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LACUNARY SEQUENCE SPACES DEFINED BY
A MUSIELAK-ORLICZ FUNCTION

KULDIP RAJ - SUNIL K. SHARMA

In this paper we introduce lacunary sequence spaces defined by a
Musielak-Orlicz function M = (My) and a sequence of modulus func-
tions F = (f;). We also make an effort to study some topological proper-
ties and inclusion relations between these spaces.

1. Introduction and Preliminaries

Let /. and c denote the Banach spaces of bounded and convergent sequences
x = (x) normed by ||x|| = supy |x|, respectively. Let ¢ be a one-to-one mapping
of the set of positive integers into itself such that 6™ (n) = o(6™ (n)),m =
1,2,3,---. A continuous linear functional ¢ on [, is said to be an invariant

mean or a 0 —mean if and only if
1. @(x) > 0 when the sequence x = (x,) has x, > 0 for all n,
2. ¢(e) =1, wheree=(1,1,1,---) and

3. 0({xo(n)}) = @({xn}) for all x € .
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For certain kinds of mappings o every invariant mean ¢ extends the limit func-
tional on the space ¢, in the sense that ¢(x) = limx for all x € ¢. The set of all
o —convergent sequences will be denoted by V. If x = (x,,), set Tx = (Tx,) =
(Xg(n))- It can be shown in [20] that

Vo = {x € lw : lim#,,,(x) = le uniformly in n, /=0 —limx}, (1)
m

where ty, (x) = (xy +Txy+...+T™"x,)/(m+1). The special case of (1) in which
o(n) =n+ 1 was given by Lorentz [7]. Several authors including Schaefer [20],
Mursaleen [12], Savas [19] and many others have studied invariant convergent
sequences.

A bounded sequence x = (xy) is said to be strongly ¢ —convergent to a number /
if and only if (|x; —|) € Vi with o - limit zero (see[13]). By [Vs], we denote the
set of all strongly o —convergent sequences. It is known that ¢ C [V5| C Vi C lw.
By alacunary sequence 0 = (i,), r =0,1,2,---, where iy = 0, we shall mean an
increasing sequence of non-negative integers h, = (i, —i,_1) —> e as r — oo.
The intervals determined by 6 are denoted by I, = (i,_1,i,| and the ratio i, /i,
will be denoted by ¢g,. The space of lacunary strongly convergent sequences Ng
was defined by Freedman [4] as follows:

1
Ng = {x: (x) : lim " Z |x¢ —L| =0 for some L}.

-
G 7=

In [6], Kizmaz defined the sequence spaces
Z(A) = {x: (xk) @ (Axy) € Z} for Z=/.,c and cy,

where Ax = (Ax;) = (xx —xx4+1). Et and Colak [3] generalized the difference
sequence spaces to the sequence spaces

Z(A") = {x: (xx) : (A"x¢) € Z} for Z="/w,c and cy,
where n € N, A% = (x), Ax = (xx — Xpt1),
A'x = (A"x;) = (A" T — A" g ).

The generalized difference sequence has the following binomial representation

A () = i(—w( " )k

v=0
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An Orlicz function M : [0,00) — [0,00) is convex and continuous such that
M(0) =0, M(x) > 0 for x > 0. Let w be the space of all real or complex se-
quences x = (x;). Lindenstrauss and Tzafriri [8] used the idea of Orlicz function
to define the following sequence space,

EM:{XGW: ZM(M> <°<>}
= P
which is called as an Orlicz sequence space. The space ¢j; is a Banach space
with the norm
x| = inf{p >0: ZM(M) < 1}.
k=1 p

It is shown in [8] that every Orlicz sequence space £y contains a subspace iso-
morphic to £,(p > 1). An Orlicz function M satisfies Ay-condition if and only if
for any constant L > 1 there exists a constant K (L) such that M (Lu) < K(L)M (u)
for all values of u > 0.

