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POWERS OF EDGE IDEALS

CARMELA FERRÒ - MARIELLA MURGIA
OANA OLTEANU

We compute the Betti numbers for all the powers of initial and final
lexsegment edge ideals. For the powers of the edge ideal of an anti–
d−path, we prove that they have linear quotients and we characterize the
normally torsion–free ideals. We determine a class of non–squarefree
ideals, arising from some particular graphs, which are normally torsion–
free.

1. Introduction

Graph theory have been intensively studied in the last years. It provides many
interesting problems, being at the intersection of different areas of mathematics,
such as commutative algebra, combinatorics, topology.

Let G = (V,E(G)) be a finite simple graph on the vertex set V = {1, . . . ,n}.
To this combinatorial object, one may attach a squarefree monomial ideal, which
is called the edge ideal, whose minimal monomial generators are xix j with
{i, j} ∈ E(G). This allows us to describe combinatorial properties of the graph
using an algebraic language. The edge ideal of a graph was first considered by
R. Villarreal in [11].

An important class of graphs is given by the chordal ones. Chordal graphs
have several characterizations, the most common being the following: a graph is
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chordal if every cycle of length at least 4 has a chord. By a chord of a cycle we
mean an edge between two non–adjacent vertices of the cycle. One of the most
important results is due to R. Fröberg [4], who characterized all the edge ideals
with a linear resolution in terms of the property of the complementary graph of
being chordal. It naturally arises the same problem for all the powers of edge
ideals which have a linear resolution. This characterization is due to J. Herzog,
T. Hibi and X. Zheng [6], who proved that the edge ideal has a linear resolution
if and only if all its powers have a linear resolution. Moreover, this is equivalent
with the edge ideal to have linear quotients. A more difficult problem is to find
classes of graphs such that all the powers of the edge ideal have linear quotients.
Some results in this sense were given by A.H. Hoefel and G. Whieldon [7], E.
Nevo and I. Peeva [9].

A method to get useful information about the ideal is by determining the set
of associated primes. It is known that for squarefree ideals, the set of associated
primes coincides with the set of minimal primes. Moreover, the minimal primes
of an edge ideal are precisely determined by the minimal vertex covers of the
graph. When considering powers of an edge ideal I ⊂ S = k[x1, . . . ,xn], it is
known that Min(I)⊂ AssS(S/It), for all t. Moreover, it was proved [8] that the
set of associated primes of the powers of edge ideals form an ascending chain. A
classical result in the commutative algebra, given by M. Broadmann [1], states
that the set AssS(S/It) stabilizes for large t. If it became stabilized when t = 1,
then the ideal I is called normally torsion–free. There are two main problems
concerning the set of associated prime ideals of It . The first one is to determine
the prime ideals which belong to AssS(S/It), for all t. The second problem is to
compute the index of stability, meaning to determine the minimal integer t such
that AssS(S/It) stabilizes.

In this paper, we analyze, for some classes of graphs, these two kind of prob-
lems. Firstly, we describe the relation between the Betti numbers of the edge
ideal and the Betti numbers of its powers. This is done by applying the formula
for computing the Betti numbers of an ideal with linear quotients. Secondly, we
determine a class of non–squarefree ideals, arising from some particular graphs,
which are normally torsion–free.

The paper is structured as follows. The second section contains the basic
definitions and some useful results.

In Section 3, we compute the Betti numbers for the cases when the edge
ideal is an initial and a final squarefree lexsegment ideal generated in degree
2. We prove that all the powers of initial and final squarefree lexsegment ideals
generated in degree 2 have linear quotients, Proposition 3.2 and Proposition 3.7.
As an application, we compute the Betti numbers of powers of such ideals.

In Section 4 we pay attention to a particular class of chordal graphs, namely
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to d−path graphs. The complementary graph of a d−path is called an anti–
d−path and its edge ideal has a linear resolution. We prove that all the powers of
the edge ideal of an anti–d−path have linear quotients. Moreover, we describe
the set of associated primes of the powers of the edge ideal of an anti–d−path,
and we characterize those which are normally torsion–free.

