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NEW OSTROWSKI TYPE INEQUALITIES FOR
CO-ORDINATED S-CONVEX FUNCTIONS
IN THE SECOND SENSE

MUHAMMAD AMER LATIF - SEVER S. DRAGOMIR

In this paper some new Ostrowski type inequalities for co-ordinated
s-convex functions in the second sense are obtained.

1. Introduction

In 1938, A. Ostrowski proved the following interesting inequality [21]:

Theorem 1.1. Let f : [a,b] — R be a differentiable mapping on (a,b) whose
derivative [’ : (a,b) — R is bounded on (a,b), i.e., ||f'||..:= sup |f' (t)] < eo.

re(a,b)
Then we have the inequality
Lo 1 (x-t)’
— < |-4-—| (- ! 1
‘f(X) b_a/af(t)dt_ sl [CRUU A IS

for all x € [a,b]. The constant % is the best possible.
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The inequality (1) can be rewritten in equivalent form as:

b
bla/a F0)dt

Since 1938 when A. Ostrowski proved his famous inequality, many math-
ematicians have been working about and around it, in many different direc-
tions and with a lot of applications in Numerical Analysis and Probability,
etc. Several generalizations of the Ostrowski integral inequality for mappings
of bounded variation, Lipschitzian, monotonic, absolutely continuous, convex
mappings, s-convex mappings and n-times differentiable mappings with error
estimates for some special means and for some numerical quadrature rules are
considered by many authors. For recent results and generalizations concern-
ing Ostrowski’s inequality see [4, 5, 7, 8, 11, 12, 20, 23-26] and the references
therein.

Let us consider now a bidimensional interval A =: [a,b] x [c,d] in R? with
a<bandc <d,amapping f: A — Ris said to be convex on A if the inequality

<

]f<x>— =

(x—a)2+(b—x)2] Hf,H .

fAx+(1=A)z,Ay+ (1 =A)w) SAf(x,y)+(1=2) f(z,w),

holds for all (x,y), (z,w) € Aand A € [0, 1]. The mapping f is said to be concave
on the co-ordinates on A if the above inequality holds in reversed direction, for
all (x,y),(z,w) € Aand A € [0,1].

A modification for convex (concave) functions on A, which is also known
as co-ordinated convex (concave) functions, was introduced by S. S. Dragomir
[9, 13] as follows:

A function f : A — R is said to be convex (concave) on the co-ordinates on A
if the partial mappings f, : [a,b] = R, fy(u) = f(u,y) and f; : [c,d] = R, fi(v) =
f(x,v) are convex (concave) where defined for all x € [a,b],y € [c,d].

A formal definition for co-ordinated convex (concave) functions may be
stated in:

Definition 1.2. [18] A mapping f : A — R is said to be convex on the co-
ordinates on A if the inequality

flx+(1=0)y,ru+(1—r)w)
Strf(xu) +1(1=r)fOow) +r(1=0)f(yu) + (=) (1 =r)f(nw), 2
holds for all 7,7 € [0,1] and (x,u), (y,w) € A. The mapping f is concave on

the co-ordinates on A if the inequality (2) holds in reversed direction for all
t,r €10,1] and (x,y), (u,w) € A.
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Clearly, every convex (concave) mapping f : A — R is convex (concave)
on the co-ordinates. Furthermore, there exists co-ordinated convex (concave)
function which is not convex (concave), (see for instance [9, 13]).

The main result proved concerning the co-ordinated convex function from
[9, 13] is given in:

Theorem 1.3. [9] Suppose that f : A — R is co-ordinated convex on A. Then
one has the inequalities:

a+b c+d
(5537)
171 b c+d 1 a+b
SZ[b—a/af<’ 2 )dx+d—c/f( 2 ’y>d}
1 b prd

1 d
+ﬁ/¢ f(aa)’)d)"Fﬁ/c f(baJ’)dY}

_ @)+ f (ad)+f(b,e)+f (bd)

i 4 .
The above inequalities are sharp. The inequalities in (3) hold in reverse direc-
tion if the mapping f is concave.

