doi: 10.4418/2012.67.1.5

NEW OSTROWSKI TYPE INEQUALITIES FOR CO-ORDINATED S-CONVEX FUNCTIONS IN THE SECOND SENSE

MUHAMMAD AMER LATIF - SEVER S. DRAGOMIR

In this paper some new Ostrowski type inequalities for co-ordinated s-convex functions in the second sense are obtained.

1. Introduction

In 1938, A. Ostrowski proved the following interesting inequality [21]:

Theorem 1.1. Let $f:[a,b] \to \mathbb{R}$ be a differentiable mapping on (a,b) whose derivative $f':(a,b) \to \mathbb{R}$ is bounded on (a,b), i.e., $||f'||_{\infty} := \sup_{t \in (a,b)} |f'(t)| < \infty$.

Then we have the inequality

$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \le \left[\frac{1}{4} + \frac{\left(x - \frac{a+b}{2} \right)^{2}}{\left(b-a \right)^{2}} \right] (b-a) \left\| f' \right\|_{\infty}, \tag{1}$$

for all $x \in [a,b]$. The constant $\frac{1}{4}$ is the best possible.

Entrato in redazione: 7 novembre 2011

AMS 2010 Subject Classification: 26D07, 26D15.

Keywords: Co-ordinated s-convex function, Hermite-Hadamard type inequalities, Ostrowski inequality.

The inequality (1) can be rewritten in equivalent form as:

$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \le \left[\frac{(x-a)^{2} + (b-x)^{2}}{2(b-a)} \right] \|f'\|_{\infty}.$$

Since 1938 when A. Ostrowski proved his famous inequality, many mathematicians have been working about and around it, in many different directions and with a lot of applications in Numerical Analysis and Probability, etc. Several generalizations of the Ostrowski integral inequality for mappings of bounded variation, Lipschitzian, monotonic, absolutely continuous, convex mappings, *s*-convex mappings and *n*-times differentiable mappings with error estimates for some special means and for some numerical quadrature rules are considered by many authors. For recent results and generalizations concerning Ostrowski's inequality see [4, 5, 7, 8, 11, 12, 20, 23–26] and the references therein.

Let us consider now a bidimensional interval $\Delta =: [a,b] \times [c,d]$ in \mathbb{R}^2 with a < b and c < d, a mapping $f : \Delta \to \mathbb{R}$ is said to be convex on Δ if the inequality

$$f(\lambda x + (1 - \lambda)z, \lambda y + (1 - \lambda)w) \le \lambda f(x, y) + (1 - \lambda)f(z, w),$$

holds for all $(x,y),(z,w) \in \Delta$ and $\lambda \in [0,1]$. The mapping f is said to be concave on the co-ordinates on Δ if the above inequality holds in reversed direction, for all $(x,y),(z,w) \in \Delta$ and $\lambda \in [0,1]$.

A modification for convex (concave) functions on Δ , which is also known as co-ordinated convex (concave) functions, was introduced by S. S. Dragomir [9, 13] as follows:

A function $f: \Delta \to \mathbb{R}$ is said to be convex (concave) on the co-ordinates on Δ if the partial mappings $f_y: [a,b] \to \mathbb{R}$, $f_y(u) = f(u,y)$ and $f_x: [c,d] \to \mathbb{R}$, $f_x(v) = f(x,v)$ are convex (concave) where defined for all $x \in [a,b]$, $y \in [c,d]$.

A formal definition for co-ordinated convex (concave) functions may be stated in:

Definition 1.2. [18] A mapping $f : \Delta \to \mathbb{R}$ is said to be convex on the coordinates on Δ if the inequality

$$f(tx+(1-t)y,ru+(1-r)w) \leq trf(x,u)+t(1-r)f(x,w)+r(1-t)f(y,u)+(1-t)(1-r)f(y,w),$$
 (2)

holds for all $t, r \in [0, 1]$ and $(x, u), (y, w) \in \Delta$. The mapping f is concave on the co-ordinates on Δ if the inequality (2) holds in reversed direction for all $t, r \in [0, 1]$ and $(x, y), (u, w) \in \Delta$.

Clearly, every convex (concave) mapping $f: \Delta \to \mathbb{R}$ is convex (concave) on the co-ordinates. Furthermore, there exists co-ordinated convex (concave) function which is not convex (concave), (see for instance [9, 13]).

The main result proved concerning the co-ordinated convex function from [9, 13] is given in:

Theorem 1.3. [9] Suppose that $f : \Delta \to \mathbb{R}$ is co-ordinated convex on Δ . Then one has the inequalities:

$$f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)$$

$$\leq \frac{1}{2} \left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) dx + \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) dy \right]$$

$$\leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$

$$\leq \frac{1}{4} \left[\frac{1}{b-a} \int_{a}^{b} f(x, c) dx + \frac{1}{b-a} \int_{a}^{b} f(x, d) dx + \frac{1}{d-c} \int_{c}^{d} f(a, y) dy + \frac{1}{d-c} \int_{c}^{d} f(b, y) dy \right]$$

$$\leq \frac{f(a, c) + f(a, d) + f(b, c) + f(b, d)}{4} .$$
(3)

The above inequalities are sharp. The inequalities in (3) hold in reverse direction if the mapping f is concave.

