NEW OSTROWSKI TYPE INEQUALITIES FOR CO-ORDINATED S-CONVEX FUNCTIONS IN THE SECOND SENSE

MUHAMMAD AMER LATIF - SEVER S. DRAGOMIR

In this paper some new Ostrowski type inequalities for co-ordinated s-convex functions in the second sense are obtained.

1. Introduction

In 1938, A. Ostrowski proved the following interesting inequality [21]:
Theorem 1.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable mapping on (a, b) whose derivative $f^{\prime}:(a, b) \rightarrow \mathbb{R}$ is bounded on (a, b), i.e., $\left\|f^{\prime}\right\|_{\infty}:=\sup _{t \in(a, b)}\left|f^{\prime}(t)\right|<\infty$. Then we have the inequality

$$
\begin{equation*}
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left[\frac{1}{4}+\frac{\left(x-\frac{a+b}{2}\right)^{2}}{(b-a)^{2}}\right](b-a)\left\|f^{\prime}\right\|_{\infty} \tag{1}
\end{equation*}
$$

for all $x \in[a, b]$. The constant $\frac{1}{4}$ is the best possible.

Entrato in redazione: 7 novembre 2011
AMS 2010 Subject Classification: 26D07, 26D15.
Keywords: Co-ordinated s-convex function, Hermite-Hadamard type inequalities, Ostrowski inequality.

The inequality (1) can be rewritten in equivalent form as:

$$
\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left[\frac{(x-a)^{2}+(b-x)^{2}}{2(b-a)}\right]\left\|f^{\prime}\right\|_{\infty}
$$

Since 1938 when A. Ostrowski proved his famous inequality, many mathematicians have been working about and around it, in many different directions and with a lot of applications in Numerical Analysis and Probability, etc. Several generalizations of the Ostrowski integral inequality for mappings of bounded variation, Lipschitzian, monotonic, absolutely continuous, convex mappings, s-convex mappings and n-times differentiable mappings with error estimates for some special means and for some numerical quadrature rules are considered by many authors. For recent results and generalizations concerning Ostrowski's inequality see $[4,5,7,8,11,12,20,23-26]$ and the references therein.

Let us consider now a bidimensional interval $\Delta=:[a, b] \times[c, d]$ in \mathbb{R}^{2} with $a<b$ and $c<d$, a mapping $f: \Delta \rightarrow \mathbb{R}$ is said to be convex on Δ if the inequality

$$
f(\lambda x+(1-\lambda) z, \lambda y+(1-\lambda) w) \leq \lambda f(x, y)+(1-\lambda) f(z, w)
$$

holds for all $(x, y),(z, w) \in \Delta$ and $\lambda \in[0,1]$. The mapping f is said to be concave on the co-ordinates on Δ if the above inequality holds in reversed direction, for all $(x, y),(z, w) \in \Delta$ and $\lambda \in[0,1]$.

A modification for convex (concave) functions on Δ, which is also known as co-ordinated convex (concave) functions, was introduced by S. S. Dragomir [9,13] as follows:

A function $f: \Delta \rightarrow \mathbb{R}$ is said to be convex (concave) on the co-ordinates on Δ if the partial mappings $f_{y}:[a, b] \rightarrow \mathbb{R}, f_{y}(u)=f(u, y)$ and $f_{x}:[c, d] \rightarrow \mathbb{R}, f_{x}(v)=$ $f(x, v)$ are convex (concave) where defined for all $x \in[a, b], y \in[c, d]$.

A formal definition for co-ordinated convex (concave) functions may be stated in:

Definition 1.2. [18] A mapping $f: \Delta \rightarrow \mathbb{R}$ is said to be convex on the coordinates on Δ if the inequality

$$
\begin{align*}
& f(t x+(1-t) y, r u+(1-r) w) \\
& \leq \operatorname{trf}(x, u)+t(1-r) f(x, w)+r(1-t) f(y, u)+(1-t)(1-r) f(y, w) \tag{2}
\end{align*}
$$

holds for all $t, r \in[0,1]$ and $(x, u),(y, w) \in \Delta$. The mapping f is concave on the co-ordinates on Δ if the inequality (2) holds in reversed direction for all $t, r \in[0,1]$ and $(x, y),(u, w) \in \Delta$.

Clearly, every convex (concave) mapping $f: \Delta \rightarrow \mathbb{R}$ is convex (concave) on the co-ordinates. Furthermore, there exists co-ordinated convex (concave) function which is not convex (concave), (see for instance [9, 13]).

The main result proved concerning the co-ordinated convex function from $[9,13]$ is given in:

Theorem 1.3. [9] Suppose that $f: \Delta \rightarrow \mathbb{R}$ is co-ordinated convex on Δ. Then one has the inequalities:

$$
\begin{align*}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
& \leq \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) d x+\frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) d y\right] \\
& \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \\
& \leq \frac{1}{4}\left[\frac{1}{b-a} \int_{a}^{b} f(x, c) d x+\frac{1}{b-a} \int_{a}^{b} f(x, d) d x\right. \\
& \left.+\frac{1}{d-c} \int_{c}^{d} f(a, y) d y+\frac{1}{d-c} \int_{c}^{d} f(b, y) d y\right] \\
& \leq \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4} \tag{3}
\end{align*}
$$

The above inequalities are sharp. The inequalities in (3) hold in reverse direction if the mapping f is concave.