A sequence M = (M) of Orlicz functions is called a Musielak-Orlicz function
(see [11], [14]). A sequence N = (Ny) defined by

Ni(v) = sup{|vju — My (u) - u > 0}, k=1,2,---
is called the complementary function of a Musielak-Orlicz function M. For

a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space £ 4
and its subspace h are defined as follows:

M= {XEWZIM(CX) < oo for some c>0}7

hap = {xGw:IM(cx) < oo for all c>0},

where I is a convex modular defined by

Ipm(x) = i M (%), x = (xk) € L
=i

We consider £ equipped with the Luxemburg norm
1] :mf{k > O:IMG) < 1}

or equipped with the Orlicz norm

||x|[° :inf{%(l—i—IM(kx)) :k>0}.
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A Musielak-Orlicz function M = (M) is said to satisfy Ap-condition if there
exist constants a,K > 0 and a sequence ¢ = (¢x);, € EL (the positive cone of
1 such that the inequality

Mk(Zu) < KMk(u) +cr

holds for all k € N and u € R, whenever My (u) < a.
Let X be a linear metric space. A function p : X — R is called paranorm, if

1. p(x) >0, forall x € X,
p(—x) = p(x), forall x € X,

px+y) < p(x)+p(y), forall x,y € X,

el

if (A4,) is a sequence of scalars with A, — A as n — o and (x,) is a se-
quence of vectors with p(x, —x) — 0 as n — oo, then p(A,x, — Ax) —
Oasn — oo,

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the
pair (X, p) is called a total paranormed space. It is well known that the metric
of any linear metric space is given by some total paranorm (see [21], Theorem
10.4.2, P-183). For more detail about sequence spaces (see [2], [15], [16]) and
references therein.

A sequence space E is said to be solid or normal if (ogx;) € E whenever (x;) € E
and for all sequences of scalars(oy) with |og| < 1 (see [14]).

The following inequality will be used throughout the paper. If 0 < py <suppy =
G, K = max(1,267") then

i+ bl < Kl + [ou] ) @

for all k and ay, by € C. Also |a|P* < max(1,|a|%) for all a € C.

Let M = (M) be a Musielak-Orlicz function and X be a locally convex Haus-
dorff topological linear space whose topology is determined by a set Q of semi-
norms q. Let p = (p;) be a bounded sequence of positive real numbers and
u = (uy) be a sequence of strictly positive real numbers. By w(X) we denotes
the space of all X-valued sequences. In this paper we define the following se-
quence spaces:

[VG,A”,G,M,u,p,q} 1
- {x ew(X): rlgghlkezl [Mk(q(‘kmcf;"(m)_l))}pk _o,

uniformly in m, for some p > O},
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1 l/tkAnka(m) Dk
n — - 11
Vo, A ,G,M,u,p,q]o—{xew(X).rlglgohrkzel [Mk(q( o ))]

=0, uniformly in m, for some p > 0}

and
VG’AH’G,M’u,p’q]w = {xe W(X) . Sup}:kzl [Mk<q<w>>:|pk
rm T ke,

< oo, for some p >O}.

If we take M (x) = x, we get

1

[Vg,A",G,Man‘IL = {rewr):tim - ¥ g

= ()’
r—oo hr = p

ukA"ka(m) - l>:| Dk
uniformly in m, for some p > O},

[Vg,A”,(—),u,p,q}O = {xE w(X) : lim 1 Z [q(

r—o0 hr ke, P

URA" Xk (1) )} Pk

uniformly in m, for some p > O}

and

1 WA X gk (1 ,
VG,A",O,M,Paq} :{wa(X):suph—Z [Q(%>]pk<m,

I kel,

for some p > O}.

If we take p = (py) = 1 for all k, we get
1 up A" x —1
[Vg,A”,O,M,u,q} = {x ew(X): lim — Z [Mk(q<%>)}
1 r—yoo hr kel, p

=0, uniformly in m, for some p > O},

[VG,A”, e,M,u,q}o - {x € w(X) : lim - Y [Mk (q(l”‘A’t;"k(””))} —0,

e hr kel,

uniformly in m, for some p > 0}
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and

[VmAn?@’M,u,q}w = {xe w(X): srgr[l);”;;r [Mk<q<w>>} < oo,

for some p > 0}.

The main purpose of this paper is to introduce and study some lacunary
sequence spaces defined by a Musielak-Orlicz function. We examine some

topological properties and inclusion relations between the spaces |:Vg, A" 0, M,

u, p,q} in the second section. Third section devoted to the study of lacunary
z

sequence spaces defined by a sequence of modulus functions. We also ex-
amine some topological properties and inclusion relation between the spaces

[Vg, A", 0,F,p, q} ; Throughout the paper Z will denote any one of the notation
0, 1 or oo,

2. Lacunary sequence spaces defined by a Musielak-Orlicz function

In this section of the paper we study very interesting properties like linearity,
paranorm and some attractive inclusion relations between the spaces

VGaAna 97M7M7Pa4]2~

Theorem 2.1. For any Musielak-Orlicz function M = (My) and for a bounded

sequence of positive real numbers p = (py), the spaces [Vg,A”, 0, M,u,p,q Z

are linear over the field of complex numbers C.

