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REGULAR SEQUENCES OF POWER SUMS AND COMPLETE
SYMMETRIC POLYNOMIALS

NEERAJ KUMAR - IVAN MARTINO

In this article, we carry out the investigation for regular sequences of
symmetric polynomials in the polynomial ring in three and four variable.
Any two power sum element in C[x1,x2, . . . ,xn] for n ≥ 3 always form
a regular sequence and we state the conjecture when pa, pb, pc for given
positive integers a < b < c forms a regular sequence in C[x1,x2,x3,x4].
We also provide evidence for this conjecture by proving it in special in-
stances. We also prove that any sequence of power sums of the form
pa, pa+1, . . . , pa+m−1, pb with m < n−1 forms a regular sequence in
C[x1,x2, . . . ,xn]. We also provide a partial evidence in support of con-
jecture’s given by Conca, Krattenthaler and Watanbe in [1] on regular
sequences of symmetric polynomials.

1. Introduction

The work in this article is inspired by the work of Conca, Krattenthaler and
Watanabe on regular sequences of symmetric polynomials [1].

We introduce some basic definitions, notation and well known results which
we will use in the sequel. We denote by pm(x1,x2, . . . ,xn),hm(x1,x2, . . . ,xn)
and em(x1,x2, . . . ,xn) the power sum symmetric polynomials, complete homo-
geneous symmetric polynomials and the elementary symmetric polynomials of
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degree m in C[x1,x2, . . . ,xn] respectively, that is:

pm(x1,x2, . . . ,xn) :=
n

∑
i=1

xm
i ,

hm(x1,x2, . . . ,xn) := ∑
1≤i1≤i2≤···≤im≤n

xi1xi2 · · ·xim ,

em(x1,x2, . . . ,xn) := ∑
1≤i1<i2<···<im≤n

xi1xi2 · · ·xim .

We will also denote by pm(n), hm(n), and em(n), the power sum symmetric
polynomials, complete homogeneous symmetric polynomials, and the elemen-
tary symmetric polynomials respectively. When n is clear from the context, we
may simply denote them by pm,hm and em respectively.

Regular Sequence: A set of k homogeneous polynomials f1, f2, . . . , fk in
C[x1,x2, . . . ,xn] is a regular sequence if fi is not a zero divisor on

C[x1,x2, . . . ,xn]/( f1, f2, . . . , fi−1) for i = 1,2, . . . ,k.

Convention: An expression of the form fi1 , fi2 , . . . , fik or ( fi1 , fi2 , . . . fik) for
power sum and complete symmetric polynomials will always mean i1 < i2 <
· · ·< ik.

We have used Newton’s formulas for pn,hn and en, ( see equation 2.6′,2.11′)
from Macdonald [3]. These relations together with the Theorem 2.2 are very
helpful in investigating regular sequences.

We have used the Serre Criterion (see section 18.3, Theorem 18.15 [2]) for
proving primeness for power sum polynomials in the polynomial ring. Once
we know that pa, pb generates a prime ideal in C[x1,x2,x3,x4], we can add one
more polynomial f and conclude that pa, pb, f forms a regular sequence for
all f /∈ (pa, pb). We prove p1, p2m generates a prime ideal, where m ∈ N, see
Proposition 4.3. We also prove this in the case of consecutive integres a,a+
1. In fact we prove a more general statement that any consecutive power sum
pa, pa+1, . . . , pa+m−1 with m < n−1 generates a prime ideal in C[x1,x2, . . . ,xn],
see Theorem 4.3.

In general, it turns out to be difficult to find conditions on {a,b} such that
(pa, pb) is a prime ideal. We did several computations in CoCoA and found
some conditions on {a,b} such that (pa, pb) is a prime ideal, see Conjecture
4.6. For example when a is prime number, a ≥ 5 and b = a+m+ 6d with
m ∈ {1,5} then (pa, pb) is a prime ideal.