The concept of s-convex functions on the co-ordinates in the second sense was introduced by Alomari and Darus in [1] as a generalization of the co-ordinated convexity in:

Definition 1.4. [1] Consider the bidimensional interval $\Delta =: [a,b] \times [c,d]$ in $[0,\infty)^2$ with a < b and c < d. The mapping $f : \Delta \to \mathbb{R}$ is s-convex in the second sense on Δ if

$$f(\lambda x + (1-\lambda)z, \lambda y + (1-\lambda)w) \le \lambda^s f(x,y) + (1-\lambda)^s f(z,w),$$

holds for all $(x,y),(z,w) \in \Delta$, $\lambda \in [0,1]$ with some fixed $s \in (0,1]$.

A function $f: \Delta =: [a,b] \times [c,d] \subseteq [0,\infty)^2 \to \mathbb{R}$ is called *s*-convex in the second sense on the co-ordinates on Δ if the partial mappings $f_y: [a,b] \to \mathbb{R}$, $f_y(u) = f(u,y)$ and $f_x: [c,d] \to \mathbb{R}$, $f_x(v) = f(x,v)$, are *s*-convex in the second sense for all $y \in [c,d]$, $x \in [a,b]$ and $s \in (0,1]$, i.e., the partial mappings f_y and f_x are *s*-convex in the second sense with some fixed $s \in (0,1]$.

A formal definition of co-ordinated *s*-convex function in second sense may be stated as follows:

Definition 1.5. A function $f: \Delta =: [a,b] \times [c,d] \subseteq [0,\infty]^2 \to \mathbb{R}$ is called *s*-convex in the second sense on the co-ordinates on Δ if

$$f(tx+(1-t)y,ru+(1-r)w) \le t^{s}r^{s}f(x,u)+t^{s}(1-r)^{s}f(x,w)+r^{s}(1-t)^{s}f(y,u)+(1-t)^{s}(1-r)^{s}f(y,w),$$
(4)

holds for all $t,r \in [0,1]$ and $(x,u),(y,w) \in \Delta$, for some fixed $s \in (0,1]$. The mapping f is s-concave on the co-ordinates on Δ if the inequality (4) holds in reversed direction for all $t,r \in [0,1]$ and $(x,y),(u,w) \in \Delta$ with some fixed $s \in (0,1]$.

In [5], Alomari et al. also proved a variant of inequalities given above by (3) for *s*-convex functions in the second sense on the co-ordinates on a rectangle from the plane \mathbb{R}^2 :

Theorem 1.6. [1] Suppose $f: \Delta = [a,b] \times [c,d] \subseteq [0,\infty)^2 \to [0,\infty)$ is s-convex function in the second sense on the co-ordinates on Δ . Then one has the inequalities:

$$4^{s-1}f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)$$

$$\leq 2^{s-2} \left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) dx + \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) dy\right]$$

$$\leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$

$$\leq \frac{1}{2(s+1)} \left[\frac{1}{b-a} \int_{a}^{b} \left[f(x, c) + f(x, d)\right] dx$$

$$+ \frac{1}{d-c} \int_{a}^{b} \left[f(a, y) + f(b, y)\right] dy\right]$$

$$\leq \frac{f(a, c) + f(b, c) + f(a, d) + f(b, d)}{(s+1)^{2}}.$$
(5)

In recent years, many authors have proved several inequalities for co-ordinated convex functions. These studies include, among others, the works in [1–3, 6, 9, 15, 17–20, 22, 27] (see also the references therein). Alomari et al. [1]-[3], proved several Hermite-Hadamard type inequalities for co-ordinated *s*-convex functions. Bakula et. al [6], proved Jensen's inequality for convex functions on the co-ordinates from the rectangle from the plan \mathbb{R}^2 . Dragomir [9], proved the Hermite-Hadamard type inequalities for co-ordinated convex functions. Hwang et. al [15], also proved some Hermite-Hadamard type inequalities

for co-ordinated convex function of two variables by considering some mappings directly associated with the Hermite-Hadamard type inequality for co-ordinated convex mappings of two variables. Latif et. al [17]-[20], proved some inequalities of Hermite-Hadamard type for differentiable co-ordinated convex functions, for product of two co-ordinated convex mappings, for co-ordinated h-convex mappings and also proved some Ostrowski type inequalities for co-ordinated convex mappings. Özdemir et. al [22], proved Hadamard's type inequalities for co-ordinated m-convex and (α, m) -convex functions. Sarikaya, et. al [27] proved Hermite-Hadamard type inequalities for differentiable co-ordinated convex function. For further inequalities on co-ordinated convex functions see also the references in the above cited papers.

In the present paper, we establish new Ostrowski type inequalities for coordinated *s*-convex functions in second sense similar to those from [20].

