Let
$$x = (x_k) \in \left[V_{\sigma}, \Delta^n, \theta, \mathcal{M}, u, p, q\right]_{\infty}$$
, that is
$$\frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{u_k \Delta^n x_{\sigma^k(m)}}{\rho} \right) \right) \right]^{p_k} < \infty.$$

Let (α_k) be a sequence of scalars such that $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$. Thus we have

$$\frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{\alpha_k u_k \Delta^n x_{\sigma^k(m)}}{\rho} \right) \right) \right]^{p_k} \leq \frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(q \left(\frac{u_k \Delta^n x_{\sigma^k(m)}}{\rho} \right) \right) \right]^{p_k} < \infty.$$

This shows that $(\alpha_k x_k) \in [V_{\sigma}, \Delta^n, \theta, \mathcal{M}, u, p, q]_{\infty}$ for all sequences of scalars (α_k) with $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$, whenever $(x_k) \in [V_{\sigma}, \Delta^n, \theta, \mathcal{M}, u, p, q]_{\infty}$. Hence the space $[V_{\sigma}, \Delta^n, \theta, \mathcal{M}, u, p, q]_{\infty}$ is a solid sequence space. This completes the proof of the theorem. \Box

Corollary 2.10. The sequence space $\left[V_{\sigma}, \Delta^{n}, \theta, \mathcal{M}, u, p, q\right]_{\infty}$ is monotone.

Proof. It is easy to prove so we omit the details.

3. Lacunary sequence spaces defined by a sequence of modulus functions A modulus function is a function $f : [0, \infty) \to [0, \infty)$ such that

- 1. f(x) = 0 if and only if x = 0,
- 2. $f(x+y) \le f(x) + f(y)$ for all $x \ge 0, y \ge 0$,
- 3. f is increasing
- 4. f is continuous from right at 0.

It follows that f must be continuous everywhere on $[0,\infty)$. The modulus function may be bounded or unbounded. For example, if we take $f(x) = \frac{x}{x+1}$, then f(x) is bounded. If $f(x) = x^p$, 0 , then the modulus <math>f(x) is unbounded. Subsequentially, modulus function has been discussed in ([1], [9], [10], [17], [18]) and references therein.

Let $F = (f_k)$ be a sequence of modulus function, X be a locally convex Hausdorff topological linear space whose topology is determined by a set Q of seminorms q. Let $p = (p_k)$ be a bounded sequence of positive real numbers and $u = (u_k)$ be a sequence of strictly positive real numbers. By w(X) be denote the space of all X-valued sequences. In this section we define the following sequence spaces:

$$\begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, F, p, q \end{bmatrix}_{1} = \left\{ x = (x_{k}) \in w(X) : \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[f_{k} \left(q \left(\frac{\Delta^{n} x_{\sigma^{k}(m)} - l}{\rho} \right) \right) \right]^{p_{k}} = 0, \quad \text{uniformly in } m, \text{ for some } \rho > 0 \right\},$$

$$\begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, F, p, q \end{bmatrix}_{0} = \left\{ x = (x_{k}) \in w(X) : \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[f_{k} \left(q \left(\frac{\Delta^{n} x_{\sigma^{k}(m)}}{\rho} \right) \right) \right]^{p_{k}} = 0, \quad \text{uniformly in } m, \text{ for some } \rho > 0 \right\}$$

and

$$\begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, F, p, q \end{bmatrix}_{\infty} = \left\{ x = (x_{k}) \in w(X) : \sup_{r,m} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[f_{k} \left(q \left(\frac{\Delta^{n} x_{\sigma^{k}(m)}}{\rho} \right) \right) \right]^{p_{k}} \\ < \infty, \quad \text{for some } \rho > 0 \right\}.$$

If we take F(x) = x, we get

$$\begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, p, q \end{bmatrix}_{1} = \left\{ x = (x_{k}) \in w(X) : \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[q \left(\frac{\Delta^{n} x_{\sigma^{k}(m)} - l}{\rho} \right) \right]^{p_{k}} = 0$$

uniformly in *m*, for some $\rho > 0 \right\},$

$$\begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, p, q \end{bmatrix}_{0} = \left\{ x = (x_{k}) \in w(X) : \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[q \left(\frac{\Delta^{n} x_{\sigma^{k}(m)}}{\rho} \right) \right]^{p_{k}} = 0,$$

uniformly in *m*, for some $\rho > 0 \right\}$

$$\begin{bmatrix} V_{\sigma}, \Delta^n, \theta, p, q \end{bmatrix}_{\infty} = \left\{ x = (x_k) \in w(X) : \sup_{r,m} \frac{1}{h_r} \sum_{k \in I_r} \left[q \left(\frac{\Delta^n x_{\sigma^k(m)}}{\rho} \right) \right]^{p_k} < \infty, \\ \text{for some } \rho > 0 \right\}$$