However, a very nice introduction to regular sequences of symmetric poly-
nomials is given by Conca, Krattenthaler and Watanable in [1]. So, we refer the
reader for detailed introduction to [1].



REGULAR SEQUENCES OF SYMMETRIC POLYNOMIALS 105

2. Some results on regular sequences

Let us recall some well known results about regular sequences.

Lemma 2.1. The sequence of homogeneous polynomials f1, f2, . . . , fk ∈ S =
C[x1,x2, . . . ,xn] is a regular sequence in S if and only if

HS/I(z) =
∏

k
i=1(1− zdi)

(1− z)n .

where di = deg fi and I = ( f1, f2, . . . , fk).

We will use the following characterization very often for proving regular
sequence for the power sums and complete symmetric polynomials:

Theorem 2.2. Let fi, f j, fk ∈ S=C[x1,x2,x3]. The sequence fi, f j, fk is a regular
sequence if and only if fk /∈ ( fi, f j) and for any f of degree bigger than i+ j+k
we have f ∈ ( fi, f j, fk).

Proof. If fi, f j, fk is a regular sequence then fi is not a zero divisor on S, f j is not
a zero divisor on S/( fi) and fk is not a zero divisor on S/( fi, f j). This implies
fk /∈ ( fi, f j).

We know that (0,0,0) is the only solution of the system ( fi, f j, fk). This
means that (0,0,0) has multiplicity i+ j+ k and ( fi, f j, fk) is the (i+ j+ k)-th
power of the maximal ideal. So considering f with degree of f bigger than
i+ j+ k, this implies f ∈ ( fi, f j, fk).

Of course there are three possible cases for fi, f j, fk in C[x1,x2,x3]:

1. fk /∈ ( fi, f j), and fi, f j, fk is a regular sequence;

2. fk /∈ ( fi, f j), and fi, f j, fk is not a regular sequence,

3. fk ∈ ( fi, f j), then fi, f j, fk is not a regular sequence.

See Example 5.1, where fk /∈ ( fi, f j) and fi, f j, fk is not a regular sequence.

Notation: For a subset A⊂ N∗, we set

pA(n) = {pa(n) : a ∈ A} and hA(n) = {ha(n) : a ∈ A}.

Proposition 2.1. Let A ⊂ N∗ be a set of n consecutive elements. Then both
pA(n) and hA(n) are regular sequences in k[x1, . . . ,xn].

Proof. Refer to Proposition 2.9 [1] for proof.
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We are going to use the Newton’s formulas:

Proposition 2.2. Let pn be the power sum symmetric polynomial of degree n,
hn be the complete homogeneous symmetric polynomial of degree n and let en

be the elementary symmetric polynomial of degree n. Then

nen =
n

∑
i=1

(−1)i−1en−i pi for all n≥ 1.

and
n

∑
i=0

(−1)ieihn−i = 0 for all n≥ 1.

These equations are due to I. Newton, see Macdonald [3] ( equation 2.6′,2.11′).

Next Lemma follows from Eisenstein’s Criterion.

Lemma 2.3. Let R be a unique factorization domain and b ∈ R. Suppose that
p but not p2 divides b for some irreducible p ∈ R. Then xm +b is irreducible in
R[x]

3. Symmetric Polynomials in 3 variables

3.1. Power Sums in 3 variables

Conjecture(Conca, Krattenthaler, Watanabe) Let a,b,c be positive inte-
gers with a < b < c and gcd(a,b,c) = 1. Then pa, pb, pc is a regular sequence if
and only if abc≡ 0( mod 6).

Remark: For this conjecture, the “only if” part has been proved in [1], they
provide partial result in support of the “if” part. We have also tried to prove this
in some special cases, here the only difference is in approach, we provide a nice
expression for pc mod (pa, pb).

Proposition 3.1. Consider the power sum sequence p1, p2, pn, then

pn =

{
3ek

3 mod (p1, p2), if n = 3k;
0 mod (p1, p2), otherwise.

