ON THE RELATION BETWEEN BETTI NUMBERS OF AN ARF SEMIGROUP AND ITS BLOWUP

MICHAŁ LASOŃ

Abstract

In this note we prove the relation between Betti numbers of an Arf semigroup S and its blowup S^{\prime} in the case when they have the same multiplicity n. The relation is then $\beta_{i, s}\left(S^{\prime}\right)=\beta_{i, s+(i+1) n}(S)$.

1. Introduction

Definition 1.1. A numerical semigroup is a subset of \mathbb{N} that is closed under addition, contains zero and with finite complement in \mathbb{N}.

In fact it is even a monoid, but in this setting it is usually called as above. A subset T of S generates it if every element of S is a linear combination of elements of T with integer coefficients. Every generating set T contains the minimum set of generators, denoted by $G(S)$, which are exactly nonzero elements that can not be represented as a sum of two nonzero elements of S.

Definition 1.2. The smallest generator in $G(S)$ is called the multiplicity of S and the number of elements in $G(S)$ the embedding dimension of S.

Remark 1.3. The multiplicity is greater or equal to embedding dimension.
Entrato in redazione: 8 agosto 2011
AMS 2010 Subject Classification: 13D99, 20M50, 20M14, 20M25.
Keywords: Betti numbers, Arf semigroup, Blowup of a semigroup.
Author is supported by the grant of Polish MNiSzW N N201 413139.

Definition 1.4. An Arf semigroup is a numerical semigroup S such that for each $n \in S$ the set $S(n)$ is also a semigroup, where $S(n)=\{s-n: s \in S, s \geq n\}$.

Arf property is equivalent to: if $s, t, u \in S$ and $s, t \geq u$ then $s+t-u \in S$.
Proposition 1.5. For Arf semigroups multiplicity and embedding dimension are equal.

Proof. Let n_{1} be the multiplicity of the Arf semigroup S, we will show that embedding dimension is greater or equal to n_{1}, which is sufficient due to the above Remark. Let r be any residue class modulo n_{1} and let $S_{r}=\{s \in S: s \equiv r$ $\left.\bmod n_{1}\right\}$. The set S_{r} is non empty so there exists a minimal element s in it. If s was not a generator then $s=t+u$ for $t, u \in S \backslash\{0\}$, so thanks to the Arf condition $s-n_{1}=t+u-n_{1} \in S_{r}$, which is a contradiction. Hence for every residue class modulo n_{1} there is a generator belonging to it.

Definition 1.6. Let S be a semigroup with $G(S)=\left\{n_{1}, \ldots, n_{k}\right\}$. Here and in the sequel we assume that $n_{1}<\cdots<n_{k}$. Then the blowup of S is a semigroup S^{\prime} generated by $n_{1}, n_{2}-n_{1}, \ldots, n_{k}-n_{1}$.

Proposition 1.7. The blowup of an Arf semigroup S with multiplicity n_{1} is a semigroup $S^{\prime \prime}=S\left(n_{1}\right)=\left\{s-n_{1}: s \in S, s \geq n_{1}\right\}$.

Proof. Let $G(S)=\left\{n_{1}, \ldots, n_{k}\right\}, S^{\prime}$ the blow up of S is contained in $S^{\prime \prime}$ because all its generators are and $S^{\prime \prime}$ is a semigroup since S is Arf. Elements of $S^{\prime \prime}$ are clearly contained in S^{\prime}.

Proposition 1.8. The blowup of an Arf semigroup is an Arf semigroup.

Proof. Let $s^{\prime}, t^{\prime} \geq u^{\prime}$ and $s^{\prime}, t^{\prime}, u^{\prime} \in S^{\prime}$ the blowup of an Arf semigroup S with multiplicity n_{1}. Then $s^{\prime}=s-n_{1}, t^{\prime}=t-n_{1}, u^{\prime}=u-n_{1}$ and clearly $s, t \geq u$. Hence $s^{\prime}+t^{\prime}-u^{\prime}=(s+t-u)-n_{1} \in S^{\prime}$.

Remark 1.9. If $G(S)=\left\{n_{1}, \ldots, n_{k}\right\}$ for an Arf semigroup S which has the same multiplicity as its blowup S^{\prime} then $G\left(S^{\prime}\right)=\left\{n_{1}, n_{2}-n_{1}, \ldots, n_{k}-n_{1}\right\}$. It is because both have the same multiplicity and because they are Arf they have also the same number of generators. In general multiplicity of a blowup can decrease, then some of $n_{i}-n_{1}$ are not generators any more. This remark and Propositions 1.7, 1.10 are the only places where the assumption that both semigroups have the same multiplicity is used.

