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ALGEBRAIC PROPERTIES OF BIER SPHERES

INGA HEUDTLASS - LUKAS KATTHÄN

We give a classification of flag Bier spheres, as well as descriptions
of the first and second Betti numbers of general Bier spheres. Addition-
ally, we compute the Betti numbers for a specific class of Bier spheres,
constructed from skeletons of a full simplex.

1. Introduction

The following construction of Bier spheres was introduced by Thomas Bier
in unpublished notes. Let ∆ be a simplicial complex on the vertex set [n] =
{1, . . . ,n}. We do not assume every vertex to be a face of ∆. The Alexander
dual of ∆ is defined as the simplicial complex

∆
∗ =

{
σ
′ ⊂ [n]′ σ /∈ ∆

}
,

where σ denotes the complement and σ ′ = { i′ ∈ {1′, . . . ,n′ } i ∈ σ } a primed
analogue of a subset σ of [n]. The deleted join of simplicial complexes ∆ and Γ

on disjoint vertex sets [n] and [n]′, respectively, is

∆ ∗̃Γ =
{

σ ∪ τ
′

σ ∈ ∆,τ ′ ∈ Γ,σ ∩ τ = /0
}
.
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Joining a simplicial complex ∆ not equal to 2[n] in this way with its Alexander
dual yields a simplicial sphere Bier(∆) = ∆ ∗̃∆∗, which is called the Bier sphere
of ∆.

We refer to [1] for many results about this construction, in particular for the
fact that Bier(∆) is a sphere of dimension n−2.

2. Flag Bier spheres

A simplicial complex is called flag if all of its minimal non-faces are of car-
dinality not greater than 2. Since a Bier sphere Bier(∆) is flag if and only if
both ∆ and ∆∗ are flag, the property of Bier(∆) of being flag imposes a severe
restriction on the underlying simplicial complex ∆.

If ∆ has a cone vertex, i.e. a vertex contained in every facet of ∆, then the
corresponding vertex of ∆∗ is also a cone vertex. Forwarded in the Bier sphere
of ∆ these two vertices form a minimal non-face and every facet contains exactly
one of them. Thus, Bier(∆) is a suspension of the Bier sphere of ∆ with the cone
vertex removed. It follows that Bier(∆) is flag if and only if every Bier sphere
of a cone over ∆ is flag.

Conversely, a given Bier sphere which is a suspension results from a simpli-
cial complex containing a cone vertex. Thus, every flag Bier sphere is obtained
by repeated suspensions of a flag Bier sphere Bier(∆), where ∆ is not a cone.

Only a few simplicial complexes are not a cone and additionally the under-
lying complex of a flag Bier sphere as the following proposition shows.

Proposition 2.1. There are exactly eight simplicial complexes ∆ that are not
cones, such that Bier(∆) is flag. They define up to isomorphism four flag Bier
spheres.

Proof. Let ∆ be a flag simplicial complex on the vertex set [n] without cone
vertices such that ∆∗ is flag. Define a graph G on the vertices [n] with edges
the minimal non-faces of cardinality 2 and loops the minimal non-faces of car-
dinality 1 of ∆. Note that by this definition, a vertex in G with a loop cannot
be adjacent to another vertex. This assignment from the set of flag simplicial
complexes without cone vertices to the set of graphs is injective.

In a flag simplicial complex, a vertex v with the property that {v,w} is a
face for all faces {w}, is a cone vertex. Hence, the graph G contains no isolated
vertices (without loop).

The complements of the facets of ∆ correspond to the minimal non-faces of
∆∗. Therefore, the condition that ∆∗ is flag implies that the facets of ∆ are of
cardinality greater or equal to n− 2. Since a face of ∆ induces an independent
set in G and vice versa, every independent set in G can be extended to a maximal
independent set containing at least n−2 elements.
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As a result, a vertex v without a loop in G is adjacent to at most two other
vertices, otherwise the independent set {v} would not be extensible to an inde-
pendent set with n− 2 elements. For this reason, components in G are paths
or cycles. In a path or a cycle including at least five vertices it is possible to
choose an independent set with two elements, which is adjacent to more than
two vertices and thus not expandable to an independent set of cardinality n−2.