2. Background

Let S = K[x1, . . . ,xn] be the polynomial ring in n variables over a field K. We
order the monomials in S lexicographically with x1 >lex · · ·>lex xn. For a mono-
mial u ∈ S, we set max(u) = max(supp(u)) and min(u) = min(supp(u)), where
supp(u) = {i : xi | u}. Moreover, we will denote by νs(u) the exponent of the
variable xs in the monomial u.

For a monomial ideal I ⊂ S, we will denote by G(I) the set of minimal
monomial generators of I.

A monomial ideal I of S has linear quotients if the monomials from the
minimal monomial set of generators of I can be ordered u1, . . . ,us such that for
all 2≤ i≤ s the colon ideals (u1, . . . ,ui−1) : ui are generated by variables. In this
case, we will denote by set(ui) = {x j : x j ∈ (u1, . . . ,ui−1) : ui}.

The Betti numbers of ideals with linear quotients are given in [5]:

Proposition 2.1. [5] Let I ⊂ S be a graded ideal with linear quotients generated
in one degree. Then

βi(I) = ∑
u∈G(I)

(
|set(u)|

i

)
.

It is known, [2] that any monomial ideal generated in one degree, which has
linear quotients, has a linear resolution. In [6], the monomial ideals generated
in degree 2 with a linear resolution are described.

Theorem 2.2. [6] Let I be a monomial ideal generated in degree 2. The follow-
ing conditions are equivalent:

(a) I has a linear resolution;

(b) I has linear quotients;

(c) Each power of I has a linear resolution.

In the following, we will consider squarefree monomial ideals generated in
degree 2. In general, to a squarefree monomial ideal generated in degree 2 one
may associate a graph G= (V,E(G)) on the vertex set V = [n] such that I = I(G)
is its edge ideal, that is the ideal generated by the squarefree monomials xix j,
with {i, j} ∈ E(G). The edge ideals with a linear resolution are described in [4].
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Proposition 2.3. [4] Let G be a graph and Ḡ its complementary graph. Then
I(G) has a linear resolution if and only if Ḡ is chordal.

For edge ideals I = I(G), in [8] it is proved that the sets of associated
prime ideals of powers of I form an ascending chain. In [1] Brodmann proved
that AssS(S/Ik) stabilizes for large k, that is there is an integer N such that
AssS(S/Ik) = AssS(S/IN), for all k≥ N. The ideal I is called normally torsion–
free if AssS(S/I) = AssS(S/Ik), for all k ≥ 1. The normally torsion–free edge
ideals are precisely those ideals associated to bipartite graphs, [10]. We recall
that a graph G is bipartite if its vertex set is the disjoint union of the sets V1 and
V2, such that each edge of G has one vertex in V1 and the other one in V2.

Although the normally torsion–free squarefree ideals were studied in a se-
ries of papers, the non–squarefree case it is still unknown. In this sense, we will
determine a class of non–squarefree ideals which are normally torsion–free.

3. Initial and final lexsegment edge ideals

Firstly, we are interested in computing the Betti numbers of the powers of an
initial squarefree lexsegment ideal generated in degree 2. We recall their defini-
tion.

Definition 3.1. Let v = xix j be a squarefree monomial in S. The initial lexseg-
ment set defined by v is the set

Li(v) = {w : w is a squarefree monomial of degree 2, w≥lex v}.

An ideal generated by an initial squarefree lexsegment set is called an initial
lexsegment edge ideal.

Proposition 3.2. Let I = (Li(v)) be an initial lexsegment edge ideal. For t ≥ 1,
we denote by G(It) = {u1, . . . ,um}, with u1 >lex · · ·>lex um. Then

(u1, . . . ,ui−1) : (ui) = (xr : νr(xrui)≤ t, for all 1≤ r ≤max(ui)−1),

for all 2≤ i≤ m.