2. Main Results

To establish our main results we need the following identity:

Lemma 2.1. [20] Let $f: \Delta \to \mathbb{R}$ be a twice partial differentiable mapping on Δ° . If $\frac{\partial^2 f}{\partial x^2 d} \in L(\Delta)$, then the following identity holds:

$$\begin{split} &f\left(x,y\right) + \frac{1}{(b-a)\left(d-c\right)} \int_{a}^{b} \int_{c}^{d} f\left(u,v\right) dv du - A \\ &= \frac{\left(x-a\right)^{2} \left(y-c\right)^{2}}{\left(b-a\right) \left(d-c\right)} \int_{0}^{1} \int_{0}^{1} rt \frac{\partial^{2}}{\partial r \partial t} f\left(tx + (1-t)a, ry + (1-r)c\right) dr dt \\ &- \frac{\left(x-a\right)^{2} \left(d-y\right)^{2}}{\left(b-a\right) \left(d-c\right)} \int_{0}^{1} \int_{0}^{1} rt \frac{\partial^{2}}{\partial r \partial t} f\left(tx + (1-t)a, ry + (1-r)d\right) dr dt \\ &- \frac{\left(b-x\right)^{2} \left(y-c\right)^{2}}{\left(b-a\right) \left(d-c\right)} \int_{0}^{1} \int_{0}^{1} rt \frac{\partial^{2}}{\partial r \partial t} f\left(tx + (1-t)b, ry + (1-r)c\right) dr dt \\ &+ \frac{\left(b-x\right)^{2} \left(d-y\right)^{2}}{\left(b-a\right) \left(d-c\right)} \int_{0}^{1} \int_{0}^{1} rt \frac{\partial^{2}}{\partial r \partial t} f\left(tx + (1-t)b, ry + (1-r)d\right) dr dt, \end{split}$$
 (6)

for all $(x,y) \in \Delta$, where

$$A = \frac{1}{d-c} \int_{c}^{d} f(x, v) dv + \frac{1}{b-a} \int_{a}^{b} f(u, y) du.$$

We begin with the following result:

Theorem 2.2. Let $\Delta = [a,b] \times [c,d] \subseteq [0,\infty)^2 \to \mathbb{R}$ be a twice partial differentiable mapping on Δ° such that $\frac{\partial^2 f}{\partial r \partial t} \in L(\Delta)$. If $\left| \frac{\partial^2 f}{\partial r \partial t} \right|$ is s-convex in the second

sense on the co-ordinates on Δ with $s \in (0,1]$ and $\left| \frac{\partial^2}{\partial r \partial t} f(x,y) \right| \leq M$, $(x,y) \in \Delta$, then the following inequality holds:

$$\left| f(x,y) + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(u,v) \, dv \, du - A \right|$$

$$\leq \frac{M}{(s+1)^{2}} \left[\frac{(x-a)^{2} + (b-x)^{2}}{b-a} \right] \left[\frac{(y-c)^{2} + (d-y)^{2}}{d-c} \right], \tag{7}$$

for all $(x,y) \in \Delta$, where A is defined in Lemma 2.1.

Proof. By Lemma 2.1, we have that the following inequality holds:

$$\left| f(x,y) + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(u,v) dv du - A \right| \\
\leq \frac{(x-a)^{2} (y-c)^{2}}{(b-a)(d-c)} \int_{0}^{1} \int_{0}^{1} rt \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1-t)a, ry + (1-r)c) \right| dr dt \\
+ \frac{(x-a)^{2} (d-y)^{2}}{(b-a)(d-c)} \int_{0}^{1} \int_{0}^{1} rt \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1-t)a, ry + (1-r)d) \right| dr dt \\
+ \frac{(b-x)^{2} (y-c)^{2}}{(b-a)(d-c)} \int_{0}^{1} \int_{0}^{1} rt \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1-t)b, ry + (1-r)c) \right| dr dt \\
+ \frac{(b-x)^{2} (d-y)^{2}}{(b-a)(d-c)} \int_{0}^{1} \int_{0}^{1} rt \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1-t)b, ry + (1-r)d) \right| dr dt, \quad (8)$$

for all $(x, y) \in \Delta$.

Using the co-ordinated s-convexity of $\left| \frac{\partial^2 f}{\partial r \partial t} \right|$, we have that the following inequality holds:

$$\int_{0}^{1} \int_{0}^{1} rt \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1 - t) a, ry + (1 - r) c) \right| dr dt$$

$$\leq \left| \frac{\partial^{2}}{\partial r \partial t} f(x, y) \right| \int_{0}^{1} \int_{0}^{1} t^{s+1} r^{s+1} dr dt + \left| \frac{\partial^{2}}{\partial r \partial t} f(x, c) \right| \int_{0}^{1} \int_{0}^{1} t^{s+1} r (1 - r)^{s} dr dt$$

$$+ \left| \frac{\partial^{2}}{\partial r \partial t} f(a, y) \right| \int_{0}^{1} \int_{0}^{1} r^{s+1} t (1 - t)^{s} dr dt$$

$$+ \left| \frac{\partial^{2}}{\partial r \partial t} f(a, c) \right| \int_{0}^{1} \int_{0}^{1} rt (1 - t)^{s} (1 - r)^{s} dr dt. \tag{9}$$