Proof. Let x = (xx), y= () € [Vg,A”, 0, M,u,p,qlo and let @, B € C. Then
there exist positive numbers p; and p; such that

L Ce))

" kel, p1

and

i (o)) <o

T kel, P2

Define p3 = max(2|a|pi,2|B|p2). Since M = (My) is non-decreasing and con-
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vex, ¢ is a seminorm and so by using inequality (2), we have

A" BukA"Y gk (1m
(e e

B (M

(N
M,(@(““‘”;:w))] i L <<““‘5;"“>>]”

— 0 as r— oo uniformly in m.

This proves that [VG,A”,G,M,M, p,q}o is a linear space. Similarly, we can

prove that [Vg,A”, Q,M,u,p,q} | and [VU,A",O,M,u,p,q} are linear spaces.
O

Theorem 2.2. For any Musielak-Orlicz function M = (My) and p = (py) be a
bounded sequence of positive real numbers, the spaces [Vg,A", 0, M,u,p, q] Z

are paranormed spaces, paranormed defined by

o = int{p# : (sup [wge (U222 )] M) <1, p o,

k>1 p

uniformly in m},

where H = max(1,sup; px).

Proof. We shall prove the result for the case [Vg,A", 6, M, u, p,q} . Clearly
g(x) = g(—x) and g(0) = 0 where 0 is the zero sequence of X. Let x = (x¢), y =
(k) € [VG,A", 0, M,u,p, q} . Then there exist positive numbers p; and p; such
that

A"x i ,
sup [Mk (q(w))} " <1, uniformly in m
k>1 P1

and

Al’l
sup [Mk <q<w>>] " <1, uniformly in m.
k>1 p2
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Let p = p; + p» and by using Minkowski’s inequality, we have

sup [Mk (q ( A" x g1 (m) + up A"y g (m ) )} Pr

k>1 p
A" A"
gl e )
k>1 p1+p2

< (50 ) [ (a2 ) ) )
+(pffp2>;‘;ﬂMk<q(”kM“" )"

< 1, uniformly in m.

Hence
glx+y)
:inf{(pl+p2)%’“ : <il>111) [Mk<q(ukmxgk(m):)rukA"yok(m))ﬂpk)é <1,

p > 0, uniformly in m}

< { (o) (s [ (o (42 ))) ) <,
p1 > 0, uniformly in m}
il (s [ o5 )) ") <1
p2 >0, uniformly in m}

=g(x)+g(y).

Finally, we prove that the scalar multiplication is continuous. Let A be any
complex number. By definition, we have

g0 =int {p' (ig) [, (q(’l”"An;“k(m)))r")‘l’ <1,

p >0, uniformly in m}

:inf{(|),|t)% : (sup [Mk(q(lmak(m)))rk>é <1, t>0,

k>1 t
uniformly in m},

where ¢ = %. This completes the proof of the theorem. 0
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Theorem 2.3. Let M' = (M}) and M" = (M}!) be two Musielak-Orlicz func-
tions. Then we have [VG,,A”G,M’,u,p,q]Z [VG,A",O,M”,u,p,q , S
[Vg,A”,G,M’%—M”,u,p,qL.
Proof. The proof is easy so we omit it. O

Theorem 2.4. Let M = (My) be a Musielak-Orlicz function, p = (px) be a
bounded sequence of positive real numbers and q1, q, are two seminorms on X.
Then

|:VO-7An7 97'M7u7p7q1:|zm |:VO-7An7 97M7u7p7q2:|z # Q'
Proof. The zero elements belongs to [Vg,A”, 6, M,u, p,ql] . and

[Vg,A”, 0, M, u, p,qz} . thus the intersection is non empty. O

Theorem 2.5. For any Musielak-Orlicz function M = (My,), let q1, q2 be two
seminorms on X. Then the following results holds:
(i) If q1 is stronger than q,, then

[VG,A”,G,M’,u,p,ql}ZC [Vg,G,MI,u,p,qQL,

(ii)

{Vg,An,G,M,u,p,ql}Zﬂ {Vg,An,G,M,u,p,qz}Z

- {Vg,ej/\/l,u,p,ql—qu]z.