Proof. As p0 = 3, we use Newton’s formula, see Proposition 2.2, to write pn,

p1 =e1 = 0,

p2 =e1 p1−2e2 = 0 =⇒ e2 = 0,

p3 =3e3 + e1 p2− e2 p1 = 3e3,

p4 =e1 p3− e2 p2 + e3 p1 = 0 similarly p5 = 0,

p6 =3e2
3. And so on, we continue in this way.
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Hence we get pn = 3ek
3 mod (p1, p2) if n = 3k.

Corollary 3.1. p1, p2, pn is a regular sequence if and only if n = 3k,k ∈ N.

Proof. We only need to verify the cases of the form p1, p2, pn where n = 3k,k ∈
N. Choose any m > 1+ 2+ 3k = 3(k+ 1), we observe that pm ∈ (p1, p2, pn).
Hence p1, p2, pn is a regular sequence for n = 3k,k ∈ N.

Proposition 3.2. Consider the sequence p1, p3, pn, then

pn =

{
(−1)kek

2 mod (p1, p3), if n = 2k;
0 mod (p1, p3), otherwise.

Proof. Similar to Proposition 3.1.

Corollary 3.2. p1, p3, pn is a regular sequence if and only if n = 2k,k ∈ N.

Proof. Similar to Corollary 3.1.

Remark: p2, p3, pn is a regular sequence for all n , see Theorem 2.11 [1]. In
the paper [1], they have given a complete proof. We present here the slightly
tricky argument from their paper, they managed to reduce the problem and con-
cluded that it is enough to prove this for the case n = 4. They did computer
experiments to show this for n = 4 case. But it follows directly from Proposi-
tion 2.9 [1] as 2,3,4 are consecutive integers.

3.2. Complete symmetric polynomials in 3 variables

Conjecture(Conca, Krattenthaler, Watanabe) Let A = {a,b,c} with a <
b< c. Then ha,hb,hc is a regular sequence if and only if the following conditions
are satisfied:

1 abc≡ 0( mod 6).

2 gcd(a+1,b+1,c+1) = 1.

3 For all t ∈ N with t > 2 there exist d ∈ A such that d +2 6≡ 0,1( mod t).
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Remark: For this conjecture, the “only if” part has been proved by authors,
the “if’ part is still open. We are able to give partial proof of this conjecture
under some special choice of a,b and for any c, both the ”if“ and the ”only if“
part.

Proposition 3.3. Consider the sequence h1,h2,hn, then

hn =

{
−ek

3 mod (h1,h2), if n = 3k;
0 mod (h1,h2), otherwise.

Proof. We know by the Proposition 2.2 that

hn = e1hn−1− e2hn−2 + · · ·+(−1)nenh0.

Now as in our case n = 3, So en = 0 for n > 4. Hence

h0 =1,

h1 =e1h0 = e1 = 0

h2 =e1h1− e2h0 = 0 which means e2 = 0,

h3 =e1h2− e2h1 + e3h0 =−e3 mod (h1,h2).

In this way, we carry out the simplification for hn, n ≥ 4 and we arrive at the
following expression:

hn =

{
−ek

3 mod (h1,h2), if n = 3k;
0 mod (h1,h2), otherwise.

Corollary 3.3. h1,h2,hn is a regular sequence if and only if n = 3k,k ∈ N.

Proof. Clearly the cases n = 3k+ 1 and n = 3k+ 2 are ruled out. For the case
n = 3k choose m > 1+ 2+ 3k = 3(k + 1), clearly hm ∈ (h1,h2,h3k). Hence
(h1,h2,hn) is a regular sequence for n = 3k,k ∈ N.

Proposition 3.4. Consider the sequence h1,h3,hn, then

hn =

{
(−1)

n
2−1e

n
2
2 mod (h1,h3), if n = 2k;

0 mod (h1,h3), if n = 2k+1.

Proof. Similar to Proposition 3.3.