Since

$$\int_0^1 \int_0^1 t^{s+1} r^{s+1} dr dt = \frac{1}{(s+2)^2},$$

$$\int_0^1 \int_0^1 t^{s+1} r (1-r)^s dr dt = \int_0^1 \int_0^1 r^{s+1} t (1-t)^s dr dt = \frac{1}{(s+1)(s+2)^2},$$

$$\int_0^1 \int_0^1 r t (1-t)^s (1-r)^s dr dt = \frac{1}{(s+1)^2 (s+2)^2}$$

and

$$\left| \frac{\partial^2}{\partial r \partial t} f(x, y) \right| \le M, (x, y) \in \Delta,$$

where we have used the Euler Beta function and its to evaluate the above integrals.

Hence from (9), we obtain

$$\int_{0}^{1} \int_{0}^{1} rt \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1 - t) a, ry + (1 - r) c) \right| dr dt$$

$$\leq \frac{M}{(s + 2)^{2}} + \frac{2M}{(s + 1)(s + 2)^{2}} + \frac{M}{(s + 1)^{2}(s + 2)^{2}} = \frac{M}{(s + 1)^{2}}$$
(10)

Analogously, we also have

$$\int_0^1 \int_0^1 rt \left| \frac{\partial^2}{\partial r \partial t} f\left(tx + (1 - t)a, ry + (1 - r)d\right) \right| dr dt \le \frac{M}{(s + 1)^2}, \tag{11}$$

$$\int_{0}^{1} \int_{0}^{1} rt \left| \frac{\partial^{2}}{\partial r \partial t} f\left(tx + (1 - t)b, ry + (1 - r)c\right) \right| drdt \le \frac{M}{(s + 1)^{2}}$$
 (12)

and

$$\int_0^1 \int_0^1 rt \left| \frac{\partial^2}{\partial r \partial t} f(tx + (1 - t)b, ry + (1 - r)d) \right| dr dt \le \frac{M}{(s + 1)^2}. \tag{13}$$

Now by making use of the inequalities (10)-(13) and the fact that

$$(x-a)^{2} (y-c)^{2} + (x-a)^{2} (d-y)^{2} + (b-x)^{2} (y-c)^{2} + (b-x)^{2} (d-y)^{2}$$

$$= \left[(x-a)^{2} + (b-x)^{2} \right] \left[(y-c)^{2} + (d-y)^{2} \right],$$

we get the inequality (7). This completes the proof.

The corresponding version for powers of the absolute value of the partial derivative is incorporated in the following result:

Theorem 2.3. $\Delta = [a,b] \times [c,d] \subseteq [0,\infty)^2 \to \mathbb{R}$ be a twice partial differentiable mapping on Δ° such that $\frac{\partial^2 f}{\partial r \partial t} \in L(\Delta)$. If $\left| \frac{\partial^2 f}{\partial r \partial t} \right|^q$ is s-convex in the second sense

on the co-ordinates on Δ , p, q > 1, $\frac{1}{p} + \frac{1}{q} = 1$ and $\left| \frac{\partial^2}{\partial r \partial t} f(x, y) \right| \leq M$, $(x, y) \in \Delta$, then the following inequality holds:

$$\left| f(x,y) + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(u,v) \, dv du - A \right| \\
\leq \frac{M}{(1+p)^{\frac{2}{p}}} \left(\frac{2}{s+1} \right)^{\frac{2}{q}} \left[\frac{(x-a)^{2} + (b-x)^{2}}{b-a} \right] \left[\frac{(y-c)^{2} + (d-y)^{2}}{d-c} \right], \quad (14)$$

for all $(x,y) \in \Delta$, where A is defined in Lemma 2.1.

Proof. By Lemma 2.1 and using the Hölder inequality for double integrals, we have that inequality holds:

$$\left| f(x,y) + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(u,v) dv du - A \right| \leq \left(\int_{0}^{1} \int_{0}^{1} r^{p} t^{p} dr dt \right)^{\frac{1}{p}} \\
\times \left[\frac{(x-a)^{2} (y-c)^{2}}{(b-a)(d-c)} \left(\int_{0}^{1} \int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1-t)a, ry + (1-r)c) \right|^{q} dr dt \right)^{\frac{1}{q}} \\
+ \frac{(x-a)^{2} (d-y)^{2}}{(b-a)(d-c)} \left(\int_{0}^{1} \int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1-t)a, ry + (1-r)d) \right|^{q} dr dt \right)^{\frac{1}{q}} \\
+ \frac{(b-x)^{2} (y-c)^{2}}{(b-a)(d-c)} \left(\int_{0}^{1} \int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1-t)b, sy + (1-s)c) \right|^{q} dr dt \right)^{\frac{1}{q}} \\
+ \frac{(b-x)^{2} (d-y)^{2}}{(b-a)(d-c)} \left(\int_{0}^{1} \int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1-t)b, ry + (1-r)d) \right|^{q} dr dt \right)^{\frac{1}{q}} \right], \tag{15}$$

for all $(x, y) \in \Delta$.