The concept of s-convex functions on the co-ordinates in the second sense was introduced by Alomari and Darus in [1] as a generalization of the coordinated convexity in:

Definition 1.4. [1] Consider the bidimensional interval $\Delta=:[a, b] \times[c, d]$ in $[0, \infty)^{2}$ with $a<b$ and $c<d$. The mapping $f: \Delta \rightarrow \mathbb{R}$ is s-convex in the second sense on Δ if

$$
f(\lambda x+(1-\lambda) z, \lambda y+(1-\lambda) w) \leq \lambda^{s} f(x, y)+(1-\lambda)^{s} f(z, w)
$$

holds for all $(x, y),(z, w) \in \Delta, \lambda \in[0,1]$ with some fixed $s \in(0,1]$.
A function $f: \Delta=:[a, b] \times[c, d] \subseteq[0, \infty)^{2} \rightarrow \mathbb{R}$ is called s-convex in the second sense on the co-ordinates on Δ if the partial mappings $f_{y}:[a, b] \rightarrow \mathbb{R}$, $f_{y}(u)=f(u, y)$ and $f_{x}:[c, d] \rightarrow \mathbb{R}, f_{x}(v)=f(x, v)$, are s-convex in the second sense for all $y \in[c, d], x \in[a, b]$ and $s \in(0,1]$, i.e., the partial mappings f_{y} and f_{x} are s-convex in the second sense with some fixed $s \in(0,1]$.

A formal definition of co-ordinated s-convex function in second sense may be stated as follows:

Definition 1.5. A function $f: \Delta=:[a, b] \times[c, d] \subseteq[0, \infty]^{2} \rightarrow \mathbb{R}$ is called s-convex in the second sense on the co-ordinates on Δ if

$$
\begin{align*}
& f(t x+(1-t) y, r u+(1-r) w) \\
& \leq t^{s} r^{s} f(x, u)+t^{s}(1-r)^{s} f(x, w)+r^{s}(1-t)^{s} f(y, u)+(1-t)^{s}(1-r)^{s} f(y, w) \tag{4}
\end{align*}
$$

holds for all $t, r \in[0,1]$ and $(x, u),(y, w) \in \Delta$, for some fixed $s \in(0,1]$. The mapping f is s-concave on the co-ordinates on Δ if the inequality (4) holds in reversed direction for all $t, r \in[0,1]$ and $(x, y),(u, w) \in \Delta$ with some fixed $s \in(0,1]$.

In [5], Alomari et al. also proved a variant of inequalities given above by (3) for s-convex functions in the second sense on the co-ordinates on a rectangle from the plane \mathbb{R}^{2} :

Theorem 1.6. [1] Suppose $f: \Delta=[a, b] \times[c, d] \subseteq[0, \infty)^{2} \rightarrow[0, \infty)$ is s-convex function in the second sense on the co-ordinates on Δ. Then one has the inequalities:

$$
\begin{align*}
& 4^{s-1} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
& \leq 2^{s-2}\left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) d x+\frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) d y\right] \\
& \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \\
& \leq \frac{1}{2(s+1)}\left[\frac{1}{b-a} \int_{a}^{b}[f(x, c)+f(x, d)] d x\right. \\
& \left.+\frac{1}{d-c} \int_{a}^{b}[f(a, y)+f(b, y)] d y\right] \\
& \leq \frac{f(a, c)+f(b, c)+f(a, d)+f(b, d)}{(s+1)^{2}} \tag{5}
\end{align*}
$$

In recent years, many authors have proved several inequalities for co-ordinated convex functions. These studies include, among others, the works in [1-$3,6,9,15,17-20,22,27]$ (see also the references therein). Alomari et al. [1]-[3], proved several Hermite-Hadamard type inequalities for co-ordinated s convex functions. Bakula et. al [6], proved Jensen's inequality for convex functions on the co-ordinates from the rectangle from the plan \mathbb{R}^{2}. Dragomir [9], proved the Hermite-Hadamard type inequalities for co-ordinated convex functions. Hwang et. al [15], also proved some Hermite-Hadamard type inequalities
for co-ordinated convex function of two variables by considering some mappings directly associated with the Hermite-Hadamard type inequality for coordinated convex mappings of two variables. Latif et. al [17]-[20], proved some inequalities of Hermite-Hadamard type for differentiable co-ordinated convex functions, for product of two co-ordinated convex mappings, for co-ordinated h-convex mappings and also proved some Ostrowski type inequalities for coordinated convex mappings. Özdemir et. al [22], proved Hadamard's type inequalities for co-ordinated m-convex and (α, m)-convex functions. Sarikaya, et. al [27] proved Hermite-Hadamard type inequalities for differentiable coordinated convex function. For further inequalities on co-ordinated convex functions see also the references in the above cited papers.

In the present paper, we establish new Ostrowski type inequalities for coordinated s-convex functions in second sense similar to those from [20].