In summary, the types of possible components of G are single vertices with a
loop, cycles of length 3 or 4 and paths of length less or equal to 3. Considering
the facts that every component provides an independent set of vertices with a
number of neighbours and the total number of neighbours of an independent set
may not rise above two, there remain eight possibilities for the shape of G. The
following list combines them with the corresponding simplicial complexes and
their Alexander duals. The small dots symbolize vertices that are not faces.

G r r r r r r

r

r r

r

r r

r

r r

r r

r r

r r

r r

r r

∆ bc bc bc bc bc bc

bc

bc bc

bc

bc bc

bc
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bc bc

bc bc

bc bc

bc bc

bc bc

∆∗ bc bc bc bc bc bc

bc

bc bc

bc

bc

bc

bc bc bc

bc bc

bc bc

bc bc

bc bc

bc bc

Since the deleted join is commutative, the graphs on two vertices and the graphs
on three vertices, except the cycle, yield isomorphic Bier spheres. The next fig-
ure shows all Bier spheres occurring by the above listed pairings of ∆ and ∆∗, i.e
up to isomorphism all flag Bier spheres which are not suspensions. In particular,
it reveals that the graphs on four vertices define isomorphic Bier spheres.
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∗̃ ∗̃ ∗̃ ∗̃ ∗̃

≃

For each of these flag Bier spheres exists a labeled cell complex (see chapter
4 of [4]) admitting a cellular resolution of the Stanley-Reisner rings of this Bier
sphere.
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3. Betti numbers

For the notion of Stanley-Reisner rings and Nn-graded Betti numbers we refer
to [2] and [4].

Let S = K[x1, . . . ,xn,y1, . . . ,yn] be the polynomial ring in 2n variables over
a field K. The Stanley-Reisner ring K[Bier(∆)] of Bier(∆) is the quotient of S
by the sum of 〈x jy j j ∈ [n]〉 and the Stanley-Reisner ideals I∆ ⊆ K[x1, . . . ,xn],
I∆∗ ⊆ K[y1, . . . ,yn], that is, a minimal non-face of Bier(∆) is either of the form
{ j, j′} or a minimal non-face of ∆ or ∆∗. In this notation the variables x1, . . . ,xn

correspond to the vertices of ∆ and y1, . . . ,yn to those of ∆∗.
For subsets σ and τ of [n] we write xσ and yτ for the monomials Πi∈σ xi

and Πi∈τyi, respectively, and βi,στ ′(K[Bier(∆)]) for the i-th Betti number of
K[Bier(∆)] in squarefree degree (a1, . . . ,a2n) ∈ {0,1}2n, where ai = 1 if and
only if i ∈ σ or i−n ∈ τ . Analogously the notations βi,σ (K[∆]) and βi,τ ′(K[∆∗])
are used for the Betti numbers of K[∆] and K[∆∗]. It suffices to consider Betti
numbers in squarefree degrees, since all non-zero Betti numbers of Stanley-
Reisner rings lie in these degrees.

The main tool in the following is the lcm-lattice L∆ of ∆ (confer [2]). This
lattice is the set of unions of minimal non-faces of ∆, ordered by inclusion. For
σ in L∆ the open lower interval ( /0,σ)∆ below σ is {τ ∈ L∆ τ ( σ}. The poset
( /0,σ)∆ will be considered as an abstract simplicial complex whose faces are
given by chains in ( /0,σ)∆.

Theorem 3.1 (Theorem 2.1 of [2]). For i≥ 1 and σ ∈ L∆ we have

βi,σ (K[∆]) = dim H̃i−2(( /0,σ)∆)

If σ /∈ L∆, then the corresponding Betti number of K[∆] vanishes.