Proof. Let m ∈ (u1, . . . ,ui−1) : (ui) be a monomial. Then there is a minimal
monomial generator u j >lex ui such that u j | mui. We want to prove that there
exists a variable xr, with 1≤ r≤max(ui)−1, and νr(xrui)≤ t with the property
that xr | m. Since u j >lex ui, it results that there is an integer l ≥ 1 such that
νs(u j) = νs(ui), for all s < l and νl(u j)> νl(ui). The condition νl(u j)> νl(ui)
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yields to xl | m, since u j | mui. By the relation deg(u j) = deg(ui), we obtain
l < max(ui). Moreover, νl(xlui) = νl(ui) + 1 ≤ νl(u j) ≤ t, since u j ∈ G(It).
Therefore we proved that the variable xl satisfies the desired conditions.

Conversely, let 1 ≤ r ≤ max(ui)− 1, with νr(xrui) ≤ t. We want to prove
that xr ∈ (u1, . . . ,ui−1) : (ui). Consider the monomial u j = xrui/xmax(ui). Then it
is clear that u j >lex ui and u j | xrui. It remains to argue that u j ∈ G(It).

Since ui ∈ G(It), we have ui = m1 · · ·mt , with m1 ≥lex . . .≥lex mt ≥lex v. By
hypothesis, νr(xrui) ≤ t, thus there is some integer 1 ≤ s ≤ t such that xr - ms.
We study two cases:

Case 1. If xmax(ui) | ms, then

u j = xrui/xmax(ui) = m1 · · ·ms−1
xrms

xmax(ui)
ms+1 · · ·mt ∈ G(It),

since xrms/xmax(ui) >lex ms ≥lex v.
Case 2. Assume that xmax(ui) - ms, that is ms = xαxβ , with α < β < max(ui)

and α 6= r, β 6= r. Consider the monomial mk = xγxmax(ui), with γ <max(ui), for
some 1≤ k 6= s≤ t. It is clear that if γ 6= r, then xrxγ ≥lex xγxmax(ui) = mk ≥lex v.
Hence

u j = xrui/xmax(ui) = m1 · · ·mk−1
xrmk

xmax(ui)
mk+1 · · ·mt ∈ G(It).

Otherwise, if γ = r, then xαxr ≥lex xγxmax(ui) ≥lex v and xβ xγ ≥lex xγxmax(ui) =
mk ≥lex v. Then

u j = xrui/xmax(ui) =

(
∏

q6=s,q6=k
mq

)
(xαxr)(xβ xγ) ∈ G(It),

which ends the proof.

Corollary 3.3. Let I be an initial lexsegment edge ideal. Denote by G(It) =
{u1, . . . ,um}, with u1 >lex · · ·>lex um, for all t ≥ 1. Then

|set(ui)|=
{

max(ui)−2, if xt
j | ui, for some j < max(ui)

max(ui)−1, otherwise

for all 1≤ i≤ m.

Proof. Let ui ∈ It be a minimal monomial generator. By Proposition 3.2, one
has

set(ui) = {xr : νr(xrui)≤ t, for all 1≤ r ≤max(ui)−1}.
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If there is some integer 1≤ j < max(ui) such that ν j(ui) = t, since deg(ui) = 2t
and the exponents of all variables from the support of ui are at most t, we obtain

set(ui) = {x1, . . . ,xmax(ui)−1}\{x j},

thus |set(ui)|= max(ui)−2.
Otherwise, we have νs(ui) < t, for all s ∈ supp(ui), s < max(ui), and we

obtain
set(ui) = {x1, . . . ,xmax(ui)−1},

thus |set(ui)|= max(ui)−1.

Corollary 3.4. Let I be an initial lexsegment edge ideal. For all t ≥ 1, denote
by G(It) = {u1, . . . ,um}, with u1 >lex · · ·>lex um. Then

βi(I) =
m

∑
j=1

(
max(u j)−2

i

)
,

βi(It) =
m

∑
j=1

((
max(u j)−1

i

)
+

(
max(u j)−2

i

))
, for t > 1.