3

The concept of s-convex functions on the co-ordinates in the second sense
was introduced by Alomari and Darus in [1] as a generalization of the co-
ordinated convexity in:

Definition 1.4. [1] Consider the bidimensional interval A =: [a,b] X [c,d] in
[0,00)2 with @ < b and ¢ < d. The mapping f : A — R is s-convex in the second
sense on A if

fAx+(1=2)z,Ay+ (1= 2)w) < Af(x,y) + (1= 2)" f(z,w),
holds for all (x,y), (z,w) € A, A € [0, 1] with some fixed s € (0, 1].

A function f: A =: [a,b] x [c,d] C [0,%)? — R is called s-convex in the
second sense on the co-ordinates on A if the partial mappings f, : [a,b] — R,
fy(u) = f(u,y) and fy : [c,d] = R, fi(v) = f(x,v), are s-convex in the second
sense for all y € [c,d], x € [a,b] and s € (0,1], i.e., the partial mappings f, and
fx are s-convex in the second sense with some fixed s € (0, 1].

A formal definition of co-ordinated s-convex function in second sense may
be stated as follows:
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Definition 1.5. A function f: A=: [a,b] x [c,d] C [0,0]* — R is called s-convex
in the second sense on the co-ordinates on A if

flx+(1—=t)y,ru+(1—r)w)

<erfxu)+(1=r) fo,w) +r(1=1) fyu) + (1 =1)’ (1 =r) f(y,w),
4)

holds for all #,7 € [0,1] and (x,u), (y,w) € A, for some fixed s € (0,1]. The
mapping f is s-concave on the co-ordinates on A if the inequality (4) holds
in reversed direction for all #,r € [0,1] and (x,y), (u,w) € A with some fixed
s €(0,1].

In [5], Alomari et al. also proved a variant of inequalities given above by
(3) for s-convex functions in the second sense on the co-ordinates on a rectangle
from the plane R:

Theorem 1.6. [1] Suppose f : A = [a,b] x [c,d] C [0,00)> — [0,0) is s-convex
function in the second sense on the co-ordinates on A. Then one has the in-
equalities:

+b c+d
4571 a
(“5557)

1 1 b
< sty |5 el

ot [Ty s o)
£(@,¢) + (0,0 + £(ad) + (b,d)

= (s+1)?

. &)

In recent years, many authors have proved several inequalities for co-ordi-
nated convex functions. These studies include, among others, the works in [1-
3, 6,9, 15, 17-20, 22, 27] (see also the references therein). Alomari et al.
[1]-[3], proved several Hermite-Hadamard type inequalities for co-ordinated s-
convex functions. Bakula et. al [6], proved Jensen’s inequality for convex func-
tions on the co-ordinates from the rectangle from the plan R?. Dragomir [9],
proved the Hermite-Hadamard type inequalities for co-ordinated convex func-
tions. Hwang et. al [15], also proved some Hermite-Hadamard type inequalities
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for co-ordinated convex function of two variables by considering some map-
pings directly associated with the Hermite-Hadamard type inequality for co-
ordinated convex mappings of two variables. Latif et. al [17]-[20], proved some
inequalities of Hermite-Hadamard type for differentiable co-ordinated convex
functions, for product of two co-ordinated convex mappings, for co-ordinated
h-convex mappings and also proved some Ostrowski type inequalities for co-
ordinated convex mappings. Ozdemir et. al [22], proved Hadamard’s type in-
equalities for co-ordinated m-convex and (o, m)-convex functions. Sarikaya,
et. al [27] proved Hermite-Hadamard type inequalities for differentiable co-
ordinated convex function. For further inequalities on co-ordinated convex func-
tions see also the references in the above cited papers.

In the present paper, we establish new Ostrowski type inequalities for co-
ordinated s-convex functions in second sense similar to those from [20].