Here, as in the sequel, H̃i(∆) denotes the reduced homology of degree i
of the simplicial complex ∆ over the field K. This theorem justifies the first
proposition about the Betti numbers of Bier spheres:

Proposition 3.2. For all σ ⊂ [n] it holds

βi,σ (K[Bier(∆)]) = βi,σ (K[∆]) and βi,σ ′(K[Bier(∆)]) = βi,σ ′(K[∆∗]).

Proof. This follows from Theorem 3.1 by observing ( /0,σ)Bier(∆) = ( /0,σ)∆ and
( /0,σ ′)Bier(∆) = ( /0,σ ′)∆∗ .

In other words, the Betti numbers of the Stanley-Reisner rings of ∆ and
∆∗ arise one to one as the Betti numbers of K[Bier(∆)] in the degrees of the
form (a,0, . . . ,0) and (0, . . . ,0,a), respectively, with a in {0,1}n. For the Betti
numbers of K[Bier(∆)] of a different type, the mixed Betti numbers, we can give
a necessary condition for being non-zero.
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Lemma 3.3. Let σ ,τ ⊂ [n] be non-empty sets such that βi,στ ′(K[Bier(∆)]) 6= 0
for an i. Then σ ∩ τ 6= /0. Equivalently, there exists an index j ∈ [n] such that x j

and y j both divide xσ yτ .

Proof. The condition βi,στ ′(K[Bier(∆)]) 6= 0 implies that the subset σ ∪ τ ′ is
in LBier(∆) and therewith an union of minimal non-faces of Bier(∆). Under the
assumption σ ∩ τ = /0, this union contains only minimal non-faces of ∆ or ∆∗

(since a minimal non-face of the type { j, j′} of Bier(∆) causes a common ele-
ment in σ and τ). Hence, σ and τ ′ are non-faces of ∆ and ∆∗, respectively. But
σ /∈ ∆ implies that σ

′ is a face of ∆∗, so τ ′ cannot be a subset of it. It follows
σ ∩ τ 6= /0.

The first Betti numbers can be read off the definition of the Bier sphere:
They correspond to the minimal non-faces of ∆, of ∆∗ and to the deleted edges
x jy j, where j ∈ [n] is an index such that {x j} ∈ ∆ and {y j} ∈ ∆∗ (if one of
these vertices is a non-face, then it replaces x jy j in a set of minimal generators
of the Stanley-Reisner ideal of Bier(∆)). The second mixed Betti numbers are
described by the following result.

Proposition 3.4. Let σ ,τ ⊂ [n] be non-empty sets. Then the following three
conditions are equivalent:

(1) β2,στ ′(K[Bier(∆)]) 6= 0.

(2) β2,στ ′(K[Bier(∆)]) = 1.

(3) There are exactly two minimal non-faces ρ1,ρ2 of Bier(∆) such that ρi ⊂
σ ∪ τ ′ for i = 1,2. These two satisfy ρ1∪ρ2 = σ ∪ τ ′.

If these conditions hold and Bier(∆) has no minimal non-faces of cardinality 1,
then at least one of those two minimal non-faces is of the form { j, j′}.

Proof. If β2,στ ′(K[Bier(∆)]) is non-zero, the subset σ ∪ τ ′ of [n]∪ [n]′ is the
union of minimal non-faces of Bier(∆) and there is a j ∈ [n] with { j, j′} ⊆
σ ∪ τ ′, by means of Lemma 3.3. According to Theorem 3.1, the computation
of β2,στ ′(K[Bier(∆)]) via dim H̃0(( /0,σ ∪τ ′)Bier(∆)) implies that ( /0,σ ∪τ ′)Bier(∆)
contains at least two connected components. Thus, there exist two minimal
non-faces ρ1,ρ2 ⊆ σ ∪τ ′ of Bier(∆) lying in different connected components of
( /0,σ ∪ τ ′)Bier(∆). Note that this is equivalent to ρ1 ∪ρ2 = σ ∪ τ ′ (If the union
ρ1∪ρ2 was a proper subset of σ ∪ τ ′, it would connect the non-faces ρ1 and ρ2
in ( /0,σ ∪τ ′)Bier(∆)). Since { j, j′} is a non-face of Bier(∆), we can claim without
loss of generality j ∈ ρ1 and j /∈ ρ2. We will prove by contradiction that there
is no third minimal non-face ρ3 ⊆ σ ∪ τ ′ of Bier(∆).