2. Main Results

To establish our main results we need the following identity:
Lemma 2.1. [20] Let $f: \Delta \rightarrow \mathbb{R}$ be a twice partial differentiable mapping on Δ°. If $\frac{\partial^{2} f}{\partial r \partial t} \in L(\Delta)$, then the following identity holds:

$$
\begin{align*}
& f(x, y)+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(u, v) d v d u-A \\
& =\frac{(x-a)^{2}(y-c)^{2}}{(b-a)(d-c)} \int_{0}^{1} \int_{0}^{1} r t \frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) a, r y+(1-r) c) d r d t \\
& -\frac{(x-a)^{2}(d-y)^{2}}{(b-a)(d-c)} \int_{0}^{1} \int_{0}^{1} r t \frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) a, r y+(1-r) d) d r d t \\
& -\frac{(b-x)^{2}(y-c)^{2}}{(b-a)(d-c)} \int_{0}^{1} \int_{0}^{1} r t \frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) b, r y+(1-r) c) d r d t \\
& +\frac{(b-x)^{2}(d-y)^{2}}{(b-a)(d-c)} \int_{0}^{1} \int_{0}^{1} r t \frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) b, r y+(1-r) d) d r d t \tag{6}
\end{align*}
$$

for all $(x, y) \in \Delta$, where

$$
A=\frac{1}{d-c} \int_{c}^{d} f(x, v) d v+\frac{1}{b-a} \int_{a}^{b} f(u, y) d u
$$

We begin with the following result:
Theorem 2.2. Let $\Delta=[a, b] \times[c, d] \subseteq[0, \infty)^{2} \rightarrow \mathbb{R}$ be a twice partial differentiable mapping on Δ° such that $\frac{\partial^{2} f}{\partial r \partial t} \in L(\Delta)$. If $\left|\frac{\partial^{2} f}{\partial r \partial t}\right|$ is s-convex in the second
sense on the co-ordinates on Δ with $s \in(0,1]$ and $\left|\frac{\partial^{2}}{\partial r \partial t} f(x, y)\right| \leq M,(x, y) \in \Delta$, then the following inequality holds:

$$
\begin{align*}
& \left|f(x, y)+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(u, v) d v d u-A\right| \\
& \leq \frac{M}{(s+1)^{2}}\left[\frac{(x-a)^{2}+(b-x)^{2}}{b-a}\right]\left[\frac{(y-c)^{2}+(d-y)^{2}}{d-c}\right] \tag{7}
\end{align*}
$$

for all $(x, y) \in \Delta$, where A is defined in Lemma 2.1.
Proof. By Lemma 2.1, we have that the following inequality holds:

$$
\begin{align*}
& \left|f(x, y)+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(u, v) d v d u-A\right| \\
& \leq \frac{(x-a)^{2}(y-c)^{2}}{(b-a)(d-c)} \int_{0}^{1} \int_{0}^{1} r t\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) a, r y+(1-r) c)\right| d r d t \\
& +\frac{(x-a)^{2}(d-y)^{2}}{(b-a)(d-c)} \int_{0}^{1} \int_{0}^{1} r t\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) a, r y+(1-r) d)\right| d r d t \\
& +\frac{(b-x)^{2}(y-c)^{2}}{(b-a)(d-c)} \int_{0}^{1} \int_{0}^{1} r t\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) b, r y+(1-r) c)\right| d r d t \\
& +\frac{(b-x)^{2}(d-y)^{2}}{(b-a)(d-c)} \int_{0}^{1} \int_{0}^{1} r t\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) b, r y+(1-r) d)\right| d r d t \tag{8}
\end{align*}
$$

for all $(x, y) \in \Delta$.
Using the co-ordinated s-convexity of $\left|\frac{\partial^{2} f}{\partial r \partial t}\right|$, we have that the following inequality holds:

$$
\begin{align*}
& \quad \int_{0}^{1} \int_{0}^{1} r t\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) a, r y+(1-r) c)\right| d r d t \\
& \leq\left|\frac{\partial^{2}}{\partial r \partial t} f(x, y)\right| \int_{0}^{1} \int_{0}^{1} t^{s+1} r^{s+1} d r d t+\left|\frac{\partial^{2}}{\partial r \partial t} f(x, c)\right| \int_{0}^{1} \int_{0}^{1} t^{s+1} r(1-r)^{s} d r d t \\
& \\
& \quad+\left|\frac{\partial^{2}}{\partial r \partial t} f(a, y)\right| \int_{0}^{1} \int_{0}^{1} r^{s+1} t(1-t)^{s} d r d t \tag{9}\\
& \\
& \quad+\left|\frac{\partial^{2}}{\partial r \partial t} f(a, c)\right| \int_{0}^{1} \int_{0}^{1} r t(1-t)^{s}(1-r)^{s} d r d t
\end{align*}
$$