Remark 3.5. Let G be the star graph on the vertex set [n] with the edge ideal I =
(x1x2,x1x3, . . . ,x1xn). It is clear that I is the initial lexsegment edge ideal deter-
mined by the monomial v = x1xn. For t ≥ 1, we note that It = xt

1(x2,x3, . . . ,xn)
t .

Moreover, any minimal monomial generator u of It is divisible by xt
1, thus

|set(u)|= max(u)−2. Therefore

βi(It) = ∑
u∈G(It)

(
max(u)−2

i

)
.

It is easy to see that

|{u ∈ G(It) : max(u) = j}|
=|{u ∈ G(It) : max(u)≤ j}|− |{u ∈ G(It) : max(u)≤ j−1}|
=|{w ∈Mon(k[x2, . . . ,x j]) : deg(w) = t}|
−|{w ∈Mon(k[x2, . . . ,x j−1]) : deg(w) = t}|

=

(
j+ t−2

t

)
−
(

j+ t−3
t

)
=

(
j+ t−3

t−1

)
.

Then

βi(It) =
n

∑
j=2

(
j+ t−3

t−1

)(
j−2

i

)
.
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Next, we are interested in computing the Betti numbers of the powers of a
final squarefree lexsegment ideal generated in degree 2.

Definition 3.6. Let u= xix j be a squarefree monomial in S. The final lexsegment
set defined by u is the set

L f (u) = {w : w is a squarefree monomial of degree 2, u≥lex w}.

An ideal generated by a final squarefree lexsegment set is called a final lexseg-
ment edge ideal.

Proposition 3.7. Let I = (L f (u)) be a final lexsegment edge ideal and G(It) =
{u1, . . . ,um}, with u1 <revlex · · · <revlex um be the set of minimal monomial gen-
erators of It , for t ≥ 1. Then

(u1, . . . ,ui−1) : (ui) = (xr : νr(xrui)≤ t, for all r ≥min(ui)+1),

for all 2≤ i≤ m.

Proof. Let m ∈ (u1, . . . ,ui−1) : (ui) be a monomial. Then there is a minimal
monomial generator u j <revlex ui such that u j | mui. By u j <revlex ui we get that
there is an integer l ≥ 1 such that νs(u j) = νs(ui), for all s > l and νl(u j) >
νl(ui). Since u j |mui and νl(u j)> νl(ui), it results that xl |m. It is clear that l >
min(ui) by degree considerations. Moreover, νl(xlui) = νl(ui)+1≤ νl(u j)≤ t,
since u j ∈ G(It). Therefore xl satisfies the desired conditions.

Conversely, let r ≥ min(ui)+ 1, with νr(xrui) ≤ t. We want to prove that
xr ∈ (u1, . . . ,ui−1) : (ui). We take the monomial u j = xrui/xmin(ui). It is clear
that u j <revlex ui and u j | xrui. It remains to argue that u j ∈ G(It).

Since ui ∈ G(It), we have ui = m1 · · ·mt , with m1, . . . ,mt ∈ L f (u). We may
assume that m1 = xmin(ui)xa, with a > min(ui). If a 6= r, then

u j = xrui/xmin(ui) = (xrxa)m2 · · ·mt ∈ G(It),

since u≥lex m1 = xmin(ui)m1/xmin(ui) >lex xrm1/xmin(ui) = xrxa.
Assume that a = r. By hypothesis, νr(xrui) ≤ t, thus there is some integer

1≤ s≤ t such that xr - ms. We denote ms = xpxq and we note that p,q 6= r. Then

u j = xrui/xmin(ui) = (xrxp)(xrxq)m2 · · ·ms−1ms+1 · · ·mt ∈ G(It),

since u≥lex m1 = xmin(ui)xr ≥lex xrxp and u≥lex m1 = xmin(ui)xr ≥lex xrxq.