If we take $p = (p_k) = 1$ for all k, we get

$$\begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, F, q \end{bmatrix}_{1} = \left\{ x = (x_{k}) \in w(X) : \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[f_{k} \left(q \left(\frac{\Delta^{n} x_{\sigma^{k}(m)} - l}{\rho} \right) \right) \right] \\ = 0, \quad \text{uniformly in } m, \text{ for some } \rho > 0 \right\},$$

$$\begin{bmatrix} V_{\sigma}, \Delta^{n}, \theta, F, q \end{bmatrix}_{0} = \left\{ x = (x_{k}) \in w(X) : \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[f_{k} \left(q \left(\frac{\Delta^{n} x_{\sigma^{k}(m)}}{\rho} \right) \right) \right] = 0,$$

uniformly in *m*, for some $\rho > 0 \right\}$

and

$$\left[V_{\sigma}, \Delta^{n}, \theta, F, q\right]_{\infty} = \left\{x = (x_{k}) \in w(X) : \sup_{r,m} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[f_{k}\left(q\left(\frac{\Delta^{n} x_{\sigma^{k}(m)}}{\rho}\right)\right)\right] < \infty,$$
 for some $\rho > 0$.

The main purpose of this section is to study some topological properties and some inclusion relations between of the spaces $\left[V_{\sigma}, \Delta^{n}, \theta, F, p, q\right]_{Z}$.

Theorem 3.1. Let $F = (f_k)$ be a sequence of modulus functions and $p = (p_k)$ be a bounded sequence of positive real numbers. Then the spaces $\left[V_{\sigma}, \Delta^n, \theta, F, p, q\right]_Z$, $Z = 0, 1, \infty$ are linear over the field of complex numbers \mathbb{C} .

Proof. We shall prove the result for the case $[V_{\sigma}, \Delta^n, \theta, F, p, q]_0$. Let $x = (x_k)$, $y = (y_k) \in [V_{\sigma}, \Delta^n, \theta, F, p, q]_0$ and let $\alpha, \beta \in \mathbb{C}$. Then there exist positive numbers ρ_1 and ρ_2 such that

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left[f_k \left(q \left(\frac{\Delta^n x_{\sigma^k(m)}}{\rho_1} \right) \right) \right]^{p_k} = 0, \text{ uniformly in } m$$

$$\lim_{r\to\infty}\frac{1}{h_r}\sum_{k\in I_r}\left[f_k\left(q\left(\frac{\Delta^n y_{\sigma^k(m)}}{\rho_2}\right)\right)\right]^{p_k}=0, \text{ uniformly in } m.$$

Define $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since $F = (f_k)$ is non-decreasing, q is a seminorm and so by using inequality (2), we have

$$\frac{1}{h_r} \sum_{k \in I_r} \left[f_k \left(q \left(\frac{\alpha \Delta^n x_{\sigma^k(m)} + \beta \Delta^n y_{\sigma^k(m)}}{\rho_3} \right) \right) \right]^{p_k} \\ \leq \frac{1}{h_r} \sum_{k \in I_r} \left[f_k \left(q \left(\frac{\alpha \Delta^n x_{\sigma^k(m)}}{\rho_3} \right) + q \left(\frac{\beta \Delta^n y_{\sigma^k(m)}}{\rho_3} \right) \right) \right]^{p_k} \\ \leq K \frac{1}{h_r} \sum_{k \in I_r} \left[f_k \left(q \left(\frac{\Delta^n x_{\sigma^k(m)}}{\rho_1} \right) \right) \right]^{p_k} + K \frac{1}{h_r} \sum_{k \in I_r} \left[f_k \left(q \left(\frac{\Delta^n y_{\sigma^k(m)}}{\rho_2} \right) \right) \right]^{p_k} \to 0 \\ \text{as } r \to \infty \text{ uniformly in } m$$

This proves that $\left[V_{\sigma}, \Delta^{n}, \theta, F, p, q\right]_{0}$ is a linear space. Similarly, we can prove that $\left[V_{\sigma}, \Delta^{n}, \theta, F, p, q\right]_{1}$ and $\left[V_{\sigma}, \Delta^{n}, \theta, F, p, q\right]_{\infty}$ are linear spaces.