Proposition 1.10. For an Arf semigroup S with $G(S)=\left\{n_{1}, \ldots, n_{k}\right\}$ and its blowup S^{\prime} of the same multiplicity we have that

- $s \in S \Leftrightarrow s-n_{1} \in S^{\prime}$ unless $s=0$
- $s \in S \Leftrightarrow s-2 n_{1} \in S^{\prime}$ unless $s=0$ or $s=n_{l}$
- $s \in S \Leftrightarrow s \in S^{\prime}$ unless $s=n_{l}-n_{1}$ for $l \neq 1$.

Proof. The first equivalence follows from Proposition 1.7, to prove the second one it is enough to see that if $s=w+w^{\prime}$ for $w, w^{\prime} \in S \backslash\{0\}$ then $s-2 n_{1}=$ $\left(w-n_{1}\right)+\left(w^{\prime}-n_{1}\right) \in S^{\prime}$. And also $n_{1}, n_{l}-n_{1}=n_{1}+\left(n_{l}-2 n_{1}\right)$ are generators of S^{\prime} so $n_{l}-2 n_{1}$ does not belong to S^{\prime}. The third one follows from the fact that if $s=w+w^{\prime}$ for $w, w^{\prime} \in S^{\prime} \backslash\{0\}$ then due to Arf property of $S^{\prime} w+w^{\prime}-n_{1} \in S^{\prime}$ and so $s=\left(w+w^{\prime}-n_{1}\right)+n_{1} \in S$, otherwise $s=n_{j}-n_{1} \notin S$.

With a numerical semigroup S with $G(S)=\left\{n_{1}, \ldots, n_{k}\right\}$ and a field k we associate the semigroup ring $R=k\left[t^{n_{1}}, \ldots, t^{n_{k}}\right]$. Let T be the graded polynomial ring $k\left[X_{1}, \ldots, X_{k}\right]$ with $\operatorname{deg}\left(X_{i}\right)=n_{i}$. Graded ring R is isomorphic to T / I where I is the ideal describing relations between generators of S (namely I is generated by binomials $X^{\alpha}-X^{\beta}$ for which $\Sigma n_{i} \alpha_{i}=\Sigma n_{i} \beta_{i}$). Then $\operatorname{Tor}_{i}^{T}(R, k)$ gets a grading induced by the grading of T. We denote the part of degree s by $\operatorname{Tor}_{i}^{T}(R, k)_{s}$.

Definition 1.11. The Betti numbers are $\beta_{i, s}=\operatorname{dim}_{k} \operatorname{Tor}_{i}^{T}(R, k)_{s}$.
For $s \in S$ let Δ_{s} be the simplicial complex on the set of vertices $\{1, \ldots, k\}$ consisting of faces $\left\{n_{i_{1}}, \ldots, n_{i_{j}}\right\}$ such that $s-\left(n_{i_{1}}+\cdots+n_{i_{j}}\right) \in S$.
Lemma 1.12. $\beta_{i, s}=\operatorname{dim}_{k} \tilde{H}_{i-1}\left(\Delta_{s}\right)$
In the above lemma \tilde{H} denotes the reduced homology and n_{1}, \ldots, n_{k} has to be elements of $G(S)$, not only a generating set. The above lemma is proven in [2] page 175 Theorem 9.2, see also [1].

2. Main result

Theorem 2.1. Let S be an Arf semigroup, such that its blowup S^{\prime} has the same multiplicity n_{1}, then $\beta_{i, s}\left(S^{\prime}\right)=\beta_{i, s+(i+1) n_{1}}(S)$.

Proof. Let $G(S)=\left\{n_{1}, \ldots, n_{k}\right\}$, then by Remark 1.9 $G\left(S^{\prime}\right)=\left\{n_{1}^{\prime}=n_{1}, n_{2}^{\prime}=n_{2}-\right.$ $\left.n_{1}, \ldots, n_{k}^{\prime}=n_{k}-n_{1}\right\}$. Due to Lemma 1.12 we have to show that $H_{i-1}\left(\Delta_{s}\left(S^{\prime}\right)\right)=$ $H_{i-1}\left(\Delta_{s+(i+1) n_{1}}(S)\right)$.