Since $\left|\frac{\partial^2 f}{\partial r \partial t}\right|^q$ is s-convex in the second sense on the co-ordinates on Δ and $\left|\frac{\partial^2}{\partial r \partial t}f(x,y)\right| \leq M$, $(x,y) \in \Delta$, we have

$$\begin{split} &\int_0^1 \int_0^1 \left| \frac{\partial^2}{\partial s \partial t} f(tx + (1 - t)a, ry + (1 - r)c) \right|^q dr dt \\ &\leq \left| \frac{\partial^2}{\partial r \partial t} f(x, y) \right|^q \int_0^1 \int_0^1 t^s r^s dr dt + \left| \frac{\partial^2}{\partial r \partial t} f(a, c) \right|^q \int_0^1 \int_0^1 (1 - t)^s (1 - r)^s dr dt \\ &+ \left| \frac{\partial^2}{\partial r \partial t} f(a, y) \right|^q \int_0^1 \int_0^1 r^s (1 - t)^s dr dt + \left| \frac{\partial^2}{\partial r \partial t} f(x, c) \right|^q \int_0^1 \int_0^1 t^s (1 - r)^s dr dt \\ &= \frac{4M^q}{(s + 1)^2}. \end{split}$$

Similarly, we also have the following inequalities:

$$\int_0^1 \int_0^1 \left| \frac{\partial^2}{\partial r \partial t} f(tx + (1-t)a, ry + (1-r)d) \right|^q dr dt \le \frac{4M^q}{(s+1)^2},$$

$$\int_{0}^{1} \int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1 - t)b, ry + (1 - r)c) \right|^{q} dr dt \le \frac{4M^{q}}{(s + 1)^{2}}$$

and

$$\int_0^1 \int_0^1 \left| \frac{\partial^2}{\partial r \partial t} f(tx + (1-t)b, ry + (1-r)d) \right|^q dr dt \le \frac{4M^q}{(s+1)^2}.$$

Using the fact

$$\int_0^1 \int_0^1 r^p t^p dr dt = \frac{1}{(1+p)^2}$$

and the above inequalities in (15), we get (14). This completes the proof of the theorem.

A different approach leads us to the following result:

Theorem 2.4. Let $\Delta = [a,b] \times [c,d] \subseteq [0,\infty)^2 \to \mathbb{R}$ be a twice partial differentiable mapping on Δ° such that $\frac{\partial^2 f}{\partial r \partial t} \in L(\Delta)$. If $\left| \frac{\partial^2 f}{\partial r \partial t} \right|^q$ is s-convex on the co-ordinates on Δ , $q \ge 1$ and $\left| \frac{\partial^2}{\partial r \partial t} f(x,y) \right| \le M$, $(x,y) \in \Delta$, then the following inequality holds:

$$\left| f(x,y) + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(u,v) \, dv du - A \right|$$

$$\leq \frac{M}{4} \left(\frac{2}{s+1} \right)^{\frac{2}{q}} \left[\frac{(x-a)^{2} + (b-x)^{2}}{b-a} \right] \left[\frac{(y-c)^{2} + (d-y)^{2}}{d-c} \right], \quad (16)$$

for all $(x,y) \in \Delta$, where A is defined in Lemma 2.1.

Proof. Suppose $q \ge 1$. From Lemma 2.1 and using the power mean inequality

for double integrals, we have

$$\left| f(x,y) + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(u,v) dv du - A \right| \leq \left(\int_{0}^{1} \int_{0}^{1} r t dr dt \right)^{1-\frac{1}{q}} \\
\times \left[\frac{(x-a)^{2} (y-c)^{2}}{(b-a)(d-c)} \left(\int_{0}^{1} \int_{0}^{1} tr \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1-t)a, ry + (1-r)c) \right|^{q} dr dt \right)^{\frac{1}{q}} \\
+ \frac{(x-a)^{2} (y-d)^{2}}{(b-a)(d-c)} \left(\int_{0}^{1} \int_{0}^{1} tr \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1-t)a, ry + (1-r)d) \right|^{q} dr dt \right)^{\frac{1}{q}} \\
+ \frac{(b-x)^{2} (y-c)^{2}}{(b-a)(d-c)} \left(\int_{0}^{1} \int_{0}^{1} tr \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1-t)b, ry + (1-r)c) \right|^{q} dr dt \right)^{\frac{1}{q}} \\
+ \frac{(b-x)^{2} (d-y)^{2}}{(b-a)(d-c)} \left(\int_{0}^{1} \int_{0}^{1} tr \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1-t)b, ry + (1-r)d) \right|^{q} dr dt \right)^{\frac{1}{q}} \\
+ \frac{(b-x)^{2} (d-y)^{2}}{(b-a)(d-c)} \left(\int_{0}^{1} \int_{0}^{1} tr \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1-t)b, ry + (1-r)d) \right|^{q} dr dt \right)^{\frac{1}{q}} \right]$$
(17)

for all $(x,y) \in \Delta$.