Theorem 3.2. Let $F = (f_k)$ be a sequence of modulus functions and $p = (p_k)$ be a bounded sequence of positive real numbers. Then the spaces $\begin{bmatrix} V_{\sigma}, \Delta^n, \theta, F, p, q \end{bmatrix}_Z$ are paranormed spaces, paranormed defined by

$$g^*(x) = \inf\left\{\rho^{\frac{p_n}{H}} : \left[\sup_{k\geq 1} f_k\left(q\left(\frac{\Delta^n x_{\sigma^k}(m)}{\rho}\right)\right)^{p_k}\right]^{\frac{1}{H}} \le 1, \rho > 0 \text{ uniformly in } m\right\},\$$

where $H = \max(1, \sup_k p_k)$.

Proof. We shall prove the theorem for the case $[V_{\sigma}, \Delta^n, \theta, F, p, q]_{\infty}$. Clearly, $g^*(x) = g(-x)$ and $g^*(\theta) = 0$ where θ is the zero sequence of X. Let $x = (x_k), y = (y_k) \in [V_{\sigma}, \Delta^n, \theta, F, p, q]_{\infty}$. Then there exist positive numbers ρ_1 and ρ_2 such that

$$\sup_{k\geq 1} f_k \left(q \left(\frac{\Delta^n x_{\sigma^k}(m)}{\rho_1} \right) \right)^{p_k} \leq 1, \text{ uniformly in } m$$

and

$$\sup_{k\geq 1} f_k\left(q\left(\frac{\Delta^n y_{\sigma^k}(m)}{\rho_2}\right)\right)^{p_k} \leq 1, \text{ uniformly in } m.$$

Let $\rho = \rho_1 + \rho_2$ and by using Minkowski's inequality, we have

$$\begin{split} \sup_{k\geq 1} f_k \Big(q\Big(\frac{\Delta^n x_{\sigma^k}(m) + \Delta^n y_{\sigma^k}(m)}{\rho}\Big) \Big)^{p_k} &= \sup_{k\geq 1} f_k \Big(q\Big(\frac{\Delta^n x_{\sigma^k}(m) + \Delta^n y_{\sigma^k}(m)}{\rho_1 + \rho_2}\Big) \Big) \Big]^{p_k} \\ &\leq \Big(\frac{\rho_1}{\rho_1 + \rho_2}\Big) \sup_{k\geq 1} f_k \Big[q\Big(\frac{\Delta^n x_{\sigma^k}(m)}{\rho_1}\Big) \Big]^{p_k} + \Big(\frac{\rho_2}{\rho_1 + \rho_2}\Big) \sup_{k\geq 1} f_k \Big[q\Big(\frac{\Delta^n y_{\sigma^k}(m)}{\rho_2}\Big) \Big]^{p_k} \\ &\leq 1, \text{uniformly in } m. \end{split}$$

Hence

$$g^{*}(x+y) = \inf \left\{ (\rho_{1}+\rho_{2})^{\frac{p_{n}}{H}} : \left(\sup_{k\geq 1} f_{k} \left(q \left(\frac{\Delta^{n} x_{\sigma^{k}}(m) + \Delta^{n} y_{\sigma^{k}}(m)}{\rho} \right) \right)^{p_{k}} \right)^{\frac{1}{H}} \\ \leq 1, \rho > 0, \text{ uniformly in } m \right\} \\ \leq \inf \left\{ (\rho_{1})^{\frac{p_{n}}{H}} : \left(\sup_{k\geq 1} f_{k} \left(q \left(\frac{\Delta^{n} x_{\sigma^{k}}(m)}{\rho_{1}} \right) \right)^{p_{k}} \right)^{\frac{1}{H}} \leq 1, \rho_{1} > 0, \\ \text{ uniformly in } m \right\} \\ + \inf \left\{ (\rho_{2})^{\frac{p_{n}}{H}} : \left(\sup_{k\geq 1} f_{k} \left(q \left(\frac{\Delta^{n} y_{\sigma^{k}}(m)}{\rho_{2}} \right) \right)^{p_{k}} \right)^{\frac{1}{H}} \leq 1, \rho_{2} > 0, \\ \text{ uniformly in } m \right\} \\ = g^{*}(x) + g^{*}(y).$$