Corollary 3.4. h1,h3,hn is a regular sequence if and only if n = 2k,k ∈ N.
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Proof. Similar to Corollary 3.3.

Proposition 3.5. Consider the sequence h1,h4,hn, then

hn =


ek

3 mod (h1,h4), if n = 3k;
0 mod (h1,h4), if n = 3k+1;
−(k+1)e2ek

3 mod (h1,h4), if n = 3k+2.

Proof. Similar to Proposition 3.3.

Corollary 3.5. The sequence h1,h4,hn is a regular sequence if and only if n =
3k, k ∈ N.

Proof. Similar to Corollary 3.3.

Proposition 3.6. Consider the sequence h2,h3,hn, then

hn =


e2k−2

1 ek+1
2 mod (h2,h3), if n = 4k;

e2k−1
1 ek+1

2 mod (h2,h3), if n = 4k+1;
0 mod (h1,h2), if n = 4k+2,4k+3.

Proof. Similar to Proposition 3.3.

Corollary 3.6. The sequence h2,h3,hn is a regular sequence if and only if n =
4k,4k+1, where k ∈ N.

Proof. Clearly n = 4k + 2,4k + 3 is ruled out. Now let m1 > 2 + 3 + 4k =
4(k + 1) + 1 and m2 > 2+ 3+ 4k + 1 = 4(k + 1) + 2 then hm1 ∈ (h2,h3,h4k)
and hm2 ∈ (h2,h3,h4k+1). Hence (h2,h3,hn) for all n = 4k,4k + 1, k ∈ N is a
regular sequence.

4. Symmetric Polynomials in 4 variables

4.1. Power sums in 4 variables

Theorem 4.1. Let pi be the power sum symmetric polynomials of degree i in
the polynomial ring S = C[x1,x2, . . . ,xn]. Let n ≥ 3, then pa, pb is a regular
sequence.

Proof. We know pa(n) is reducible for n = 1 and p2(n) is reducible for n =
2. For n ≥ 3, we will show pa(n) is an irreducible element. We prove this
by induction on n. For n = 3, we can write pa(3) = xa

3 + g, where g = xa
1 +

xa
2 ∈ C[x1,x2], g is a homogeneous and monic polynomial in both variable, of

degree a. So proving factorization of g(x1,x2) is same as proving factorization
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of g(x1,1). Since g(x1,1) has simple roots, g is a product of a linear forms. Thus
Lemma 2.3 shows that pa(3) is irreducible. Then, if n > 3, pa(n) = xa

n + pa(n−
1) is irreducible by Lemma 2.3 by induction. Therefore the ideal generated by
pa is a prime ideal. Hence S/(pa) is a domain. Now pb being an irreducible
element in S, can not be factored into lower degree power sum polynomials
pa. So pb is a non zero divisor on S/(pa) for b > a. Hence pa, pb is a regular
sequence.

Note 4.2. If the characteristic of base field K is not zero, then above result does
not hold. Consider the field with char(K) = 2, then one has p4 = p2

2.

In particular,

Proposition 4.1. Let pi be the power sum symmetric polynomials of degree i
in the polynomial ring S = C[x1,x2,x3,x4]. Then pa, pb is a regular sequence.

We know that a subset of a regular sequence is a regular sequence. So by
Proposition 2.1, pa, pa+1, . . . , pa+m−1 is a regular sequence. Let R = S/I, where
S = C[x1,x2, . . . ,xn], I = 〈pa, pa+1, . . . , pa+m−1〉 with m < n− 1. Hence R is
Cohen Macaulay. Now we are going to use the Serre Criterion (see section
18.3, Theorem 18.15 [2]) for proving m consecutive power sums polynomials
generates a prime ideal in the polynomial rings S. Once we know that I is a
prime ideal in S, we can add one more power sum element pc and conclude that
pa, pa+1, . . . , pa+m−1, pc forms a regular sequence provided pc /∈ I.