2. Main Results

To establish our main results we need the following identity:

Lemma 2.1. [20] Let f : A — R be a twice partial differentiable mapping on
2
A If % € L(A), then the following identity holds:

f(xay)'f'b_a)ld_c/b/df(u,v)dvdu—

o)
_( //rzar& (tx+(1—t)a,ry+ (1 —r)c)drdt

z
_ EZ i; //rtaaftx+( —t)a,ry+ (1 —r)d)drdt
%) (

2
(2 ))//rtar8 (tx+ (L—1)b,ry+ (1 —r)c)drdt
2
+( Ed y; // aaftx—i—( —t)b,ry+ (1= r)d)drdt, (6)
for all (x,y) € A, where

:dl_c/cdf(x,v dv+7/ fu,y)d

We begin with the following result:

Theorem 2.2. Let A = [a,b] x [c,d] C [0,00)> — R be a twice partial differen-
tiable mapping on A° such that ggt eL(A). If ‘ %

; is s-convex in the second
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sense on the co-ordinates on A with s € (0, 1] and

o f (x )’)’ <M, (x,y) €A,
then the following inequality holds:

’f(x,y)+ )/a / f(u,v)dvdu — ‘
M= +(b ) =c)P+(d—y)? -
T (s+1)? b a d—c ’
forall (x,y) € A, where A is defined in Lemma 2.1.
Proof. By Lemma 2.1, we have that the following inequality holds:
fxy)+ = a)d )//fuvdvdu ’
2
= (?b ac)z E Cc)) / / ftx+(1—=t)a,ry+(1—r)c)|drdt
(x—a)*(d—y)?* [!
T h—a)d—c) (b—a)(d—c) /0/ ﬁf (tx+(1—=t)a,ry+ (1 —r)d)|drdt
_ 2 2
+(?b xa E )) / / 9 o1 f (tx+ (1 =1)b,ry+ (1 —r)c)|drdt
(b—x)*(d—y)* J?
+(ba)(dc)/ / 5,9, xH(1=0)byry+ (1 =r)d)|drdt, (3)

for all (x,y) € A.
Using the co-ordinated s-convexity of | 5
ity holds:

1 rl
I RdF
< 82 f( ) /1 /lts+1rs+1d d[+ 82 / / ?+1 d At
~ arat X,y T x C F

s+1
‘a rot y’// ) drdt

rtl—t (1—r)’drdt. (9)

tx+(1—t)a,ry+ (1 —r)c)|drdt

‘8 8t

Il 1
/ / P drde = 5
0 Jo (s+2)

Since
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1
/ / o (1= r) drdr = / / P drd = ——
Jo (s+1)(s+2)

1,1 S , 1
/0 /0 (=) (=) = s
and 2
gt (0)] <M. (x3) €
where we have used the Euler Beta function and its to evaluate the above inte-
grals.

Hence from (9), we obtain

/ / ’f (tx+(1—=t)a,ry+ (1 —r)c)|drdt

2M M M

= 10
_(s—|—2) +(s—i—l)(s—|—2)2+(s—|—1)2(s+2)2 (s+1)° 1o
Analogously, we also have
1 rl 2 M
/O /0 rt 3,9 fx+(1—1t)a,ry+(1—r)d)|drdt < G (11)
1,1 2
/0 /0 b fx+(1—=t)b,ry+(1—r)c)|drdt < G112 (12)
and
// Pl (1=0by+ (1= d)|drit < =2 (13)

Now by making use of the inequalities (10)-(13) and the fact that

(x—a)’ (=) +(x=a)’ (d=y) + (b —x)* (y =)’ + (b —x)* (d )
= [(x=a)+ (b —x7] [6— )+ @y,
we get the inequality (7). This completes the proof. O

The corresponding version for powers of the absolute value of the partial
derivative is incorporated in the following result:

Theorem 2.3. A= [a,b] x [c,d] C [0,00)? —> R be a twice partial differentiable
mapping on A° such that araft € L(A). f

z 1s s-convex in the second sense
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on the co-ordinates on A, p, g > 1, %—l—é =1and

2
o f )| <M. () €4,
then the following inequality holds:

f(x,y)—i-(l]_a)l(d_c)/ab/cdf(u,v)dvdu—A’

M 2 Vi [—a)?+ -] [6—)*+(d—y)*
Gt eeet],

for all (x,y) € A, where A is defined in Lemma 2.1.