96 INGA HEUDTLASS - LUKAS KATTHÄN

Assume the contrary. As a minimal non-face of Bier(∆), ρ3 is of the form
{k,k′} for a k ∈ [n] or a minimal non-face of ∆ or ∆∗.

Consider the first case. Since j∈ ρ1 and ρ1 is a minimal non-face of Bier(∆),
it is either equal to { j, j′} or a subset of [n]. Consequently, if k′ was an element
of ρ1, it would follow k = j and therewith ρ3 ⊆ ρ1, which is not possible for
two unequal minimal non-faces. Therefore, the inclusion ρ3 ⊆ σ ∪ τ ′ = ρ1∪ρ2
implies k′ ∈ ρ2. As ρ2 and ρ3 are not subsets of one another, {k′}( ρ2 and k is
not in ρ2. Hence, ρ2 ⊆ [n]′ and the element k is in ρ1. Since k′ /∈ ρ1 and ρ1 is
not a subset of ρ3, it holds ρ1 ⊆ [n] and {k}( ρ1. This yields

ρ1∪ρ3 = ρ1∪{k′}( ρ1∪ρ2 and ρ3∪ρ2 = {k}∪ρ2 ( ρ1∪ρ2,

which is equivalent to the fact that ρ1 and ρ3 as well as ρ2 and ρ3 (hence, also
ρ1 and ρ2) lie in the same connected component, in contradiction to the assump-
tions.

If ρ3 is a minimal non-face of ∆, i.e. ρ3 ⊆ [n], the minimal non-face ρ1
cannot be a subset of [n]. Otherwise j′ ∈ ρ2. Since j /∈ ρ2, this implies ρ2 ⊆ [n]′

and the inclusion ρ1∪ρ3 ⊆ σ ∪ τ ′ = ρ1∪ρ2 yields ρ3 ⊆ ρ1. Thus, ρ1 = { j, j′}.
As ρ3 is not a subset of ρ1, there exist k ∈ [n] \ { j} with k ∈ ρ3. The minimal
non-face ρ2 contains k, therewith it is of the form {k,k′} or a subset of [n]. Both
cases imply j′ /∈ ρ2. Consequently, the inclusion ρ2∪ρ3 ( σ ∪ τ ′ = ρ1∪ρ2 is
strict. I.e. ρ2 and ρ3 are in the same connected component, thus, ρ1 and ρ3
are not, which is expressed by ρ1∪ρ3 = σ ∪ τ ′ = ρ1∪ρ2. Since ρ1 and ρ2 are
disjoint, the minimal non-face ρ2 is a subset of ρ3. This is a contradiction.

Finally consider the case that ρ3 is a minimal non-face of ∆∗, i.e. ρ3 ⊆ [n]′.
As j /∈ ρ2, it holds ρ2∪ρ3 ( σ ∪ τ ′ = ρ1∪ρ2. Thus, ρ2 and ρ3 lie in the same
connected component, which prevents ρ3 from being in the same connected
component as ρ1. Therefore, ρ1∪ρ3 = σ ∪ τ ′ = ρ1∪ρ2. If ρ1 was a subset of
[n], this would imply ρ3 ⊆ ρ2. Hence, ρ1 = { j, j′} and the minimal non-faces ρ2
and ρ3 may only differ by the element j′, this means one of them is contradictory
included in the other.