Theorem 4.3. Let pi be the power sum symmetric polynomials of degree i in the
polynomial ring S = C[x1,x2, . . . ,xn], with n≥ 4.
Then I = 〈pa, pa+1, . . . , pa+m−1〉 with m < n−1 is a prime ideal in S. In partic-
ular, pa, pa+1, . . . , pa+m−1, pc forms a regular sequence provided pc /∈ I.

Proof. Consider S =C[x1,x2, . . . ,xn], I = (pa, pa+1, . . . , pa+m−1) with m< n−1
and R = S/I. Now let us compute the Jacobian of I, say Jacobian:= J.

J = c


xa−1

1 xa−1
2 · · · xa−1

n
xa

1 xa
2 · · · xa

n
...

... · · ·
...

xa+m−2
1 xa+m−2

2 · · · xa+m−2
n


We have taken the coefficients out from each row, where c = ∏

m−1
i=0 (a+ i). We

can ignore the coefficients since we are in the field of characteristic zero and c
is a unit in C. Let J′ = Im(J), denote’s the ideal generated by m×m minors of
Jacobian. Also m = ht(I), since I is generated by a regular sequence of length
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m. The m×m submatrices of the jacobian are standard Van der monde matrices,
we know their determinants. So we can write

J′ = 〈 x j1
i1 x j2

i2 · · ·x
jm
im ∏

1≤a<b≤m
(xia− xib) 〉 for 1≤ i1 < i2 < · · ·< im ≤ n,

and for some positive integers j1, j2, . . . , jm. Therefore

I + J′ = 〈pa, pa+1, . . . , pa+m−1, x j1
i1 x j2

i2 · · ·x
jm
im ∏

1≤a<b≤m
(xia− xib)〉.

Claim:
√

I + J′ = (x1,x2, . . . ,xn).
Suppose not, that is there exists w ∈ Pn−1 with w ∈ Z(I + J′). Then the vector
w can have at the most m−1 distinct non zero coordinates. If w has m or more
than m distinct non zero coordinates, then w /∈ Z(J′). Say w has v distinct non
zero coordinates. We can write

w = (w1, . . .w1,w2, . . . ,w2, . . . ,wv, . . . ,wv,0,0, . . . ,0),

where wi appears βi times and v ≤ m−1. Also w should satisfy pa+i for i =
0,1, . . . ,m−1 i.e.

β1wa+i
1 +β2wa+i

2 + · · ·+βvwa+i
v = 0 for i = 1,2, . . . ,m.

This is a system of equation, which can be represented in the matrix form with
m rows, v column.

1 1 · · · 1
w1 w2 · · · wv
...

... · · ·
...

wm−1
1 wm−1

2 · · · wm−1
v




β1wa+i
1

β2wa+i
2

...
βvwa+i

v

=


0
0
...
0


We know that neither βi = 0 nor wi = 0 for i = 1, . . . ,v. So, βiwa+i

i 6= 0 for
i = 1, . . . ,v. We can choose the matrix say M with first v rows out of m rows and
look for the solution. The matrix M is of full rank since wi 6= w j for i 6= j, so the
only possible solution has to be the trivial solution.

Therefore such a w does not exist and hence the claim is proved. This im-
plies ht(I+J′) = n and dim S

I+J′ = 0. The co-dimension of J′ in S is n−2. Hence
by Theorem 18.15 in [2], R is a product of normal domain. So, we can write
R = R1× ·· ·×Rk. Since R is a standard graded C-algebra with R0 = C, also
R0 = (R1)0×·· ·× (Rk)0 = Ck. Hence k = 1. Therefore R is a normal domain
and I is a prime ideal in S.

In particular,
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Proposition 4.2. Let pi be the power sum symmetric polynomials of degree i
in the polynomial ring S =C[x1,x2,x3,x4]; then I = (pi, pi+1) is a prime ideal in
S. In particular, pi, pi+1, pn is a regular sequence for all pn /∈ (pi, p j).