Since

$$
\int_{0}^{1} \int_{0}^{1} t^{s+1} r^{s+1} d r d t=\frac{1}{(s+2)^{2}}
$$

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1} t^{s+1} r(1-r)^{s} d r d t=\int_{0}^{1} \int_{0}^{1} r^{s+1} t(1-t)^{s} d r d t=\frac{1}{(s+1)(s+2)^{2}} \\
\int_{0}^{1} \int_{0}^{1} r t(1-t)^{s}(1-r)^{s} d r d t=\frac{1}{(s+1)^{2}(s+2)^{2}}
\end{gathered}
$$

and

$$
\left|\frac{\partial^{2}}{\partial r \partial t} f(x, y)\right| \leq M,(x, y) \in \Delta
$$

where we have used the Euler Beta function and its to evaluate the above integrals.
Hence from (9), we obtain

$$
\begin{align*}
\int_{0}^{1} \int_{0}^{1} r t & \left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) a, r y+(1-r) c)\right| d r d t \\
& \leq \frac{M}{(s+2)^{2}}+\frac{2 M}{(s+1)(s+2)^{2}}+\frac{M}{(s+1)^{2}(s+2)^{2}}=\frac{M}{(s+1)^{2}} \tag{10}
\end{align*}
$$

Analogously, we also have

$$
\begin{align*}
& \int_{0}^{1} \int_{0}^{1} r t\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) a, r y+(1-r) d)\right| d r d t \leq \frac{M}{(s+1)^{2}} \tag{11}\\
& \int_{0}^{1} \int_{0}^{1} r t\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) b, r y+(1-r) c)\right| d r d t \leq \frac{M}{(s+1)^{2}} \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1} r t\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) b, r y+(1-r) d)\right| d r d t \leq \frac{M}{(s+1)^{2}} \tag{13}
\end{equation*}
$$

Now by making use of the inequalities (10)-(13) and the fact that

$$
\begin{aligned}
& (x-a)^{2}(y-c)^{2}+(x-a)^{2}(d-y)^{2}+(b-x)^{2}(y-c)^{2}+(b-x)^{2}(d-y)^{2} \\
& =\left[(x-a)^{2}+(b-x)^{2}\right]\left[(y-c)^{2}+(d-y)^{2}\right]
\end{aligned}
$$

we get the inequality (7). This completes the proof.
The corresponding version for powers of the absolute value of the partial derivative is incorporated in the following result:

Theorem 2.3. $\Delta=[a, b] \times[c, d] \subseteq[0, \infty)^{2} \rightarrow \mathbb{R}$ be a twice partial differentiable mapping on Δ° such that $\frac{\partial^{2} f}{\partial r \partial t} \in L(\Delta)$. If $\left|\frac{\partial^{2} f}{\partial r \partial t}\right|^{q}$ is s-convex in the second sense
on the co-ordinates on $\Delta, p, q>1, \frac{1}{p}+\frac{1}{q}=1$ and $\left|\frac{\partial^{2}}{\partial r \partial t} f(x, y)\right| \leq M,(x, y) \in \Delta$, then the following inequality holds:

$$
\begin{align*}
& \left|f(x, y)+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(u, v) d v d u-A\right| \\
& \leq \frac{M}{(1+p)^{\frac{2}{p}}}\left(\frac{2}{s+1}\right)^{\frac{2}{q}}\left[\frac{(x-a)^{2}+(b-x)^{2}}{b-a}\right]\left[\frac{(y-c)^{2}+(d-y)^{2}}{d-c}\right] \tag{14}
\end{align*}
$$

for all $(x, y) \in \Delta$, where A is defined in Lemma 2.1.
Proof. By Lemma 2.1 and using the Hölder inequality for double integrals, we have that inequality holds:

$$
\begin{align*}
& \left|f(x, y)+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(u, v) d v d u-A\right| \leq\left(\int_{0}^{1} \int_{0}^{1} r^{p} t^{p} d r d t\right)^{\frac{1}{p}} \\
& \times\left[\frac{(x-a)^{2}(y-c)^{2}}{(b-a)(d-c)}\left(\int_{0}^{1} \int_{0}^{1}\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) a, r y+(1-r) c)\right|^{q} d r d t\right)^{\frac{1}{q}}\right. \\
& +\frac{(x-a)^{2}(d-y)^{2}}{(b-a)(d-c)}\left(\int_{0}^{1} \int_{0}^{1}\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) a, r y+(1-r) d)\right|^{q} d r d t\right)^{\frac{1}{q}} \\
& +\frac{(b-x)^{2}(y-c)^{2}}{(b-a)(d-c)}\left(\int_{0}^{1} \int_{0}^{1}\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) b, s y+(1-s) c)\right|^{q} d r d t\right)^{\frac{1}{q}} \\
& \left.+\frac{(b-x)^{2}(d-y)^{2}}{(b-a)(d-c)}\left(\int_{0}^{1} \int_{0}^{1}\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) b, r y+(1-r) d)\right|^{q} d r d t\right)^{\frac{1}{q}}\right] \tag{15}
\end{align*}
$$

for all $(x, y) \in \Delta$.
Since $\left|\frac{\partial^{2} f}{\partial r \partial t}\right|^{q}$ is s-convex in the second sense on the co-ordinates on Δ and $\left|\frac{\partial^{2}}{\partial r \partial t} f(x, y)\right| \leq M,(x, y) \in \Delta$, we have