Proof. The proof is easy so we omit it. O
Theorem 2.6. Let M = (M) be a Musielak-Orlicz function. Then

[VG,A",O,M,u,p,q}O C [VU,A”,0,./\/I,u,p,q}1 C {VG,A",G,M,u,p,q}W
Proof. The inclusion [VG,A”,G,M,u,p,q}O C [Vg,A”,B,M,u,p,q]l is obvi-
ous. Letx = (x) € [Vg,A",G,M,u,p,q} g Then we have

i I (o))

I kel,

9

SR TR )
< E (o)) 1o o))
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Thus x = (x) € [VG,A", 0, M, u, p,q} . This completes the proof of the theo-

rem. O

Theorem 2.7. Let M = (My) be a Musielak-Orlicz function and 6 = (i,) be a
lacunary sequence. Then the following result holds:

(l) If liminf% > 17 then |:VO'7An7M7uapch}Z C |:v67An7 eaMauapvq}Zv
r
(ii) If limsupg, < oo, then [Vg,A",G,M’,u,p,ql]Z C [Vg,A",M’,u,p,qQL,
r
(iii) If 1 < liminfg, < limsupg, < o, then
r

-
|:VG7An7M7u7p7q:|Z = |:V(77An7 97/\/17“71979}2-
Proof. The proof is easy so we omit it. O

Theorem 2.8. Let 0 < pi <ty and (%) be bounded. Then
|:V67An7 9>M7uat7qi|z - |:V01An7 eaMa%I%CI}Z-
Proof. We shall prove it for the case Z = 1. Let x = (x;) € {VG,A”, 0, M, u,

t,q} K We write

1

Sk = . Y [Mk<q(”kAn)C""(m)_l>)rk

I kel, P

and () = (f—k") forall k € N. Then O < ; <1 for all k € N. Take 0 < u < i
for all k£ € N. Define the sequence u; and vy as follows:

For S, > 1, let u; = Sy and v, = 0 and for Sy < 1, let uy = 0 and vy, = S;. Then
clearly for all kK € N, we have S, = uy + vk,S,‘:" = uf" + vf". Now it follows that

ut < uy < S and vi* < vl Therefore,

1 1 1 1
A I AEEED M UARR R DS D
h’ kel, h’ kel, h’ kel, h’ kel,

Now for each k,
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and so
fzs;;k_h Zsk+( Yo

r kel, I kel, ’ kel,

Hence x = (x¢) € [VG,A”, 0, M, u, p,q} - Similarly we can prove other cases.
O

Theorem 2.9. The sequence space [Vg, A" O, M, u,p, q} is solid.

Proof. Letx = (x;) € [VG,A",O,M,u,p,qL, that is
1 URA Xk (1) P
i & Pn(a(P=57)]" <

Let (0y) be a sequence of scalars such that |oy| < 1 for all kK € N. Thus we have

i & (o))" < 22,[ (o))"

hy kel, P
<

This shows that (ogx;) € [VG,A", 0, M,u, p,q] for all sequences of scalars
(o) with |a| < 1 for all k € N, whenever (x) € [VG,A”, G,M,u,p,q} . Hence

the space [Vg,A", 0, M,u, p,q} is a solid sequence space. This completes the
proof of the theorem. O

Corollary 2.10. The sequence space [VG,A”, 0, M, u, p,q} is monotone.

Proof. It is easy to prove so we omit the details. O

3. Lacunary sequence spaces defined by a sequence of modulus functions

A modulus function is a function f : [0,e0) — [0, o) such that
1. f(x) =0if and only if x =0,
2. flx+y) < f(x)+ f(y) forallx >0,y >0,
3. fisincreasing

4. f is continuous from right at 0.
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It follows that f must be continuous everywhere on [0, ). The modulus func-
tion may be bounded or unbounded. For example, if we take f(x) = 1> then
f(x) is bounded. If f(x) =x”,0 < p < 1, then the modulus f(x) is unbounded.
Subsequentially, modulus function has been discussed in ([1], [9], [10], [17],
[18]) and references therein.