Finally, we prove that the scalar multiplication is continuous. Let λ be any complex number. By definition, we have

$$g^{*}(\lambda x) = \inf \left\{ \rho^{\frac{p_{n}}{H}} : \left(\sup_{k \ge 1} f_{k} \left(q \left(\frac{\lambda \Delta^{n} x_{\sigma^{k}}(m)}{\rho} \right) \right)^{p_{k}} \right)^{\frac{1}{H}} \le 1, \rho > 0,$$

uniformly in $m \right\}$
$$= \inf \left\{ \left(|\lambda| t \right)^{\frac{p_{n}}{H}} : \left(\sup_{k \ge 1} f_{k} \left(q \left(\frac{\Delta^{n} x_{\sigma^{k}}(m)}{t} \right) \right)^{p_{k}} \right)^{\frac{1}{H}} \le 1, t > 0,$$

uniformly in $m \right\},$

where $t = \frac{\rho}{|\lambda|}$. This completes the proof of the theorem.

Theorem 3.3. Let $F' = (f'_k)$ and $F'' = (f''_k)$ be two sequences of modulus functions. Then we have

$$\left[V_{\sigma},\Delta^{n},\theta,F',p,q\right]_{Z}\cap\left[V_{\sigma},\Delta^{n},\theta,F'',u,p,q\right]_{Z}\subseteq\left[V_{\sigma},\Delta^{n},\theta,F'+F'',u,p,q\right]_{Z}.$$

Proof. The proof is easy so we omit it.

Theorem 3.4. Let $F = (F_k)$ be a sequence of modulus functions and $p = (p_k)$ be a bounded sequence of positive real numbers. Then for any two seminorms q_1 and q_2 on X, we have $\left[V_{\sigma}, \Delta^n, \theta, F, p, q_1\right]_Z \cap \left[V_{\sigma}, \Delta^n, \theta, F, p, q_2\right]_Z \neq \phi$.

Proof. Since the zero element belongs to $[V_{\sigma}, \Delta^n, \theta, F, p, q_1]_Z$ and $[V_{\sigma}, \Delta^n, \theta, F, p, q_2]_Z$ and thus the intersection is non empty.

Theorem 3.5. Let $F = (F_k)$ be a sequence of modulus functions. Then

$$\left[V_{\sigma},\Delta^{n},\theta,F,p,q\right]_{0}\subset\left[V_{\sigma},\Delta^{n},\theta,F,p,q\right]_{1}\subset\left[V_{\sigma},\Delta^{n},\theta,F,p,q\right]_{\infty}.$$

Proof. The inclusion $\left[V_{\sigma}, \Delta^{n}, \theta, F, p, q\right]_{0} \subset \left[V_{\sigma}, \Delta^{n}, \theta, F, p, q\right]_{1}$ is obvious. Let $x = (x_{k}) \in \left[V_{\sigma}, \Delta^{n}, \theta, F, p, q\right]_{1}$. Then we have $\frac{1}{h_{r}} \sum_{k \in I_{r}} \left[f_{k}\left(q\left(\frac{\Delta^{n} x_{\sigma^{k}(m)}}{\rho}\right)\right)\right]^{p_{k}}$

$$\leq K \frac{1}{h_r} \sum_{k \in I_r} \left[f_k \left(q \left(\frac{\Delta^n x_{\sigma^k(m)-l}}{\rho} \right) \right) \right]^{p_k} + K \frac{1}{h_r} \sum_{k \in I_r} \left[f_k \left(q \left(\frac{l}{\rho} \right) \right) \right]^{p_k} \\ \leq \frac{K}{h_r} \sum_{k \in I_r} \left[f_k \left(q \left(\frac{\Delta^n x_{\sigma^k(m)-l}}{\rho} \right) \right) \right]^{p_k} + K \max \left\{ 1, \left[f_k \left(q \left(\frac{l}{\rho} \right) \right) \right]^G \right\}.$$

Thus $x = (x_k) \in [V_{\sigma}, \Delta^n, \theta, F, p, q]_{\infty}$. This completes the proof of the theorem.