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1}\left|\frac{\partial^{2}}{\partial s \partial t} f(t x+(1-t) a, r y+(1-r) c)\right|^{q} d r d t \\
& \leq\left|\frac{\partial^{2}}{\partial r \partial t} f(x, y)\right|^{q} \int_{0}^{1} \int_{0}^{1} t^{s} r^{s} d r d t+\left|\frac{\partial^{2}}{\partial r \partial t} f(a, c)\right|^{q} \int_{0}^{1} \int_{0}^{1}(1-t)^{s}(1-r)^{s} d r d t \\
& +\left|\frac{\partial^{2}}{\partial r \partial t} f(a, y)\right|^{q} \int_{0}^{1} \int_{0}^{1} r^{s}(1-t)^{s} d r d t+\left|\frac{\partial^{2}}{\partial r \partial t} f(x, c)\right|_{0}^{q} \int_{0}^{1} \int_{0}^{1} t^{s}(1-r)^{s} d r d t \\
& =\frac{4 M^{q}}{(s+1)^{2}}
\end{aligned}
$$

Similarly, we also have the following inequalities:

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1}\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) a, r y+(1-r) d)\right|^{q} d r d t \leq \frac{4 M^{q}}{(s+1)^{2}} \\
& \int_{0}^{1} \int_{0}^{1}\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) b, r y+(1-r) c)\right|^{q} d r d t \leq \frac{4 M^{q}}{(s+1)^{2}}
\end{aligned}
$$

and

$$
\int_{0}^{1} \int_{0}^{1}\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) b, r y+(1-r) d)\right|^{q} d r d t \leq \frac{4 M^{q}}{(s+1)^{2}}
$$

Using the fact

$$
\int_{0}^{1} \int_{0}^{1} r^{p} t^{p} d r d t=\frac{1}{(1+p)^{2}}
$$

and the above inequalities in (15), we get (14). This completes the proof of the theorem.

A different approach leads us to the following result:

Theorem 2.4. Let $\Delta=[a, b] \times[c, d] \subseteq[0, \infty)^{2} \rightarrow \mathbb{R}$ be a twice partial differentiable mapping on Δ° such that $\frac{\partial^{2} f}{\partial r \partial t} \in L(\Delta)$. If $\left|\frac{\partial^{2} f}{\partial r \partial t}\right|^{q}$ is s-convex on the co-ordinates on $\Delta, q \geq 1$ and $\left|\frac{\partial^{2}}{\partial r \partial t} f(x, y)\right| \leq M,(x, y) \in \Delta$, then the following inequality holds:

$$
\begin{align*}
& \left|f(x, y)+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(u, v) d v d u-A\right| \\
& \leq \frac{M}{4}\left(\frac{2}{s+1}\right)^{\frac{2}{q}}\left[\frac{(x-a)^{2}+(b-x)^{2}}{b-a}\right]\left[\frac{(y-c)^{2}+(d-y)^{2}}{d-c}\right] \tag{16}
\end{align*}
$$

for all $(x, y) \in \Delta$, where A is defined in Lemma 2.1.

Proof. Suppose $q \geq 1$. From Lemma 2.1 and using the power mean inequality
for double integrals, we have

$$
\begin{align*}
& \left|f(x, y)+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(u, v) d v d u-A\right| \leq\left(\int_{0}^{1} \int_{0}^{1} r t d r d t\right)^{1-\frac{1}{q}} \\
& \times\left[\frac{(x-a)^{2}(y-c)^{2}}{(b-a)(d-c)}\left(\int_{0}^{1} \int_{0}^{1} t r\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) a, r y+(1-r) c)\right|^{q} d r d t\right)^{\frac{1}{q}}\right. \\
& +\frac{(x-a)^{2}(y-d)^{2}}{(b-a)(d-c)}\left(\int_{0}^{1} \int_{0}^{1} t r\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) a, r y+(1-r) d)\right|^{q} d r d t\right)^{\frac{1}{q}} \\
& +\frac{(b-x)^{2}(y-c)^{2}}{(b-a)(d-c)}\left(\int_{0}^{1} \int_{0}^{1} t r\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) b, r y+(1-r) c)\right|^{q} d r d t\right)^{\frac{1}{q}} \\
& \left.+\frac{(b-x)^{2}(d-y)^{2}}{(b-a)(d-c)}\left(\int_{0}^{1} \int_{0}^{1} t r\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) b, r y+(1-r) d)\right|^{q} d r d t\right)^{\frac{1}{q}}\right] \tag{17}
\end{align*}
$$

for all $(x, y) \in \Delta$.
By similar argument as in Theorem 2.3 that $\left|\frac{\partial^{2} f}{\partial r \partial t}\right|^{q}$ is s-convex on the co-ordinates on Δ in the second sense and $\left|\frac{\partial^{2}}{\partial r \partial t} f(x, y)\right| \leq M,(x, y) \in \Delta$, we have