Let F = (fx) be a sequence of modulus function, X be a locally convex Haus-
dorff topological linear space whose topology is determined by a set Q of semi-
norms ¢q. Let p = (py) be a bounded sequence of positive real numbers and
u = (ux) be a sequence of strictly positive real numbers. By w(X) be denote
the space of all X-valued sequences. In this section we define the following
sequence spaces:

[VG,A”,G,F,p,q] = {XZ (k) € w(X): }gghlrké [fk <4<W>>]m

=0, uniformly in m, for some p > 0},

[VG,A”,G,F,p,q]O = {x = (x) € w(X) : lim L Y [fk (q(%»}pk

r—oo riel, P

=0, uniformly in m, for some p > O}

and
[VmA”,G,F,p,qL = {x = () € w(X): an?fikg, [fk(‘l(%»rk

< oo forsome p > 0}.
If we take F(x) = x, we get

o 0] = =t w0 3 o) o

uniformly in m, for some p > 0},

[VG,A",G,p,q]O = {x: (x¢) € w(X) : rlgg;kezl [q(A"x;"(m))}pk _o,

uniformly in m, for some p > O}
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and

[Vg,An,evlJ,Q}m _ {xz (xx) € w(X) : srung);rkez;r [q(A”x;k(m))]pk < oo,

for some p > O}.

If we take p = (py) = 1 for all k, we get
[VG,A”,G,F,qL = {x: (xx) € w(X) }Lngo;ilcez;r [fk(q(mol;g’")_l»}

=0, uniformly in m, for some p > 0},

Vout0.q] = (=) €w00): Jim o ¥ [(a(F-22) )] =0,

ree hy kel,

uniformly in m, for some p > 0}

and
Vo, ",0,F,q| = {x=(x) € wlX): Sfrfljr,;‘ [fk(q(ngk("”))} <o
for some p > O}.

The main purpose of this section is to study some topological properties and

some inclusion relations between of the spaces [VG,A", 6,F,p, q} .

Theorem 3.1. Let F = (fi) be a sequence of modulus functions and p = (py)

be a bounded sequence of positive real numbers. Then the spaces |Vs,A", 0, F,

D, q} . Z =0, 1, are linear over the field of complex numbers C.

Proof. We shall prove the result for the case [Vg,A”, 0,F, p,q} . Let x = (xz),

y=(w) € [Vg,A”, O,F,p,q} . and let o, B € C. Then there exist positive num-
bers p; and p; such that

A'x Gk(

m) Pk . .
))} =0, uniformly in m
T kel, P1
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and A
1 Yok(m) ))} P : .
}Lngo Y Z [fk< (72 =0, uniformly in m.

I kel, p

Define p3 = max(2|a|pi,2|B|p2). Since F = (f¢) is non-decreasing, ¢ is a semi-
norm and so by using inequality (2), we have

*Z[fk( <anGk )+ BA™Y 6k (m )))i|[’k

Vkel p3
A" Xk (m BA"Y gk (1 P
9 [fk( (Fpr ™ aC—p)))
<k T[S0 e E [aa(Fae)]) " o

as r — oo uniformly in m.

This proves that [VG,A”, 0,F, p,q} is a linear space. Similarly, we can prove

that [V(;,A”,G,F,p,q]1 and [Vg,A”,G,F,p,q] are linear spaces. ]

Theorem 3.2. Let F = (fi) be a sequence of modulus functions and p = (py) be

a bounded sequence of positive real numbers. Then the spaces |Vs,A",0,F,p,

q] Z are paranormed spaces, paranormed defined by

A"xc,k (m)

p ))pk]}i <l,p>0 uniformlyinm},

¢ =in{p - [sup i o

k>1

where H = max(1,supy px).

Proof. We shall prove the theorem for the case [Vg,A”, 0,F, p,q} . Clearly,
g"(x) = g(—x) and g*(0) = 0 where 6 is the zero sequence of X. Let x =
(xx),y = () € [Vg,A”, 0,F, p,q} . Then there exist positive numbers p; and
P2 such that ”

A'x 5k p
sup fx <Q<M>> ‘ <1, uniformly in m
k>1 p1

and

An
sup fi (6] (M))pk <1, uniformly in m.
k=1 p2
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Let p = p1 + p2 and by using Minkowski’s inequality, we have
A" A" p
Supjk<q< Xgt(m) + yckOn)>> ‘

k>1

,  sup i g (202 0 ) )
()l (B s ()]

< 1,uniformly in m.

Hence

g (x+y) :inf{(p1 +p2)%” : (igﬁ)f" <q<Anka(m);Anyck(m))yk)}z

<1,p >0, uniformly in m}

<int{(p0): (supfi(a( X)) <1150

k>1 p1
uniformly in m}

+inf{(p2)% : (supfk<q(A”ygk(M)))m)é

< 17P2 >0,
k>1 P2

uniformly in m}

=g (x)+&"(y).