The remaining implications of the proposition follow easily by considering
( /0,σ ∪ τ ′)Bier(∆). If there are exactly two minimal non-faces ρ1,ρ2 of Bier(∆)
such that ρ1 ∪ ρ2 = σ ∪ τ ′, the number of connected components in ( /0,σ ∪
τ ′)Bier(∆) is two and by Theorem 3.1 this gives rise to β2,m(K[Bier(∆)]) = 1 6=
0.

Keeping in mind the possible types of minimal non-faces in Bier(∆), one
can use the third condition of the proposition above for to classify all occur-
ring degrees of mixed second Betti numbers. It holds β2,στ ′(K[Bier(∆)]) = 1
for σ ,τ 6= /0, if and only if one of the following conditions is fulfilled for two
minimal non-faces ρ1,ρ2 of Bier(∆) with ρ1∪ρ2 = σ ∪ τ ′:
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• ρ1 = { j} or { j′}

• ρ1 = { j, j′},ρ2 = {k,k′} for j 6= k and { j,k} ∈ ∆,{ j′,k′} ∈ ∆∗

• ρ1 = { j, j′} and j ∈ ρ2 ⊆ [n] (or j′ ∈ ρ2 ⊆ [n]′)

• ρ1 = { j, j′}, j /∈ ρ2 ⊆ [n] and ∆ has no minimal non-face { j}∪ π with
π ⊆ ρ2 (or j′ /∈ ρ2 ⊆ [n]′ and ∆∗ has no minimal non-face { j′}∪π with
π ⊆ ρ2).

It might be tempting to conjecture that all mixed Betti numbers take only
the values 0 and 1, but this is wrong: Consider a simplicial complex ∆ with
multigraded Betti number greater than 1, say βi,σ (K[∆]) = l > 1. Since Bier(∆)
is a sphere, it holds by Gorenstein duality: β j,σ [n]′(K[Bier(∆)]) = l > 1, where
j = 2n− (n−1)− i is the index corresponding to i in this duality.

4. An extended Example: Skeletons of a full simplex

For natural numbers n,k ≥ 0 let ∆n = {σ ⊆ [n]} denote the full simplex on n
vertices and ∆k

n = {σ ⊆ [n] #σ ≤ k} its k-skeleton. Note that the dimension of
the k-skeleton is k− 1. The Alexander dual is (∆k

n)
∗ = ∆n−k−1

n . In this section
the Betti numbers of the Bier sphere Bier(∆k

n) will be computed. A helpful tool
is Hochster’s Formula, see [4, Corollary 5.12]:

Theorem 4.1. Let ∆ be a simplicial complex and σ be a subset of its set of
vertices. Then

βi,σ (K[∆]) = dim H̃#σ−i−1(∆|σ ). (1)

Here, ∆|σ denotes the restricted complex ∆|σ = {τ ∈ ∆ τ ⊂ σ }. In order
to compute the right-hand side of (1), the Mayer-Vietoris sequence will be used,
see [3, p. 149]:

Theorem 4.2. Let ∆ be a simplicial complex and A and B subcomplexes such
that ∆ = A∪B. Then there is an exact sequence:

. . .→ H̃i(A∩B)→ H̃i(A)⊕ H̃i(B)→ H̃i(∆)→ H̃i−1(A∩B)→ . . .

. . .→ H̃−1(∆)→ 0 .

For a vertex v of ∆, we define the deletion of v in ∆ as the set del∆(v) = {τ ∈
∆ v /∈ τ} and the link of v in ∆ as lk∆(v) = {τ ∈ ∆ τ ∪{v} ∈ ∆ and v /∈ τ}.
Corollary 4.3. Let ∆ be a simplicial complex and v a vertex of ∆. Then there is
an exact sequence:

. . .→ H̃i(lk∆(v))→ H̃i(del∆(v))→ H̃i(∆)→ H̃i−1(lk∆(v))→ . . .