Corollary 3.8. Let I be a final lexsegment edge ideal and G(It) = {u1, . . . ,um},
with u1 <revlex · · ·<revlex um, for all t ≥ 1. Then

|set(ui)|=
{

n−min(ui)−1, if xt
j | ui, for some j > min(ui)

n−min(ui), otherwise

for all 1≤ i≤ m.
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Proof. Let ui ∈ It be a minimal monomial generator. Then

set(ui) = {xr : νr(xrui)≤ t, for all r ≥min(ui)+1},

by Proposition 3.7. If there is some integer j > min(ui) such that ν j(ui) = t,
since deg(ui) = 2t and the exponents of all variables from the support of ui are
at most t, we obtain

set(ui) = {xmin(ui)+1, . . . ,xn}\{x j},

thus |set(ui)|= n−min(ui)−1.
Otherwise, we have νs(ui) < t, for all s ∈ supp(ui), s > min(ui), and we

obtain
set(ui) = {xmin(ui)+1, . . . ,xn},

thus |set(ui)|= n−min(ui).

Corollary 3.9. Let I be a final lexsegment edge ideal and G(It) = {u1, . . . ,um},
with u1 <revlex · · ·<revlex um. Then

βi(I) =
m

∑
j=1

(
n−min(u j)−1

i

)
,

βi(It) =
m

∑
j=1

((
n−min(u j)

i

)
+

(
n−min(u j)−1

i

))
, for t > 1.

4. The edge ideal of anti–d−path

In this section, we will study properties of the edge ideal of the complement of
a d−path with the set of vertices [n].

We will follow the definition of a d−path given in [3].

Definition 4.1. Let d ≥ 1 be an integer. A d−path is a graph on the vertex
set {1, . . . ,n} which is the union of the complete graphs on the vertex sets
{1, . . . ,d +1}, {2, . . . ,d +2}, . . . , {n−d, . . . ,n}.

It is clear by definition that a 1−path is a simple path, while a 2−path is a
graph of the form:
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1 3 5 7

2 4 6

G :

The d−paths are particular cases of d−trees. Moreover, in [3] it is proved that
the edge ideal of the complement of a d−tree is Cohen–Macaulay.

Let G be a d−path on the vertex set V (G) = {1, . . . ,n}. The complemen-
tary graph of G, denoted by Ḡ, is called anti–d−path. The edge ideal of the
complementary graph of G is

I = I(Ḡ) = (xix j : i+d < j, i, j ∈V (G)).

Indeed, since the graph G is the union of the complete graphs on the vertex sets
{1, . . . ,d + 1}, {2, . . . ,d + 2}, . . . , {n− d, . . . ,n}, we obviously have {i, j} ∈
E(G), for all i, j ∈V (G), with i < j ≤ i+d.

In the following, we are interested in computing the Betti numbers for the
powers of the ideal I. Firstly, we will describe the minimal monomial generating
set for all the powers of the edge ideal I(Ḡ). The next two propositions represent
the generalization of some results given in [7].

Proposition 4.2. For all k ≥ 1,

G(Ik) = {xi1 · · ·xik x j1 · · ·x jk : i1≤ ·· · ≤ ik ≤ j1≤ ·· · ≤ jk, ir+d < jr,1≤ r≤ k}.

Proof. For the inclusion ”⊆”, we consider m ∈ G(Ik). Since deg(m) = 2k, we
may write m = xi1 · · ·xik x j1 · · ·x jk , with i1 ≤ ·· · ≤ ik ≤ j1 ≤ ·· · ≤ jk. Assume
by contradiction that there is an integer 1 ≤ r ≤ k such that ir + d ≥ jr. Since
ir ≤ ·· · ≤ ik ≤ j1 ≤ ·· · ≤ jr and jr ≤ ir +d, we obtain that

{ir, . . . , ik, j1, . . . , jr} ⊆ {ir, ir +1, . . . , ir +d}.