$$
\left.\begin{array}{rl}
\int_{0}^{1} \int_{0}^{1} t r \left\lvert\, \frac{\partial^{2}}{\partial r \partial t} f\right. & \left.f(t x+(1-t) a, r y+(1-r) c)\right|^{q} d r d t
\end{array}\right) \quad \begin{aligned}
& \leq\left|\frac{\partial^{2}}{\partial r \partial t} f(x, y)\right|^{q} \int_{0}^{1} \int_{0}^{1} t^{s+1} r^{s+1} d r d t \\
&+\left|\frac{\partial^{2}}{\partial r \partial t} f(x, c)\right|^{q} \int_{0}^{1} \int_{0}^{1} t^{s+1} r(1-r)^{s} d r d t \\
&+\left|\frac{\partial^{2}}{\partial r \partial t} f(a, y)\right|^{q} \int_{0}^{1} \int_{0}^{1} t(1-t)^{s} r^{s+1} d r d t \\
&+\left|\frac{\partial^{2}}{\partial r \partial t} f(a, c)\right|^{q} \int_{0}^{1} \int_{0}^{1} t(1-t)^{s} r(1+r)^{s} d r d t \\
&=\frac{M^{q}}{(s+2)^{2}}+\frac{M^{q}}{(s+1)(s+2)^{2}}+\frac{M^{q}}{(s+1)(s+2)^{2}}+\frac{M^{q}}{(s+1)^{2}(s+2)^{2}} \\
&=\frac{M^{q}}{(s+1)^{2}}
\end{aligned}
$$

In a similar way, we also have that the following inequalities:

$$
\int_{0}^{1} \int_{0}^{1} t r\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) a, r y+(1-r) d)\right|^{q} d r d t \leq \frac{M^{q}}{(s+1)^{2}}
$$

$$
\int_{0}^{1} \int_{0}^{1} t r\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) b, r y+(1-r) c)\right|^{q} d r d t \leq \frac{M^{q}}{(s+1)^{2}}
$$

and

$$
\int_{0}^{1} \int_{0}^{1} t r\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) b, r y+(1-r) d)\right|^{q} d r d t \leq \frac{M^{q}}{(s+1)^{2}}
$$

Now using the above inequalities and

$$
\int_{0}^{1} \int_{0}^{1} r t d r d t=\frac{1}{4}
$$

in (17), we get the desired inequality (16). This completes the proof.

Remark 2.5. Since $(1+p)^{\frac{1}{p}}<2, p>1$ and accordingly, we have

$$
\frac{1}{2}<\frac{1}{(1+p)^{\frac{1}{p}}}, p>1
$$

which gives

$$
\frac{1}{4}<\frac{1}{(1+p)^{\frac{2}{p}}}, p>1
$$

This reveals that the the inequality (16) gives tighter estimate than that of the inequality (14).

Remark 2.6. From the inequalities proved above in Theorem 2.2-Theorem 2.4, one can get several midpoint type inequalities by setting $x=\frac{a+b}{2}$ and $y=\frac{c+d}{2}$. However the details are left to the interested reader.

Now we drive some results with co-ordinated s-concavity property instead of co-ordinated s-convexity.

Theorem 2.7. $\Delta=[a, b] \times[c, d] \subseteq[0, \infty)^{2} \rightarrow \mathbb{R}$ be a twice partial differentiable mapping on Δ° such that $\frac{\partial^{2} f}{\partial r \partial t} \in L(\Delta)$. If $\left|\frac{\partial^{2} f}{\partial r \partial t}\right|^{q}$ is s-concave on the co-ordinates
on Δ and $p, q>1, \frac{1}{p}+\frac{1}{q}=1$, then the inequality

$$
\begin{align*}
& \left|f(x, y)+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(u, v) d v d u-A\right| \\
& \leq \frac{4^{\frac{s-1}{q}}}{(1+p)^{\frac{2}{p}}(b-a)(d-c)}\left[(x-a)^{2}(y-c)^{2}\left|\frac{\partial^{2}}{\partial r \partial t} f\left(\frac{x+a}{2}, \frac{c+y}{2}\right)\right|\right. \\
& +(x-a)^{2}(d-y)^{2}\left|\frac{\partial^{2}}{\partial r \partial t} f\left(\frac{x+a}{2}, \frac{d+y}{2}\right)\right| \\
& +(b-x)^{2}(y-c)^{2}\left|\frac{\partial^{2}}{\partial r \partial t} f\left(\frac{b+a}{2}, \frac{y+c}{2}\right)\right| \\
& \left.+(b-x)^{2}(d-y)^{2}\left|\frac{\partial^{2}}{\partial r \partial t} f\left(\frac{b+x}{2}, \frac{d+y}{2}\right)\right|\right] \tag{18}
\end{align*}
$$

hods for all $(x, y) \in \Delta$, where A is defined in Lemma 2.1.