. . .→ H̃−1(∆)→ 0 .
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Proof. We apply Theorem 4.2 to A = {τ,τ ∪{v} v /∈ τ and τ ∪{v} ∈ ∆}, the
star of v in ∆, and B = del∆(v). For those we have A∪B = ∆ and A∩B = lk∆(v).
Since v is a cone vertex in A, the complex A is contractible.

A simplicial sphere is Gorenstein. Hence, it is possible to revert to Goren-
stein duality, see Chapter I.12 in [5]:

Theorem 4.4. Let ∆ be a Gorenstein simplicial complex of dimension d−1 on
n vertices and let σ be a subset of its set of vertices. Then

βi,σ (K[∆]) = βn−d−i,σ (K[∆]).

We start with the computation of the reduced homology of ∆k
n. For i, j ∈ N,

let δi, j denote the Kronecker delta.

Lemma 4.5. For natural numbers n≥ 1,k ≥ 0 it holds

dim H̃i(∆
k
n) = δi,k−1

(
n−1

k

)
.

Proof. Since the dimension of ∆k
n is k− 1, the i-th reduced homology of ∆k

n is
trivial for i≥ k. It coincides with the i-th reduced homology of the full simplicial
complex ∆n for all i < k− 1, as it depends on the cells up to dimension i+ 1.
Thus, H̃i(∆

k
n) = 0 if i 6= k−1.

The case i = k−1 is proved by induction on n.
If k > 0, then the k-skeleton of ∆1 is ∆1, whose reduced homologies in all

degrees are trivial. The 0-skeleton of ∆1 is the irrelevant complex { /0} with
dim H̃−1({ /0}) = 1. This implies dim H̃k−1(∆

k
1) =

(0
k

)
.

Suppose n > 1. We apply the Mayer-Vietoris sequence in the form of Corol-
lary 4.3 on the vertex n. Since the complexes del∆k

n
(n) and ∆k

n−1, as well as
lk∆k

n
(n) and ∆

k−1
n−1, consist of the same families of faces, they have the same

homologies. Together with the observations above, this yields the short exact
sequence

0→ H̃k−1(∆
k
n−1)→ H̃k−1(∆

k
n)→ H̃k−2(∆

k−1
n−1)→ 0

and in particular dim H̃k−1(∆
k
n) = dim H̃k−1(∆

k
n−1) + dim H̃k−2(∆

k−1
n−1). There-

fore, it holds dim H̃k−1(∆
k
n) =

(n−2
k

)
+
(n−2

k−1

)
=
(n−1

k

)
.

Recall that Bier(∆k
n) is defined as ∆k

n ∗̃∆l
n, where l = n−k−1. By replacing

∆k
n by its Alexander dual, we can achieve that k ≤ l. This assumption simplifies

the computation of the Betti numbers of Bier(∆k
n).

Let σ ,τ be subsets of [n]. By Hochster’s Formula it holds

βi,στ ′(K[Bier(∆k
n)]) = dim H̃m(∆

k
n ∗̃∆

l
n|σ∪τ ′) ,
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where m = #σ +#τ− i−1. Obviously,

∆
k
n ∗̃∆

l
n|σ∪τ ′ = ∆

k
σ ∗̃∆

l
τ ,

with the notation ∆k
σ for the restricted complex ∆k

n|σ . Hence, the Betti numbers
of Bier(∆k

n) rely on the reduced homology of the complexes of the form ∆k
σ ∗̃∆l

τ .
If τ (or analogously σ ) is the empty set, Lemma 4.5 yields

βi,σ (K[Bier(∆k
n)]) = dim H̃m(∆

k
σ ) = δm,k−1

(
#σ −1

k

)
= δi,#σ−k

(
#σ −1

k

)
.