Let w = xir · · ·xik x j1 · · ·x jr . Then w | m and supp(w) ⊆ {ir, ir + 1, . . . , ir + d}.
Hence w /∈ G(Ik) and deg(w) = k+1.

By hypothesis, m is a product of k minimal monomial generators of Ḡ, thus
every divisor of degree k + 1 of m must contain at least one edge. But the
construction of the monomial w contradicts this statement, thus ir +d < jr, for
all 1≤ r ≤ k.

The other inclusion is clear.
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Proposition 4.3. For all integers k ≥ 1, the ideal I(Ḡ)k has linear quotients
with respect to the decreasing lexicographical order of its minimal monomial
generators.

Proof. Let m′ >lex m be two minimal monomial generators of Ik = I(Ḡ)k. By
Proposition 4.2, one has

m = xi1 · · ·xik x j1 · · ·x jk

m′ = xs1 · · ·xsk xt1 · · ·x jtk

with i1 ≤ ·· · ≤ ik ≤ j1 ≤ ·· · ≤ jk, s1 ≤ ·· · ≤ sk ≤ t1 ≤ ·· · ≤ tk and ir +d < jr,
sr +d < tr, for all 1≤ r ≤ k.

We want to prove that m′/gcd(m′,m) is divisible by some variable x j =
m′′/gcd(m′′,m), for some m′′ >lex m. We will analyze two cases:

Case 1: If there is some q≥ 1 such that il = sl , for all l < q and iq > sq, then
we consider the monomial

m′′ = xsqm/xiq = xi1 · · ·xiq−1xsqxiq+1 · · ·xik x j1 · · ·x jk .

It is clear that m′′ >lex m, and m′′ ∈ G(Ik) since sq +d < iq +d < jq.
Case 2: Assume that ir = sr, for all 1≤ r ≤ k and there is some q≥ 1 such

that jl = tl , for all l < q and jq > tq. We construct the monomial

m′′ = xtqm/x jq = xi1 · · ·xik x j1 · · ·x jq−1xtqx jq+1 · · ·x jk .

It is clear that m′′ >lex m, and m′′ ∈ G(Ik) since iq +d = sq +d < tq.

Proposition 4.4. Let k ≥ 1 and u = xi1 · · ·xik x j1 · · ·x jk be a minimal monomial
generator of G(Ik). Then

set(u) = {x1, . . . ,xik−1}∪
⋃

1≤r≤k

{xs : ir +d < s < jr}.

Proof. For the inclusion ”⊆”, let m ∈ G(Ik), m >lex u, m = xa1 · · ·xak xb1 · · ·xbk .
We will prove that there is an integer 1 ≤ t ≤ ik− 1, there is a monomial m1 ∈
G(It), m1 >lex u such that m1/gcd(u,m1)= xt and xt |m/gcd(u,m) or there exist
1≤ r≤ k, ir+d < s< jr and m2 ∈G(It), m2 >lex u such that m2/gcd(u,m2)= xs

and xs | m/gcd(u,m).
Since m >lex u, we will analyze the following two cases:
Case 1. Assume that there is some q ≥ 1 such that il = al , for all l < q

and aq < iq. Consider the monomial m1 = xaqu/xiq . One has m1 >lex u and
m1/gcd(u,m1) = xaq . Since aq +d < iq +d < jq, we have m1 ∈ G(Ik).

Moreover, one has xaq | m/gcd(u,m) and aq < iq ≤ ik.
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Case 2. If ir = ar, for all 1≤ r≤ k and there is some q≥ 1 such that bl = jl ,
for all l < q and bq < jq, then we take the monomial m2 = xbqu/x jq . It is clear
that m2 >lex u, m2/gcd(u,m2) = xbq and m2 ∈ G(Ik), since iq + d = aq + d <
bq < jq. Moreover, xbq | m/gcd(u,m).