By similar argument as in Theorem 2.3 that $\left| \frac{\partial^2 f}{\partial r \partial t} \right|^q$ is *s*-convex on the co-ordinates on Δ in the second sense and $\left| \frac{\partial^2}{\partial r \partial t} f(x,y) \right| \leq M$, $(x,y) \in \Delta$, we have

$$\int_{0}^{1} \int_{0}^{1} tr \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1 - t) a, ry + (1 - r) c) \right|^{q} dr dt$$

$$\leq \left| \frac{\partial^{2}}{\partial r \partial t} f(x, y) \right|^{q} \int_{0}^{1} \int_{0}^{1} t^{s+1} r^{s+1} dr dt$$

$$+ \left| \frac{\partial^{2}}{\partial r \partial t} f(x, c) \right|^{q} \int_{0}^{1} \int_{0}^{1} t^{s+1} r (1 - r)^{s} dr dt$$

$$+ \left| \frac{\partial^{2}}{\partial r \partial t} f(a, y) \right|^{q} \int_{0}^{1} \int_{0}^{1} t (1 - t)^{s} r^{s+1} dr dt$$

$$+ \left| \frac{\partial^{2}}{\partial r \partial t} f(a, c) \right|^{q} \int_{0}^{1} \int_{0}^{1} t (1 - t)^{s} r (1 + r)^{s} dr dt$$

$$= \frac{M^{q}}{(s+2)^{2}} + \frac{M^{q}}{(s+1)(s+2)^{2}} + \frac{M^{q}}{(s+1)(s+2)^{2}} + \frac{M^{q}}{(s+1)^{2}(s+2)^{2}}$$

$$= \frac{M^{q}}{(s+1)^{2}}.$$

In a similar way, we also have that the following inequalities:

$$\int_{0}^{1} \int_{0}^{1} tr \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1 - t) a, ry + (1 - r) d) \right|^{q} dr dt \le \frac{M^{q}}{(s + 1)^{2}}$$

$$\int_{0}^{1} \int_{0}^{1} tr \left| \frac{\partial^{2}}{\partial r \partial t} f\left(tx + (1 - t)b, ry + (1 - r)c\right) \right|^{q} dr dt \le \frac{M^{q}}{(s + 1)^{2}}$$

and

$$\int_{0}^{1} \int_{0}^{1} tr \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1 - t)b, ry + (1 - r)d) \right|^{q} dr dt \leq \frac{M^{q}}{(s + 1)^{2}}.$$

Now using the above inequalities and

$$\int_0^1 \int_0^1 rt dr dt = \frac{1}{4}$$

in (17), we get the desired inequality (16). This completes the proof. \Box

Remark 2.5. Since $(1+p)^{\frac{1}{p}} < 2$, p > 1 and accordingly, we have

$$\frac{1}{2} < \frac{1}{(1+p)^{\frac{1}{p}}}, p > 1$$

which gives

$$\frac{1}{4} < \frac{1}{(1+p)^{\frac{2}{p}}}, p > 1.$$

This reveals that the inequality (16) gives tighter estimate than that of the inequality (14).

Remark 2.6. From the inequalities proved above in Theorem 2.2-Theorem 2.4, one can get several midpoint type inequalities by setting $x = \frac{a+b}{2}$ and $y = \frac{c+d}{2}$. However the details are left to the interested reader.

Now we drive some results with co-ordinated *s*-concavity property instead of co-ordinated *s*-convexity.

Theorem 2.7. $\Delta = [a,b] \times [c,d] \subseteq [0,\infty)^2 \to \mathbb{R}$ be a twice partial differentiable mapping on Δ° such that $\frac{\partial^2 f}{\partial r \partial t} \in L(\Delta)$. If $\left| \frac{\partial^2 f}{\partial r \partial t} \right|^q$ is s-concave on the co-ordinates

on Δ and p, q > 1, $\frac{1}{p} + \frac{1}{q} = 1$, then the inequality

$$\left| f(x,y) + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(u,v) dv du - A \right| \\
\leq \frac{4^{\frac{s-1}{q}}}{(1+p)^{\frac{2}{p}} (b-a)(d-c)} \left[(x-a)^{2} (y-c)^{2} \left| \frac{\partial^{2}}{\partial r \partial t} f\left(\frac{x+a}{2}, \frac{c+y}{2}\right) \right| \\
+ (x-a)^{2} (d-y)^{2} \left| \frac{\partial^{2}}{\partial r \partial t} f\left(\frac{x+a}{2}, \frac{d+y}{2}\right) \right| \\
+ (b-x)^{2} (y-c)^{2} \left| \frac{\partial^{2}}{\partial r \partial t} f\left(\frac{b+a}{2}, \frac{y+c}{2}\right) \right| \\
+ (b-x)^{2} (d-y)^{2} \left| \frac{\partial^{2}}{\partial r \partial t} f\left(\frac{b+x}{2}, \frac{d+y}{2}\right) \right| \right], \quad (18)$$

hods for all $(x,y) \in \Delta$, where A is defined in Lemma 2.1.