Proof. By Lemma 2.1 and using the Holder inequality for double integrals, we
have that inequality holds:

1 b d 1ol 7
’f(x,y)-'—b_ad_c/a /C' f(M,V)dVdM—A‘ S </0 /0 rptpdrdt>

1
(x—a)* ) q 1
X{( 8r8t flix+(1=t)a,ry+(1=r)c)| drdi
1
(x—a)*(d—y)* // - q :
+( —a)(d—c) rot fx+(—=t)a,ry+(1—r)d)| drdt
(b-x’-c / / B INNGERY
T —a)d—o 5,9, x+(1=0)b,sy+(1=s)c)| drdt
+(b x)(d—y)? (s (1 )d)qddt !
(b—a)(d—c) 8r8t (kx 1Y r I ;
(15)
for all (x,y) € A.
Since ggt ! is s-convex in the second sense on the co-ordinates on A and

aigtf( )‘ S M, (xvy) S A, we have
o1 1
b

2
S ’Mf(x’y)

q
drdt

q/l/l(l—t)s(l—r)sdrdt
/ / ) drdt

aSatf(tx—i—(l —t)a,ry+(1—r)c)

ls 92
trydrdt—&—‘aaf(a,c)

(11—
t) drdt+‘a 5 (x,¢)

‘a rar! (@)
4M4
B (s~|—1)2.
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Similarly, we also have the following inequalities:

2 ! 4Me
/0/0 ﬁf(ter(l—t)a,rer(l—r)d) drdt < o
L ! 4Me
o - <
/0 /0 8r8tf(tx+(1 t)b,ry+(1—=r)c)| drdt < (s—|-1)2
and
2 ! 4Me
/0/0 ﬁf(tx—i—(l—t)b,ry—i-(l—r)d) drdtg(erl)z_
Using the fact

1 1 1
/ / PPtPdrdt = .
0o Jo (1+p)

and the above inequalities in (15), we get (14). This completes the proof of the
theorem. O

A different approach leads us to the following result:

Theorem 2.4. LetA = [a,b] x [c,d] C [0,00)?> — R be a twice partial differ-
aZf q
drdt

entiable mapping on A° such that ggt eL(A). If is s-convex on the

co-ordinates on A, g > 1 and ’%f(x,y)’ <M, (x,y) € A, then the following

inequality holds:
1 b rd
‘f(x,_Y)‘i’(b_a)(d_c)/a /C f(u,v)dvduA'
M2 \i[a-a+b-9] [-cP+ @y
S4<s—1—1> [ b—a ] [ d—c ]’ (16)

forall (x,y) € A, where A is defined in Lemma 2.1.

Proof. Suppose g > 1. From Lemma 2.1 and using the power mean inequality
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for double integrals, we have
1

'f(X,y)+b_ald_c/ab/cdf(u,v)dvdu—A‘ < (/Ol/olrtdrdt)l_q

X [(?” aa <//" S f(x (1=1)ary+ (1=r)e) qdrd,)l’
+(< Zgl 622 (//” prerACadt t>a,ry+(1r)d)"drdt>5
+(( “g’ ); <//t f et (L=0)bry+(1=r)c) qdrd’>q
+(< >EZ 22 (f/ Flex+(1=1)b,ry+(1=r)d) qm)‘l’]

a7

for all (x,y) € A.

By similar argument as in Theorem 2.3 that‘ 5

<M

nates on A in the second sense and , (x,y) € A, we have

Il

ot (x.3)]

q

drdt

fx+(1—t)a,ry+(1—r)c)

1
ts+1 P drdt

32
S ‘araf(xay)

‘a =+ Ty ) drdt
‘8 3 (a,y) r*YHdrdt
p
+’&at t(1=1)'r(147r) drdt
M9 M4
= + 5+
(s+2)° (s+1)(s+2) ( +1)(s+2) (s+1)*(s+2)*
M(J
C(s+1)?