Let us fix i, denote $t=s+(i+1) n_{1}$ and compare the simplicial complexes $\Delta_{s}^{\prime}:=\Delta_{s}\left(S^{\prime}\right)$ and $\Delta_{t}:=\Delta_{t}(S)$. Since we are looking on the $(i-1)$ homologies we can remove from both of them all simplexes of dimension greater then i and look only on faces of dimension $(i-1)$ - possible cycles or of dimension i - which give possible boundaries. For $m=i, i+1$ let us define the partial matching

$$
\Delta_{s}^{\prime} \ni\left\{j_{1}, \ldots, j_{m}\right\} \leftrightarrow\left\{j_{1}, \ldots, j_{m}\right\} \in \Delta_{t}
$$

and let us classify unmatched simplexes.
For $m=i$ there are two cases.
First case $j_{1} \neq 1$. By Proposition 1.10 we have

$$
\begin{gathered}
\left\{j_{1}, \ldots, j_{i}\right\} \in \Delta_{t} \Leftrightarrow t-n_{j_{1}}-\cdots-n_{j_{i}}=u \in S \Leftrightarrow \\
\Leftrightarrow s-\left(n_{j_{1}}-n_{1}\right)-\cdots-\left(n_{j_{i}}-n_{1}\right)=u-n_{1} \in S^{\prime} \Leftrightarrow\left\{j_{1}, \ldots, j_{i}\right\} \in \Delta_{s}^{\prime}
\end{gathered}
$$

unless $u=0$.
Second case $j_{1}=1$. Again by Proposition 1.10 we have that

$$
t-n_{1}-\cdots-n_{j_{i}}=u \in S \Leftrightarrow s-n_{1}-\cdots-\left(n_{j_{i}}-n_{1}\right)=u-2 n_{1} \in S^{\prime}
$$

unless $u=0$ or $u=n_{l}$.
For $m=i+1$ there are also two cases.
First case $j_{1} \neq 1$.

$$
t-n_{j_{1}}-\cdots-n_{j_{i}}=u \in S \Leftrightarrow s-\left(n_{j_{1}}-n_{1}\right)-\cdots-\left(n_{j_{i}}-n_{1}\right)=u \in S^{\prime}
$$

unless $u=n_{l}-n_{1}$.
Second case $j_{1}=1$.

$$
t-n_{1}-\cdots-n_{j_{i}}=u \in S \Leftrightarrow s-n_{1}-\cdots-\left(n_{j_{i}}-n_{1}\right)=u-n_{1} \in S^{\prime}
$$

unless $u=0$.
To conclude there are four types of unmatched faces:

1. Δ_{t} has extra $(i-1)$-dimensional face $\left\{j_{1}, \ldots, j_{i}\right\}$ for $t-n_{j_{1}}-\cdots-n_{j_{i}}=0$
2. Δ_{t} has extra $(i-1)$-dimensional face $\left\{1, \ldots, j_{i}\right\}$ for $t-n_{1}-\cdots-n_{j_{i}}=n_{l}$
3. Δ_{t} has extra i-dimensional face $\left\{1, \ldots, j_{i+1}\right\}$ for $t-n_{1}-\cdots-n_{j_{i+1}}=0$
4. Δ_{s}^{\prime} has extra i-dimensional face $\left\{j_{1}, \ldots, j_{i+1}\right\}$ for $t-n_{1}-\cdots-n_{j_{i+1}}=$ $n_{l}-n_{1}$ and $j_{r} \neq 1$

Let us observe that removing extra faces from the simplicial complexes Δ_{t} and Δ_{s}^{\prime} does not change $(i-1)$ homology.

The face F_{0} of type $1\left\{j_{1}, \ldots, j_{i}\right\}$ for $t-n_{j_{1}}-\cdots-n_{j_{i}}=0$ is not a member of any cycle. Namely if $\delta\left(\Sigma \alpha_{r} F_{r}+\alpha_{0} F_{0}\right)=0$ we look at the coefficient of $\left\{j_{2}, \ldots, j_{i}\right\}$. If it was a boundary of a face $\left\{l, j_{2}, \ldots, j_{i}\right\} \in \Delta_{t}$ we would get $t-n_{l}-n_{j_{2}}-\cdots-n_{j_{i}}=n_{l}-n_{j_{1}} \in S$, which is a contradiction. So this coefficient is α_{0} and it is equal to 0 hence removing F_{0} does not affect $(i-1)$ homology.