Lemma 4.4. Let n ≥ 5 be any natural number. If the sum of four distinct n-th
roots of unity is zero, then they must be two pair of opposite sign.

Furthermore, if n is odd number, then sum of four distinct n-th roots of unity
is never zero.

Proof. We have zn = 1. Let us pick four distinct n-th roots of unity, call it z j for
j = 1,2,3,4. Each z j = x j + iy j, where x j,y j ∈ R and |z j|= 1.
Claim: If ∑

4
j=1 z j = 0, then z1, z2, z3, z4 must be of the form z1, z2, −z1, −z2.

Let ∑
4
j=1 z j = 0 i.e. ∑

4
j=1 x j = 0 and ∑

4
j=1 y j = 0. So, we can write,

x1 + x2 =−(x3 + x4), and y1 + y2 =−(y3 + y4).

Now, squaring and adding both the equation, we obtain 2+ 2(x1x2 + y1y2) =
2+2(x3x4 + y3y4). Therefore, we get,

|z1− z2|2 = 2−2(x1x2 + y1y2) = 2−2(x3x4 + y3y4) = |z3− z4|2.

So |z1−z2|= |z3−z4|. Similarly, we get |z2−z3|= |z1−z4|. So, four distinct z j

form a parellelogram. The diagonals of a parellelogram intersect at mid point.
Hence solving z1+z3

2 = z2+z4
2 and ∑

4
j=1 z j = 0, we conclude that z3 = −z1 and

z4 =−z2. So, we obtain four distinct roots of unity as z1, z2, −z1, −z2.
Furthermore, z1 and −z1 both can not be n-th roots of unity for any n odd

number.

Proposition 4.3. Let I = (p1, p2m), where m ∈ N. Then I is a prime ideal
in C[x1,x2,x3,x4]. Therefore p1, p2m, pn form a regular sequence for all pn /∈
(p1, p2m).

Proof. For m = 1, it follows from Proposition 4.1. Let m > 1. Consider S =
C[x1,x2,x3,x4], I = (p1, p2m), we know by Theorem 4.3 that p1, p2m is a regular
sequence in S. So ht(I) = 2. Let R = S/I. Now let us compute the Jacobian of
I, say Jacobian:= J.

J = (2m−1)
(

1 1 1 1
x2m−1

1 x2m−1
2 x2m−1

3 x2m−1
4

)
We can ignore the coefficients 2m−1, since we are in the field of characteristic
zero and 2m− 1 is a unit in C. Let J′ = I2(J), denote’s the ideal generated by
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2× 2 minors of J. So, we can write J′ = 〈 x2m−1
j − x2m−1

i 〉 for 1 ≤ i ≤ j ≤ 4.
Therefore consider

I + J′ = 〈 p1, p2m, x2m−1
j − x2m−1

i 〉 for 1≤ i≤ j ≤ 4.

Claim:
√

I + J′ = (x1,x2,x3,x4).
Suppose not, i.e. there exists w∈P3 with w∈ Z(I+J). Let w= (w1,w2,w3,w4).
If one of wi is zero, then it is easy to see all the wi’s are zero. So we assume
none of wi is zero. Also assume wi 6= w j for i 6= j. Since w is in P3, we can
make w1 = 1 if w1 6= 0. So let w = (1,x,y,z). Since w ∈ Z(I + J) implies
1= x2m−1 = y2m−1 = z2m−1 and x2m−1 = y2m−1 = z2m−1. Also w satisfies p1, p2m.
Therefore

1+ x+ y+ z = 0 and 1+ x2m + y2m + z2m = 0.