In a similar way, we also have that the following inequalities:
1l q q
||
0 Jo

(s+1)*

flx+(1—=t)a,ry+(1—r)d)| drdt <

orot

1s s-convex on the co-ordi-
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1 1 2 q M4
tr tx+(1—=t)b,ry+(1—r)c)| drdt <
| o st v =y (1=1)e) o
and
"1 1 q M4
/ / tr fx+(1—=t)byry+(1—r)d)| drdt < 5
0 Jo (s+1)
Now using the above inequalities and
SIS
/ / rtdrdt = —
0 Jo
in (17), we get the desired inequality (16). This completes the proof. O

Remark 2.5. Since (1 + p)% < 2, p > 1 and accordingly, we have

1 1
=< > p>1
(I+p)r
which gives
1 1
Z < 72,p> 1.

(I+p)r

This reveals that the the inequality (16) gives tighter estimate than that of the
inequality (14).

Remark 2.6. From the inequalities proved above in Theorem 2.2-Theorem 2.4,
one can get several midpoint type inequalities by setting x = “+b and y = ﬂ
However the details are left to the interested reader.

Now we drive some results with co-ordinated s-concavity property instead
of co-ordinated s-convexity.

Theorem 2.7. A = [a,b] X [c d) C[0,00)% — R be a twice partial differentiable
82 f
ot

is s-concave on the co-ordinates

mapping on A° such that arat €L(A). If |3
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onAand p, g > 1, % +$ =1, then the inequality

f(X,y)-i-(b_a)l(d_c)/ub/cdf(u,v)dvdu—A‘

47 [(x—aﬂ ]
T (14p)i (b—a)(d—c) aron! ’
2 2 82 x+a d+y
Tl a @55 2 )'
32
Fo-xP (-] s ;a,yy)]
82

+(b—x)*(d—y)?

x+a c—i—y)‘

hods for all (x,y) € A, where A is defined in Lemma 2.1.

b+x d+y
gl \ 22

} , (18)

Proof. From Lemma 2.1 and using the Holder inequality for double integrals,

we have that inequality holds:

‘f(x,yﬂ-(b_a)l(d_c)/ab/cdf(u,v)dvdu—A‘

1ol »
< </ / rptpdrdt)
0 Jo

[<

+(< ZE f Lk
+(< >EZ yi(

e | 21 0

drot

8r8t

flx+(1—=t)a,ry+(1—r)d)

379 f (tx+(

8r8

f tx+(

flx+(1—=t)a,ry+(1—r)c)

—t)b,ry+(1—r)c)

—t)b,ry+(1—r)d)

g 7
drdt)

1

q q
drdt>

q q
drdt>

.\
drdt> ,

(19)

is s-concave on the co-ordinates on A, so an application of (5) with
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inequalities in reversed direction, gives us the following inequalities:

q
drdt

2
drot

/1/1 2 flex+(1=1)a,ry+(1=r)c)
<252 [/01 aar;f <zx+(1—z)a,ygc>

1 92 x+a 1
+/0 aratf<2,ry+(1—r)c> dr}

q
dt

=+ aar;f<x;aay§c> "o
1 1 2 q
[ g et =yt (1=r)a)| dsa
<27 [/01 ai;f tx+(1—t)a,d—2i_y> "
+/ orot < 2 ry+(1—r)>qdr}
co|Zr ()]
1 rl 2 P
/0/0 arazf(’”(l‘f)b"’er(l—r)c) drdt
< [/01 ai;f(tx—i—(l—t)a,y;c) "
+/ol ai;fc;x’syﬂl—s)c) qdr}
=4 ai;zf<b;a’y;c>q (22)
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9 q
ﬁf(tx—k(l—t)b,ry%—(l—r)d) drdt
L[ 92 d+y\|?
s—2 o
<2 UO aratf<tx+(1 )b, 3 > dt
L b+x
—1—/0 8r8tf<2 (1—r) d) dr

(23)

By making use of (20)-(23) in (19), we obtain (18). Thus the proof of the
theorem is complete. O
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