Theorem 3.6. Let $F = (f_k)$ be a sequence of modulus functions and let $\theta = (i_r)$ be a lacunary sequence. Then the following result holds: (i) If $\liminf_r q_r > 1$. Then $\left[V_{\sigma}, \Delta^n, F, p, q\right]_Z \subset \left[V_{\sigma}, \Delta^n, \theta, F, p, q\right]_Z$, (ii) if $\limsup_r q_r < \infty$. Then $\left[V_{\sigma}, \Delta^n, \theta, F, p, q\right]_Z \subset \left[V_{\sigma}, \Delta^n, F, p, q\right]_Z$, (iii) if $1 < \liminf_r q_r \le \limsup_r q_r < \infty$. Then

$$\left[V_{\sigma},\Delta^{n},F,p,q\right]_{Z}=\left[V_{\sigma},\Delta^{n},\theta,F,p,q\right]_{Z}$$

Proof. It is easy to prove so we omit it.

 \square

Theorem 3.7. Let $0 < p_k \leq t_k$ and $\left(\frac{t_k}{p_k}\right)$ be bounded. Then

$$\begin{bmatrix} V_{\sigma}, \Delta^n, \theta, F, t, q \end{bmatrix}_Z \subset \begin{bmatrix} V_{\sigma}, \Delta^n, \theta, F, p, q \end{bmatrix}_Z$$

Proof. We will prove it for the case Z = 1. Let $x = (x_k) \in \left[V_{\sigma}, \Delta^n, \theta, F, t, q\right]_1$. We write

$$S_k = \frac{1}{h_r} \sum_{k \in I_r} \left[f_k \left(q \left(\frac{\Delta^n x_{\sigma^k(m)}}{\rho} \right) \right) \right]^{p_k}$$

and $(\mu_k) = \left(\frac{p_k}{t_k}\right)$ for all $k \in \mathbb{N}$. Then $0 < \mu_k \le 1$ for all $k \in \mathbb{N}$. Take $0 < \mu < \mu_k$ for all $k \in \mathbb{N}$. Define the sequence u_k and v_k as follows:

For $S_k \ge 1$, let $u_k = S_k$ and $v_k = 0$ and for $S_k < 1$, let $u_k = 0$ and $v_k = S_k$. Then clearly for all $k \in \mathbb{N}$, we have $S_k = u_k + v_k$, $S_k^{\mu_k} = u_k^{\mu_k} + v_k^{\mu_k}$. Now it follows that $u_k^{\mu_k} \le u_k \le S_k$ and $v_k^{\mu_k} \le v_k^{\mu}$. Therefore

$$\frac{1}{h_r} \sum_{k \in I_r} S_k^{\mu_k} = \frac{1}{h_r} \sum_{k \in I_r} (u_k^{\mu_k} + v_k^{\mu_k}) \le \frac{1}{h_r} \sum_{k \in I_r} S_k + \frac{1}{h_r} \sum_{k \in I_r} v_k^{\mu}.$$

Now for each k,

$$\frac{1}{h_r} \sum_{k \in I_r} v_k^{\mu} = \sum_{k \in I_r} \left(\frac{1}{h_r} v_k\right)^{\mu} \left(\frac{1}{h_r}\right)^{1-\mu}$$
$$\leq \left(\sum_{k \in I_r} \left[\left(\frac{1}{h_r} v_k\right)^{\mu}\right]^{\frac{1}{\mu}}\right)^{\mu} \left(\sum_{k \in I_r} \left[\left(\frac{1}{h_r}\right)^{1-\mu}\right]^{\frac{1}{1-\mu}}\right)^{1-\mu}$$
$$= \left(\frac{1}{h_r} \sum_{k \in I_r} v_k\right)^{\mu}$$

and so

$$\frac{1}{h_r}\sum_{k\in I_r}S_k^{\mu_k} \leq \frac{1}{h_r}\sum_{k\in I_r}S_k + \left(\frac{1}{h_r}\sum_{k\in I_r}v_k\right)^{\mu}.$$

Hence $x = (x_k) \in [V_{\sigma}, \Delta^n, \theta, F, p, q]_1$. Similarly we can prove for other cases.

Theorem 3.8. The sequence space $\left[V_{\sigma}, \Delta^{n}, \theta, F, p, q\right]_{\infty}$ is solid. *Proof.* Let $x = (x_{k}) \in \left[V_{\sigma}, \Delta^{n}, \theta, F, p, q\right]_{\infty}$. Then $\frac{1}{h_{r}} \sum_{k \in I_{r}} \left[f_{k}\left(q\left(\frac{\Delta^{n} x_{\sigma^{k}(m)}}{\rho}\right)\right)\right]^{p_{k}} < \infty.$ Let (α_k) be a sequence of scalars such that $|\alpha_k| \le 1$ for all $k \in \mathbb{N}$. Thus we have

$$\frac{1}{h_r} \sum_{k \in I_r} \left[f_k \left(q \left(\frac{\alpha_k \Delta^n x_{\sigma^k(m)}}{\rho} \right) \right) \right]^{p_k} \leq \frac{1}{h_r} \sum_{k \in I_r} \left[f_k \left(q \left(\frac{\Delta^n x_{\sigma^k(m)}}{\rho} \right) \right) \right]^{p_k} < \infty.$$