Finally, we prove that the scalar multiplication is continuous. Let A be any
complex number. By definition, we have

g (Ax) :inf{p% : (supfk (q(kAnka(m»)pk);{ <1,p>0,

>1 p

uniformly in m}

{30 (s () <o

t

uniformly in m},
where ¢t = ﬁ. This completes the proof of the theorem.

O

Theorem 3.3. Let F' = (f]) and F" = (f]') be two sequences of modulus func-
tions. Then we have

V(FaAn797F/7p>q:|Zm |:V67An79>F”auap7qi|Z g |:V61An797F/+F”7M>p7q Z‘
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Proof. The proof is easy so we omit it. O

Theorem 3.4. Let F = (F;) be a sequence of modulus functions and p = (py)
be a bounded sequence of positive real numbers. Then for any two seminorms

QI anqu OnX, we have [VGaAnaevvavql}Zm |:VG7A’179aF7p’QZi|Z 7& (P

Proof. Since the zero element belongs to [VG,A”, 0,F,p, ql}z and

[Vg, A" O0,F,p, qg} . and thus the intersection is non empty. O
Theorem 3.5. Let F = (Fy) be a sequence of modulus functions. Then

|:V07An767F7p7Q]0 - [VO'7An79aF7p7q:|1 - [VO'7An767F7p7q:|oo

Proof. The inclusion [VG,A",G,F,p,q}O C [VG,A”,G,F,p,qL is obvious.
Letx = (x¢) € [Vg,A", G,F,p,q} . Then we have

LX)

<o E ()] o 2 a6(2))

M@@“THDW+“miﬁﬂdbﬂ?-

Thus x = (x) € [VG,A", 0,F, p,q] . This completes the proof of the theorem.
B 0

Theorem 3.6. Let F = (fi) be a sequence of modulus functions and let 0 = (i)
be a lacunary sequence. Then the following result holds:

(i) Ifliminf g, > 1. Then {VG,A",F,p,q}Z c [VG,A”,G,F,p,q]Z,
(ii) if limsupg, < oo. Then [V(,,A”,G,F,p,q}Z C [Vg,A”,F,p,q]Z,
r
(iii) if 1 <liminfgq, <limsupg, < . Then
r r

[VG,A",F,p,q}Z = [VG,A”, G,F,p,q}z.

Proof. 1t is easy to prove so we omit it. O
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Theorem 3.7. Let 0 < py < t; and ( -) be bounded. Then
[VG7An707F7t7q}Z C {VO-7An707F7p7q}Z‘

Proof. We will prove it for the case Z = 1. Let x = (x;) € [Vg,A", O,F,t,q] r

We write | A”xck(m) N
si= g L A(a(=—"))]

I kel,

and () = (£*) forall k € N. Then 0 < gy <1 forall k € N. Take 0 < p < py
for all k € N. Define the sequence u; and vy as follows:

For S; > 1, let uy = S; and v; = 0 and for S < 1, 1et u, = 0 and vy = S;. Then
clearly for all kK € N, we have Sy = uy + vk,S;:‘ = uk + v,’jk Now it follows that
uf" <y < Sy and vfk < v,f. Therefore

E L = T < TSk T

r kel, r kel, I kel, ’ kel,

Now for each k,

DR GG
(LG (G
= (hlrka,v")#

and so
ZSi"‘é;ZSw( ka) :

’ kel, I kel, V kel,

Hence x = (x¢) € [Vg,A”, 0,F, p,q] . Similarly we can prove for other cases.
O

Theorem 3.8. The sequence space [Vg, A", 0,F, p,q} is solid.

Proof. Letx = (x;) € [VO—,A”,O,F,p,q} . Then

i B L))" <

’ kel,
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Let (0y) be a sequence of scalars such that |og| < 1 for all k € N. Thus we have

PRI < B )

hy kel,
<

This shows that (ogx;) € [Vg,A”, 0,F, p,q} for all sequences of scalars (o)
with |ag| < 1 for all k € N, whenever (x;) € [Vg,A",O,F,p,q} . Hence the

space [VG,A”, 0,F, p,q} is a solid sequence space. This completes the proof
of the theorem. O

Corollary 3.9. The sequence space [VO—,A”, 0,F, p, q} is monotone.

Proof. 1t is easy to prove so we omit the details. O
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