Proof. From Lemma 2.1 and using the Hölder inequality for double integrals, we have that inequality holds:

$$\left| f(x,y) + \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(u,v) dv du - A \right| \\
\leq \left(\int_{0}^{1} \int_{0}^{1} r^{p} t^{p} dr dt \right)^{\frac{1}{p}} \\
\times \left[\frac{(x-a)^{2} (y-c)^{2}}{(b-a)(d-c)} \left(\int_{0}^{1} \int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1-t)a, ry + (1-r)c) \right|^{q} dr dt \right)^{\frac{1}{q}} \\
+ \frac{(x-a)^{2} (d-y)^{2}}{(b-a)(d-c)} \left(\int_{0}^{1} \int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1-t)a, ry + (1-r)d) \right|^{q} dr dt \right)^{\frac{1}{q}} \\
+ \frac{(b-x)^{2} (y-c)^{2}}{(b-a)(d-c)} \left(\int_{0}^{1} \int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1-t)b, ry + (1-r)c) \right|^{q} dr dt \right)^{\frac{1}{q}} \\
+ \frac{(b-x)^{2} (d-y)^{2}}{(b-a)(d-c)} \left(\int_{0}^{1} \int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1-t)b, ry + (1-r)d) \right|^{q} dr dt \right)^{\frac{1}{q}} \\
+ \frac{(b-x)^{2} (d-y)^{2}}{(b-a)(d-c)} \left(\int_{0}^{1} \int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1-t)b, ry + (1-r)d) \right|^{q} dr dt \right)^{\frac{1}{q}} \right], \tag{19}$$

for all $(x,y) \in \Delta$.

Since $\left|\frac{\partial^2 f}{\partial r \partial t}\right|^q$ is s-concave on the co-ordinates on Δ , so an application of (5) with

inequalities in reversed direction, gives us the following inequalities:

$$\int_{0}^{1} \int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1 - t)a, ry + (1 - r)c) \right|^{q} dr dt$$

$$\leq 2^{s-2} \left[\int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f\left(tx + (1 - t)a, \frac{y + c}{2}\right) \right|^{q} dt$$

$$+ \int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f\left(\frac{x + a}{2}, ry + (1 - r)c\right) \right|^{q} dr \right]$$

$$\leq 4^{s-1} \left| \frac{\partial^{2}}{\partial r \partial t} f\left(\frac{x + a}{2}, \frac{y + c}{2}\right) \right|^{q}, \quad (20)$$

$$\int_{0}^{1} \int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1 - t)a, ry + (1 - r)d) \right|^{q} ds dt$$

$$\leq 2^{s - 2} \left[\int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f\left(tx + (1 - t)a, \frac{d + y}{2}\right) \right|^{q} dt$$

$$+ \int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f\left(\frac{x + a}{2}, ry + (1 - r)c\right) \right|^{q} dr \right]$$

$$\leq 4^{s - 1} \left| \frac{\partial^{2}}{\partial r \partial t} f\left(\frac{x + a}{2}, \frac{d + y}{2}\right) \right|^{q}, \quad (21)$$

$$\int_{0}^{1} \int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1 - t)b, ry + (1 - r)c) \right|^{q} dr dt$$

$$\leq 2^{s-2} \left[\int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f\left(tx + (1 - t)a, \frac{y + c}{2}\right) \right|^{q} dt$$

$$+ \int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f\left(\frac{b + x}{2}, sy + (1 - s)c\right) \right|^{q} dr \right]$$

$$\leq 4^{s-1} \left| \frac{\partial^{2}}{\partial r \partial t} f\left(\frac{b + a}{2}, \frac{y + c}{2}\right) \right|^{q} (22)$$

and

$$\int_{0}^{1} \int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f(tx + (1 - t)b, ry + (1 - r)d) \right|^{q} dr dt$$

$$\leq 2^{s-2} \left[\int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f\left(tx + (1 - t)b, \frac{d + y}{2}\right) \right|^{q} dt$$

$$+ \int_{0}^{1} \left| \frac{\partial^{2}}{\partial r \partial t} f\left(\frac{b + x}{2}, ry + (1 - r)d\right) \right|^{q} dr \right]$$

$$\leq 4^{s-1} \left| \frac{\partial^{2}}{\partial r \partial t} f\left(\frac{b + x}{2}, \frac{d + y}{2}\right) \right|^{q}. \quad (23)$$

By making use of (20)-(23) in (19), we obtain (18). Thus the proof of the theorem is complete. \Box

Acknowledgements

The authors are thankful to the careful referee for his/her valuable suggestions to improve the final version of this paper.