Let us assume σ and τ to be not empty.
First, we consider the case that #τ ≤ l, i.e. the second factor ∆l

τ is a full
simplex on #τ vertices. If τ \σ 6= /0, then every vertex j′ ∈ (τ \σ)′ is a cone
vertex in ∆k

σ ∗̃∆l
τ . Thus, the homology of this complex is trivial. If τ ⊆ σ ,

we apply the Mayer-Vietoris sequence in the form of Corollary 4.3 on a vertex
j ∈ τ . The complexes lk

∆k
σ ∗̃∆l

τ
( j) and ∆

k−1
σ\{ j} ∗̃∆l

τ\{ j} have the same faces and
therefore, their homologies coincide. Because j′ is a cone vertex, the complex
del

∆k
σ ∗̃∆l

τ
( j) is contractible. Hence, one obtains that

dim H̃m(∆
k
σ ∗̃∆

l
τ) = dim H̃m−1(∆

k−1
σ\{ j} ∗̃∆

l
τ\{ j}) .

This step can be iterated until k or #τ reaches 0. Depending on which of them
does this first, we have to distinguish two cases.

If k < #τ , it holds

dim H̃m(∆
k
σ ∗̃∆

l
τ) = dim H̃m−k(∆

0
σ\ρ ∗̃∆

l
τ\ρ) = dim H̃m−k(∆

l
τ\ρ) = 0 ,

where ρ is an arbitrary subset of τ with k elements. For the last equality, it is
required that the set τ \ρ is non-empty.

For the second case k ≥ #τ , note that dim H̃−1({ /0}) = 1 and 0 in all other
degrees. Applying Lemma 4.5 yields

dim H̃m(∆
k
σ ∗̃∆

l
τ) = dim H̃m−#τ(∆

k−#τ

σ\τ ∗̃∆
l
/0)

=

{
dim H̃m−#τ({ /0}) if τ = σ

dim H̃m−#τ(∆
k−#τ

σ\τ ) if τ ( σ

=

{
δm−#τ,−1 if τ = σ

δm−#τ,k−#τ−1
(#σ−#τ−1

k−#τ

)
if τ ( σ

=

{
δi,#τ if τ = σ

δi,#σ+#τ−k
(#σ−#τ−1

k−#τ

)
if τ ( σ .
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Finally, consider the case #τ > l. Using Gorenstein duality and Hochster’s
Formula, the Betti numbers are computed via

βi,στ ′(K[Bier(∆k
n)]) = β2n−(n−1)−i,στ

′(K[Bier(∆k
n)])

= dim H̃n−#σ−#τ+i−2(∆
k
σ ∗̃∆

l
τ) .

As above, the complex ∆k
σ
∗̃∆l

τ
is a cone (in particular, its reduced homology is

trivial), if τ is not a subset of σ . Note that #τ ≤ k. If τ ⊆ σ , then by the use of
Lemma 4.5

dim H̃n−#σ−#τ+i−2(∆
k
σ ∗̃∆

l
τ) = dim H̃i−#σ−2(∆

k−#τ

σ\τ ∗̃∆
l
/0)

=

{
δi−#σ−2,−1 if σ = τ

δi−#σ−2,k−#τ−1
(#σ−#τ−1

k−#τ

)
if σ ( τ

=

{
δi,#τ+1 if σ = τ

δi,#σ+#τ−(n−k−1)
(#σ−#τ−1

k−#τ

)
if σ ( τ.

We summarize the results in a proposition:

Proposition 4.6. Let k,n be natural numbers with k ≤ n− k−1 and σ ,τ ⊂ [n].
Then it holds

βi,στ ′(K[Bier(∆k
n)]) =



(#σ−#τ−1
k−#τ

)
if τ ( σ ,#τ ≤ k and
i = #σ +#τ− k ;(#σ−#τ−1

k−#τ

)
if τ ) σ ,#τ ≤ k and
i = #σ +#τ− (n− k−1) ;

1 if τ = σ and either i = #τ ≤ k
or i−1 = #τ ≥ n− k;

0 otherwise.
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