Proof. From Lemma 2.1 and using the Hölder inequality for double integrals, we have that inequality holds:

$$
\begin{align*}
& \left|f(x, y)+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(u, v) d v d u-A\right| \\
& \leq\left(\int_{0}^{1} \int_{0}^{1} r^{p} t^{p} d r d t\right)^{\frac{1}{p}} \\
& \times\left[\frac{(x-a)^{2}(y-c)^{2}}{(b-a)(d-c)}\left(\int_{0}^{1} \int_{0}^{1}\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) a, r y+(1-r) c)\right|^{q} d r d t\right)^{\frac{1}{q}}\right. \\
& +\frac{(x-a)^{2}(d-y)^{2}}{(b-a)(d-c)}\left(\int_{0}^{1} \int_{0}^{1}\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) a, r y+(1-r) d)\right|^{q} d r d t\right)^{\frac{1}{q}} \\
& +\frac{(b-x)^{2}(y-c)^{2}}{(b-a)(d-c)}\left(\int_{0}^{1} \int_{0}^{1}\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) b, r y+(1-r) c)\right|^{q} d r d t\right)^{\frac{1}{q}} \\
& \left.+\frac{(b-x)^{2}(d-y)^{2}}{(b-a)(d-c)}\left(\int_{0}^{1} \int_{0}^{1}\left|\frac{\partial^{2}}{\partial r \partial t} f(t x+(1-t) b, r y+(1-r) d)\right|^{q} d r d t\right)^{\frac{1}{q}}\right] \tag{19}
\end{align*}
$$

for all $(x, y) \in \Delta$.
Since $\left|\frac{\partial^{2} f}{\partial r \partial t}\right|^{q}$ is s-concave on the co-ordinates on Δ, so an application of (5) with
inequalities in reversed direction, gives us the following inequalities:

$$
\begin{array}{rl}
\int_{0}^{1} \int_{0}^{1} \left\lvert\, \frac{\partial^{2}}{\partial r \partial t} f\right. & \left.f(t x+(1-t) a, r y+(1-r) c)\right|^{q} d r d t \\
\leq & 2^{s-2}\left[\int_{0}^{1}\left|\frac{\partial^{2}}{\partial r \partial t} f\left(t x+(1-t) a, \frac{y+c}{2}\right)\right|^{q} d t\right. \\
& \left.+\int_{0}^{1}\left|\frac{\partial^{2}}{\partial r \partial t} f\left(\frac{x+a}{2}, r y+(1-r) c\right)\right|^{q} d r\right] \\
& \leq 4^{s-1}\left|\frac{\partial^{2}}{\partial r \partial t} f\left(\frac{x+a}{2}, \frac{y+c}{2}\right)\right|^{q} \tag{20}
\end{array}
$$

$$
\begin{array}{rl}
\int_{0}^{1} \int_{0}^{1} \left\lvert\, \frac{\partial^{2}}{\partial r \partial t} f\right. & \left.f(t x+(1-t) a, r y+(1-r) d)\right|^{q} d s d t \\
\leq & 2^{s-2}\left[\int_{0}^{1}\left|\frac{\partial^{2}}{\partial r \partial t} f\left(t x+(1-t) a, \frac{d+y}{2}\right)\right|^{q} d t\right. \\
& \left.+\int_{0}^{1}\left|\frac{\partial^{2}}{\partial r \partial t} f\left(\frac{x+a}{2}, r y+(1-r) c\right)\right|^{q} d r\right] \\
& \leq 4^{s-1}\left|\frac{\partial^{2}}{\partial r \partial t} f\left(\frac{x+a}{2}, \frac{d+y}{2}\right)\right|^{q} \tag{21}
\end{array}
$$

$$
\left.\begin{array}{rl}
\int_{0}^{1} \int_{0}^{1} \left\lvert\, \frac{\partial^{2}}{\partial r \partial t}\right. & \left.f(t x+(1-t) b, r y+(1-r) c)\right|^{q} d r d t \\
\leq & 2^{s-2}\left[\int_{0}^{1}\left|\frac{\partial^{2}}{\partial r \partial t} f\left(t x+(1-t) a, \frac{y+c}{2}\right)\right|^{q} d t\right. \\
& +\int_{0}^{1} \left\lvert\, \frac{\partial^{2}}{\partial r \partial t} f\left(\frac{b+x}{2},\right.\right.
\end{array}\right)
$$

and

$$
\begin{array}{rl}
\int_{0}^{1} \int_{0}^{1} \left\lvert\, \frac{\partial^{2}}{\partial r \partial t} f\right. & \left.f(t x+(1-t) b, r y+(1-r) d)\right|^{q} d r d t \\
\leq & 2^{s-2}\left[\int_{0}^{1}\left|\frac{\partial^{2}}{\partial r \partial t} f\left(t x+(1-t) b, \frac{d+y}{2}\right)\right|^{q} d t\right. \\
& \left.+\int_{0}^{1}\left|\frac{\partial^{2}}{\partial r \partial t} f\left(\frac{b+x}{2}, r y+(1-r) d\right)\right|^{q} d r\right] \\
& \leq 4^{s-1}\left|\frac{\partial^{2}}{\partial r \partial t} f\left(\frac{b+x}{2}, \frac{d+y}{2}\right)\right|^{q} \tag{23}
\end{array}
$$

By making use of (20)-(23) in (19), we obtain (18). Thus the proof of the theorem is complete.

Acknowledgements

The authors are thankful to the careful referee for his/her valuable suggestions to improve the final version of this paper.