Both the equation reduces to existence of solution of 1+ x+ y+ z = 0. We
assumed all the coordinates are distinct, We use the fact that all the x or y or
z is (2m− 1)-th roots of unity, say 1,ζ1, . . . ,ζ2m−2. Now, it follows from the
Lemma 4.4 that 1+ ζi + ζ j + ζk 6= 0 for distinct i, j,k. For ζi’s to be distinct,
one must have m > 2. But for m = 2, one has cube roots of unity, so one of
ζi = ζ j for some i, j. In that case it is clear that there is no solution. Now it
is easy to verify that if w = (1,x,y,y) or w = (1,x,x,x), then also, there does
not exist solution of p1(w) = 0. So, the only possible solution has to be the
trivial solution. Hence the claim is proved. This implies ht(I + J′) = 4 and
dim S

I+J′ = 0. The co-dimension of J′ in S is 2. Hence by Theorem 18.15 in [2],
R is a product of normal domain. So, we can write R = R1×·· ·×Rk. Since R is
a standard graded C-algebra with R0 = C, also R0 = (R1)0×·· ·× (Rk)0 = Ck.
Hence k = 1. Therefore R is a normal domain and I is a prime ideal in S.

Computer calculations using CoCoA suggest the following conjecture:

Conjecture 4.5. Let pi be the power sum symmetric polynomial of degree i in
the polynomial ring S = K[x1,x2,x3,x4]. Let A = {a,b,n} with a < b < n, then
pA(4) is a regular sequence if and only if A satifies the following conditions:

1 If a is odd and b is even, then for any n.

2 If a is odd and b is odd, then for any n even.

3 If a is even, say a = 2m, with m odd, then for all n provided λ 6= 4k,k ∈N
where λ = b− a and If λ = 4k, then for all n of the form 4l + 2, with
l ∈ N.

4 If a is even, say a = 2m, with m even, then for all n, provided b 6=
3a and n 6= (2k+1)a, k ∈ N.
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5 (a,b,n) should not be of the form (a,2a,5a), irrespective of a being odd
or even.

We wanted to show I = (pa, pb) is a prime ideal for some a,b. We did
several computations on computer and found some conditions on a,b. We could
not prove these results. We state them as a Conjecture as follows:

Conjecture 4.6. 1. Let I = (pa, pb) where a is a prime number, a ≥ 5 and
b = a+m+6d with m ∈ {1,5} and d ∈ N∪{0}. Then I is a prime ideal
in C[x1,x2,x3,x4]. Therefore pa, pb, pn forms a regular sequence for all
pn /∈ (pa, pb).

2. Let I = (p2, p2m) with m ∈ N and m 6= 2+3k,2+4k, where k ∈ N. Then
I is a prime ideal in C[x1,x2,x3,x4]. Therefore p2, p2m, pn forms a regular
sequence for all pn /∈ (p2, p2m).

3. Let I = (p3, p2m) with m ∈ N and m 6= 6+9λ , where λ ∈ N∪{0}. Then
I is a prime ideal in C[x1,x2,x3,x4]. Therefore p3, p2m, pn forms a regular
sequence for all pn /∈ (p3, p2m).

4. Let I = (p4, p2m) with m ∈ N and m 6= 4+3k,4+8k, where k ∈ N. Then
I is a prime ideal in C[x1,x2,x3,x4]. Therefore p4, p2m, pn forms a regular
sequence for all pn /∈ (p4, p2m).

Conjecture(Conca, Krattenthaler, Watanabe) Let A⊂N∗ with |A|= 4, say
A = {a1,a2,a3,a4}, and assume gcd(A) = 1. Then pA(4) is a regular sequence
if and only if A satifies the following conditions:

1 At least two of the ai’s are even, at least one is a multiple of 3, and at least
one is a multiple of 4,

2 If E is the set of the even elements in A and d = gcd(E) then the set
{ a

d : a ∈ E} contains an even number.

3 A does not contain a subset of the form {d,2d,5d}.

We use the Newton’s formula for power sum to deduce the following result:

Proposition 4.4. Consider the power sum sequence p1, p2, p3, pn, then

pn ==

{
(−1)k4ek

4 mod (p1, p2, p3), if n = 4k;
0 mod (p1, p2, p3), otherwise.

Proof. Similar to Proposition 3.1. The only difference in this case is, p0 =
4.
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Corollary 4.7. The power sum sequence p1, p2, p3, pn is a regular sequence if
and only if n = 4k.