This shows that $(\alpha_k x_k) \in [V_{\sigma}, \Delta^n, \theta, F, p, q]_{\infty}$ for all sequences of scalars (α_k) with $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$, whenever $(x_k) \in [V_{\sigma}, \Delta^n, \theta, F, p, q]_{\infty}$. Hence the space $[V_{\sigma}, \Delta^n, \theta, F, p, q]_{\infty}$ is a solid sequence space. This completes the proof of the theorem.

 \square

Corollary 3.9. The sequence space $\left[V_{\sigma}, \Delta^{n}, \theta, F, p, q\right]_{\infty}$ is monotone.

Proof. It is easy to prove so we omit the details.

REFERENCES

- [1] H. Altınok Y. Altın M. Isık, *The sequence Space* $Bv_{\sigma}(M, P, Q, S)$ on seminormed spaces, Indian J. Pure Appl. Math. 39 (2008), 49–58.
- [2] Y. Altın B. C. Tripathy M. Isık M. Et, *Strongly* (V_{σ}, θ, q) -summable sequences *defined by Orlicz function*, Fasciculi Math. 36 (2005), 15–26.
- [3] M. Et R. Çolak, On generalized difference sequence spaces, Soochow J. Math. 21 (1995), 377–386.
- [4] A. R. Freedman J. J. Sember M. Raphael, *Some Cesaro-type summability spaces*, Proc. London Math. Soc. 37 (1978), 508–520.
- [5] P. K. Kamthan M. Gupta, Sequence spaces and series, Lecture Notes in Pure and Applied Mathematics 65, Marcel Dekker Inc., New York, 1981.
- [6] H. Kızmaz, On certain sequences spaces, Canad. Math. Bull. 24 (1981), 169–176.
- [7] G.G. Lorentz, A contribution to the theory of divergent series, Acta Math. 80 (1948), 167–190.
- [8] J. Lindenstrauss L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971), 379–390.
- [9] I. J. Maddox, *Elements of functional Analysis*, Cambridge Univ. Press, 1970.
- [10] E. Malkowsky E. Savaş, Some λ -sequence spaces defined by a modulus, Archivum Math. 36 (2000), 219–228.
- [11] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989.

- [12] M. Mursaleen, Matrix transformation between some new sequence spaces, Houston J. Math. 9 (1983), 505–509.
- [13] M. Mursaleen, *Invariant means and some matrix transformation*, Tamkang J. Math. 10 (1979), 183–188.
- [14] J. Musielak, *Orlicz spaces and modular spaces*, Lecture Notes in Mathematics 1034, Springer, 1983.
- [15] K. Raj A. K. Sharma S. K. Sharma, A sequence space defined by a Musielak-Orlicz function, Int. J. Pure Appl. Math. 67 (2011), 475–484.
- [16] K. Raj S. K. Sharma A. K. Sharma, Some new sequence spaces defined by a sequence of modulus functions in n-normed spaces, Int. J. of Math. Sci. Eng. Appls. 5 (2011), 385–403.
- [17] K. Raj S. K. Sharma, Difference sequence spaces defined by a sequence of modulus functions, Proyectiones 30 (2) (2011), 189-199.
- [18] K. Raj S. K. Sharma, Some difference sequence spaces defined by a sequence of modulus functions, Int. J. Math. Archive 2 (2011), 236–240.
- [19] E. Savaş, *Strongly* σ *-convergent sequences*, Bull. Calcutta Math. Soc. 81 (1989), 295–300.
- [20] P. Schaefer, *Infinite matrices and invariant means*, Proc. Amer. Math. Soc. 36 (1972), 104–110.
- [21] A. Wilansky, *Summability through Functional Analysis*, North-Holland Math. Stud. 1984.

KULDIP RAJ School of Mathematics Shri Mata Vaishno Devi University, Katra-182320, J & K, India. e-mail: kuldipraj68@gmail.com

SUNIL K. SHARMA School of Mathematics Shri Mata Vaishno Devi University, Katra-182320, J & K, India. e-mail: sunilksharma42@yahoo.co.in