The face F_{0} of type $4\left\{j_{1}, \ldots, j_{i+1}\right\}$ for $t-n_{j_{1}}-\cdots-n_{j_{i+1}}=n_{l}-n_{1}$ for $j_{r} \neq 1$ does not create any new boundary in Δ_{s}^{\prime}. We have that for any $r=1, \ldots, i+1$

$$
t-n_{1}-n_{j_{1}}-\cdots-n_{j_{r-1}}-n_{j_{r+1}}-\cdots-n_{j_{i+1}}=\left(n_{l}-n_{1}\right)+\left(n_{r}-n_{1}\right) \in S^{\prime}
$$

so $\left\{1, j_{1}, \ldots, j_{r-1}, j_{r+1}, \ldots, j_{i+1}\right\} \in \Delta_{s}^{\prime}$ and is matched.
We have that $\delta\left(\left\{1, j_{1}, \ldots, j_{i+1}\right\}\right)=\Sigma \alpha_{j} F_{j}+\alpha_{0} F_{0}$ is a linear combination of matched faces and F_{0} and the boundary of this linear combination is equal to 0 , so $\Sigma \alpha_{r} \delta F_{r}+\alpha_{0} \delta F_{0}=0$, hence δF_{0} does not enlarge dimension of subspace of boundaries.

Consider the face F_{0} of type $2\left\{1, \ldots, j_{i}\right\}$ for $t-n_{1}-\cdots-n_{j_{i}}=n_{l}$. As in the case of faces of type 1 we look for other faces with $\left\{j_{2}, \ldots, j_{i}\right\}$ as a member of its boundary. If there is no such then F_{0} is not a member of any cycle and removing it does not change $(i-1)$ homology. If there is one, with an extra vertex $r \neq 1$, then $t-n_{r}-\cdots-n_{j_{i}}=n_{l}+n_{1}-n_{r}=u \in S$. We get $n_{l}-n_{1}=\left(u-n_{1}\right)+\left(n_{r}-n_{1}\right) \in S^{\prime}+S^{\prime}$ so $u=n_{1}, r=l$, since $n_{l}-n_{1}$ is a generator of S^{\prime}. Hence $l \neq j_{2}, \ldots, j_{i}$ and all such faces F_{0} are members of a boundary of a face of type $3\left\{1, \ldots, j_{i}, l\right\}$ for $t-n_{1}-\cdots-n_{j_{i}}-n_{l}=0$. We have also that two different faces of type 3 have disjoint boundaries, because they have sum equal to 0 . So faces of type 2 and 3 can be considered together separately for different faces of type 3 .
Let us fix a face of type $3\left\{1, j_{2}, \ldots, j_{i+1}\right\}$ and i its subfaces of type 2 . We want to show that adding them does not change $(i-1)$ homology. By looking at the boundary simplexes $\left\{j_{2}, \ldots, j_{r-1}, j_{r+1}, \ldots, j_{i+1}\right\}$ for $r=2, \ldots, i+1$ we get i equations that has to be satisfied for a linear combination to be a cycle. So by adding extra faces to Δ_{t} a cycle can contain $i+1$ new simplexes of dimension $(i-1)$ but has to satisfy i new linearly independent equations. This enlarge the dimension of kernel of δ_{i-1} by at most one. But $\delta_{i}\left(\left\{1, j_{2}, \ldots, j_{i+1}\right\}\right)$ is a boundary so it is also a cycle, hence the dimension of kernel is greater by exactly one. The dimension of the image of δ_{i} is also greater by one since by adding a face of type 3 we add a new boundary which contains new faces, hence the $(i-1)$ homology is the same.

Acknowledgements

We would like to thank very much Ralf Fröberg for introduction to this subject, posing this problem and many interesting talks. We are also grateful to Mats Boij and Alexander Engström for their help.

REFERENCES

[1] W. Bruns - J. Herzog, Semigroup rings and simplicial complexes, J. Pure and App. Algebra 122 (1997), 185-208.
[2] E. Miller - B. Sturmfels, Combinatorial Commutative Algebra, Graduate Texts in Mathematics, Springer, 2004.

MICHAE LASON
Institute of Mathematics of the Polish Academy of Sciences
Śniadeckich 8, 00-956 Warszawa, Poland
Theoretical Computer Science Department Faculty of Mathematics and Computer Science

Jagiellonian University
S. Łojasiewicza 6, 30-348 Kraków, Poland
e-mail: michalason@gmail.com