REFERENCES

[1] M. Alomari - M. Darus, The Hadamard's inequality for s-convex function of 2variables on the co-ordinates, Int. Journal of Math. Analysis 2 (13) (2008), 629638.
[2] M. Alomari - M. Darus, The Hadamard's inequality for s-convex functions, Int. Journal of Math. Analysis 2 (13) (2008), 639-646.
[3] M. Alomari - M. Darus, Hadamard-Type Inequalities for s-convex functions, International Mathematical Forum 3 (2008), no. 40, 1965-1975.
[4] M. Alomari - M. Darus - S. S. Dragomir - P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Applied Mathematics Letters 23, Issue 9, September 2010, 1071-1076.
[5] M. Alomari - M. Darus, Some Ostrowski type inequalities for convex functions with applications, RGMIA 13 (1) (2010), Article 3.
http://ajmaa.org/RGMIA/v13n1.php
[6] M. K. Bakula - J. Pečarić, On the Jensen's inequality for convex functions on the coordinates in a rectangle from the plane, Taiwanese Journal of Math. 5 (2006), 1271-1292.
[7] N. S. Barnett - S. S. Dragomir, An Ostrowski type inequality for double integrals and applications for cubature formulae, Soochow J. Math. 27 (1) (2001), 109114.
[8] P. Cerone - S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstratio Math. 37 (2) (2004), 299-308.
[9] S.S. Dragomir, On Hadamard's inequality for convex functions on the coordinates in a rectangle from the plane, Taiwanese Journal of Mathematics 5 (2001), 775-788.
[10] S. S. Dragomir - S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstratio Math. 32 (4) (1999), 687-696.
[11] S. S. Dragomir - A. Sofo, Ostrowski type inequalities for functions whose derivatives are convex, Proceedings of the 4th International Conference on Modelling and Simulation, November 11-13, 2002. Victoria University, Melbourne, Australia. RGMIA Res. Rep. Coll. 5 (2002), Supplement, Article 30. http://rgmia.vu.edu.au/v5(E).html
[12] S. S. Dragomir - N. S. Barnett - P. Cerone, An n-dimensional version of Ostrowski's inequality for mappings of Hölder type, RGMIA Res. Pep. Coll. 2 (2) (1999), 169-180.
[13] S. S. Dragomir - C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. Online: http://www.staff.vu.edu.au/RGMIA/monographs/hermite_hadamard.html
[14] H. Hudzik - L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994), 100-111.
[15] D. Y. Hwang - K. L. Tseng - G. S. Yang, Some Hadamard's inequalities for coordinated convex functions in a rectangle from the plane, Taiwanese Journal of Mathematics 11 (2007), 63-73.
[16] U.S. Kirmaci - M. K. Bakula - M.E. Ozdemir - J. Pečarić, Hadamard-type inequalities for s-convex functions, Appl. Math. and Compt. 93 (2007), 26-35.
[17] M. A. Latif - M. Alomari, On Hadamard-type inequalities for h-convex functions on the co-ordinates, International Journal of Math. Analysis 3 (33) (2009), 16451656.
[18] M. A. Latif - M. Alomari, Hadamard-type inequalities for product two convex functions on the co-ordinates, International Mathematical Forum 4 (47) (2009), 2327-2338.
[19] M. A. Latif - S. S. Dragomir, On some new inequalities for differentiable coordinated convex functions, RGMIA Research. Report. Collection 14 (2011), Article 45.[online:
[20] M. A. Latif - S. Hussain - S. S. Dragomir, New Ostrowski type inequalities for co-ordinated convex functions, RGMIA Research Report Collection 14 (2011), Article 49. http://www.ajmaa.org/RGMIA/v14.php
[21] A. M. Ostrowski, Über die absolutabweichung einer differentiebaren funktion von
ihrem integralmitelwert, Comment. Math. Helv. 10 (1938), 226-227.
[22] M. E. Özdemir - E. Set - M. Z. Sarıkaya, Some new Hadamard's type inequalities for co-ordinated m-convex and (α, m)-convex functions, Accepted.
[23] B. G. Pachpatte, On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl. 249 (2000), 583-591.
[24] B. G. Pachpatte, On a new Ostrowski type inequality in two independent variables, Tamkang J. Math. 32 (1) (2001), 45-49
[25] B. G. Pachpatte, A new Ostrowski type inequality for double integrals, Soochow J. Math. 32 (2) (2006), 317-322.
[26] M. Z. Sarıkaya, On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae LXXIX [1] (2010), 129-134.
[27] M. Z. Sarıkaya - E. Set - M. E. Özdemir - S. S. Dragomir, New some Hadamard's type inequalities for co-ordinated convex functions, Accepted.
[28] N. Ujević, Some double integral inequalities and applications, Appl. Math. ENotes 7 (2007), 93-101.

MUHAMMAD AMER LATIF
Department of Mathematics
Hail University, Saudi Arabia
e-mail: m_amer_latif@hotmail.com.

SEVER S. DRAGOMIR
School of Engineering and Science, Victoria University, PO Box 14428,
Melbourne City, MC 8001, Australia e-mail: sever.dragomir@vu.edu.au