REFERENCES

- [1] M. Alomari M. Darus, *The Hadamard's inequality for s-convex function of 2-variables on the co-ordinates*, Int. Journal of Math. Analysis 2 (13) (2008), 629–638.
- [2] M. Alomari M. Darus, *The Hadamard's inequality for s-convex functions*, Int. Journal of Math. Analysis 2 (13) (2008), 639–646.
- [3] M. Alomari M. Darus, *Hadamard-Type Inequalities for s-convex functions*, International Mathematical Forum 3 (2008), no. 40, 1965 1975.
- [4] M. Alomari M. Darus S. S. Dragomir P. Cerone, *Ostrowski type inequalities* for functions whose derivatives are s-convex in the second sense, Applied Mathematics Letters 23, Issue 9, September 2010, 1071–1076.
- [5] M. Alomari M. Darus, Some Ostrowski type inequalities for convex functions with applications, RGMIA 13 (1) (2010), Article 3. http://ajmaa.org/RGMIA/v13n1.php
- [6] M. K. Bakula J. Pečarić, On the Jensen's inequality for convex functions on the coordinates in a rectangle from the plane, Taiwanese Journal of Math. 5 (2006), 1271–1292.

- [7] N. S. Barnett S. S. Dragomir, An Ostrowski type inequality for double integrals and applications for cubature formulae, Soochow J. Math. 27 (1) (2001), 109–114.
- [8] P. Cerone S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstratio Math. 37 (2) (2004), 299–308.
- [9] S. S. Dragomir, On Hadamard's inequality for convex functions on the coordinates in a rectangle from the plane, Taiwanese Journal of Mathematics 5 (2001), 775–788.
- [10] S. S. Dragomir S. Fitzpatrick, *The Hadamard's inequality for s-convex functions in the second sense*, Demonstratio Math. 32 (4) (1999), 687–696.
- [11] S. S. Dragomir A. Sofo, *Ostrowski type inequalities for functions whose derivatives are convex*, Proceedings of the 4th International Conference on Modelling and Simulation, November 11-13, 2002. Victoria University, Melbourne, Australia. RGMIA Res. Rep. Coll. 5 (2002), Supplement, Article 30. http://rgmia.vu.edu.au/v5(E).html
- [12] S. S. Dragomir N. S. Barnett P. Cerone, *An n-dimensional version of Ostrowski's inequality for mappings of Hölder type*, RGMIA Res. Pep. Coll.2 (2) (1999), 169–180.
- [13] S. S. Dragomir C. E. M. Pearce, *Selected Topics on Hermite-Hadamard Inequalities and Applications*, RGMIA Monographs, Victoria University, 2000. Online: http://www.staff.vu.edu.au/RGMIA/monographs/hermite_hadamard.html
- [14] H. Hudzik L. Maligranda, *Some remarks on s-convex functions*, Aequationes Math. 48 (1994), 100–111.
- [15] D. Y. Hwang K. L. Tseng G. S. Yang, *Some Hadamard's inequalities for co-ordinated convex functions in a rectangle from the plane*, Taiwanese Journal of Mathematics 11 (2007), 63–73.
- [16] U. S. Kirmaci M. K. Bakula M. E. Ozdemir J. Pečarić, *Hadamard-type inequalities for s-convex functions*, Appl. Math. and Compt. 93 (2007), 26–35.
- [17] M. A. Latif M. Alomari, On Hadamard-type inequalities for h-convex functions on the co-ordinates, International Journal of Math. Analysis 3 (33) (2009), 1645– 1656
- [18] M. A. Latif M. Alomari, *Hadamard-type inequalities for product two convex functions on the co-ordinates*, International Mathematical Forum 4 (47) (2009), 2327–2338.
- [19] M. A. Latif S. S. Dragomir, On some new inequalities for differentiable coordinated convex functions, RGMIA Research. Report. Collection 14 (2011), Article 45.[online:
- [20] M. A. Latif S. Hussain S. S. Dragomir, *New Ostrowski type inequalities for co-ordinated convex functions*, RGMIA Research Report Collection 14 (2011), Article 49. http://www.ajmaa.org/RGMIA/v14.php
- [21] A. M. Ostrowski, Über die absolutabweichung einer differentiebaren funktion von

- ihrem integralmitelwert, Comment. Math. Helv. 10 (1938), 226-227.
- [22] M. E. Özdemir E. Set M. Z. Sarıkaya, Some new Hadamard's type inequalities for co-ordinated m-convex and (α, m) -convex functions, Accepted.
- [23] B.G. Pachpatte, On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl. 249 (2000), 583–591.
- [24] B. G. Pachpatte, *On a new Ostrowski type inequality in two independent variables*, Tamkang J. Math. 32 (1) (2001), 45–49
- [25] B. G. Pachpatte, *A new Ostrowski type inequality for double integrals*, Soochow J. Math. 32 (2) (2006), 317–322.
- [26] M. Z. Sarıkaya, *On the Ostrowski type integral inequality*, Acta Math. Univ. Comenianae LXXIX [1] (2010), 129–134.
- [27] M. Z. Sarıkaya E. Set M. E. Özdemir S. S. Dragomir, *New some Hadamard's type inequalities for co-ordinated convex functions*, Accepted.
- [28] N. Ujević, *Some double integral inequalities and applications*, Appl. Math. E-Notes 7 (2007), 93–101.

MUHAMMAD AMER LATIF

Department of Mathematics

Hail University, Saudi Arabia

e-mail: m_amer_latif@hotmail.com.

SEVER S. DRAGOMIR School of Engineering and Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia e-mail: sever.dragomir@vu.edu.au