Proof. Similar to Corollary 3.1. The only difference is, there we use Theorem
2.2 for three variable. Similar result can be deduced for the four variable case
also.

Proposition 4.5. Consider the power sum sequence p1, p2, p4, pn, then

pn =

{
4ek

3 mod (p1, p2, p4), if n = 3k;
0 mod (p1, p2, p4), otherwise.

Proof. Similar to Proposition 3.1.

Corollary 4.8. The power sum sequence p1, p2, p4, pn is a regular sequence if
and only if n = 3k.

Proof. Similar to Corollary 3.1.

4.2. Complete symmetric polynomials in 4 variables

Proposition 4.6. Consider the sequence h1,h2,h3,hn, then

hn =

{
(−1)kek

4 mod (h1,h2,h3), if n = 4k;
0 mod (h1,h2,h3), otherwise.

Proof. Similar to Proposition 3.3.

Corollary 4.9. The sequence h1,h2,h3,hn is a regular sequence if and only if
n = 4k,k ∈ N.

Proof. Similar to Corollary 3.3. The only difference is one has a similar result
to Theorem 2.2 in the four variable case.

Proposition 4.7. Consider the sequence h1,h2,h4,hn, then

hn =

{
ek

3 mod (h1,h2,h4), if n = 3k;
0 mod (h1,h2,h4), otherwise.

Proof. Similar to Proposition 3.3.

Corollary 4.10. The sequence h1,h2,h4,hn is a regular sequence if and only if
n = 3k,k ∈ N.

Proof. Similar to Corollary 3.3.
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Proposition 4.8. Consider the sequence h2,h3,h4,hn, then

hn =


(−1)kek

1ek
4 mod (h2,h3,h4), if n = 5k;

(−1)kek+1
1 ek

4 mod (h2,h3,h4), if n = 5k+1;
0 mod (h2,h2,h4), otherwise.

Proof. Similar to Proposition 3.3.

Corollary 4.11. The sequence h2,h3,h4,hn is a regular sequence if and only if
n = 5k,5k+1,k ∈ N.

Proof. Similar to Corollary 3.3.

5. Appendix

5.1. Verification of the Conca, Krattenthaler and Watanabe con-
jecture

(i) For p1, p2, pn: This follows directly from Corollary 3.1.

(ii) For p1, p3, pn: This follows directly from Corollary 3.2.

(iii) For h1,h2,hn: Let us start with the necessary part.

1 2c≡ 0( mod 6) implies that c = 3k.

2 gcd(2,3) = 1 (always true).

3 For all t ∈ N with t > 2 there exist d ∈ A such that d + 2 6≡ 0,1(
mod t): we know that 1+ 2 and 2+ 2 are 0 or 1 only modulo 3
and so t=3; these means that this condition is false iff c+ 2 ∼= 0,1(
mod 3). Thus, we have that c = 3k.

Viceversa, if n = 3k, [1] and [3] are fulfilled.

Similarly we can show, (iv) for h1,h3,hn ; (v) for h1,h4,hn, and (vi) for h2,h3,hn

respectively.

Example 5.1. This example is a case when hk /∈ (hi,h j) and hi,h j,hk is not a
regular sequence.

Consider the triple h1,h4,h5. By Proposition 3.5, we have h5 = −e2e3
mod (h1,h4), hence h5 /∈ (h1,h4), still h1,h4,h5 is not a regular sequence.
First we compute the hilbert series of (h1,h4,h5) and we find that

HS/(h1,h4,h5)(t) =
1− t− t4 + t6 + t7− t8

(1− t)3 .
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If h1,h4,h5 were a regular sequence, Hilbert series should have been

HS/(h1,h4,h5)(t) =
(1− t)(1− t4)(1− t5)

(1− t)3 ,

=
1− t− t4 + t6 + t9− t10

(1− t)3 .

which is clearly not the case.
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