For the inclusion ”⊇”, firstly, let 1 ≤ t ≤ ik − 1 and the monomial m =
xtu/xik . Then m >lex u and m | xtu. Moreover, we have m ∈ G(Ik). Indeed,
if il ≤ t ≤ il+1, for some 1 ≤ l < k, then il + d ≤ t + d ≤ il+1 + d < jl+1 and
is +d < js, for all s 6= l.

Secondly, let 1 ≤ r ≤ k, ir + d < s < jr and consider the monomial m =
xsu/x jk . One has that m >lex u and m | xsu. The monomial m ∈ G(Ik), since for
all 1≤ t 6= r ≤ k we have it +d < jt and ir +d < s.

Using Proposition 2.1, one may compute the Betti numbers of the edge ideal
of an anti–d−path.

Next, we describe the minimal vertex covers of an anti–d−path.

Proposition 4.5. Let Ḡ be an anti–d−path and I = I(Ḡ) be its edge ideal. Then
the minimal primary decomposition of I is

I =
n−d⋂
t=1

P[n]\{t,t+1,...,t+d},

where P[n]\{t,t+1,...,t+d} = (xs : s ∈ [n]\{t, t +1, . . . , t +d}).

Proof. Since the minimal vertex covers of Ḡ corresponds to the maximal inde-
pendent sets of Ḡ, it is enough to show that all the maximal independent sets of
Ḡ are {t, t +1, . . . , t +d}, with 1≤ t ≤ n−d.

Let 1 ≤ t ≤ n− d and A = {t, t + 1, . . . , t + d}. Then A is a maximal inde-
pendent set since E(Ḡ) = {{i, j} : j− i > d}.

Let B be a maximal independent set of Ḡ. Then for all i, j ∈ B, we have
{i, j} /∈ E(Ḡ), that is {i, j} ∈ E(G). But the graph G is the union of the com-
plete graphs on the vertex sets {1, . . . ,d+1}, {2, . . . ,d+2}, . . . , {n−d, . . . ,n}.
Therefore, B ⊂ {t, . . . ,d + t}, for some 1 ≤ t ≤ n− d. Since B is a maximal
independent set, we must have B = {t, . . . ,d + t}.

Using this, we may recover a result from [3].

Corollary 4.6. The edge ideal of an anti–d−path is Cohen–Macaulay of di-
mension d +1.

Proof. By the minimal primary decomposition, it results that the edge ideal of
an anti–d−path is of height n− d− 1. Using [3, Theorem 3.3], it follows the
assertion.
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In the following, we characterize the edge ideals of anti–d−paths which are
normally torsion–free.

Theorem 4.7. Let Ḡ be an anti–d−path and I = I(Ḡ) be its edge ideal. Then
for all k > 1

AssS(S/Ik) =

{
AssS(S/I) , if d +2 > n−d−1
AssS(S/I)∪{(x1, . . . ,xn)} , if d +2≤ n−d−1.

In particular, if d +2 > n−d−1 then I is normally torsion–free. Otherwise, if
d +2≤ n−d−1, then I2 is a normally torsion–free ideal.

Proof. Let k > 1 be an integer and assume that d + 2 > n− d − 1. In this
case, we prove that the graph Ḡ is bipartite, which is equivalent, by [10], with
AssS(S/Ik) = AssS(S/I).

Let V1 = {1, . . . ,n−d−1} and V2 = {n−d, . . . ,n}, V1∩V2 = /0. Let {i, j}
be an edge of Ḡ, that is j− i > d. Since i ≥ 1, we get that j > d + i ≥ d + 1.
This implies that j ≥ d +2≥ n−d, that is j ∈V2. Moreover, i < j−d ≤ n−d
implies that i ∈V1. Therefore any edge of Ḡ has a vertex in V1 and the other in
V2. Hence Ḡ is bipartite. In particular, it follows that I is normally torsion–free.

Next, we assume that d +2≤ n−d−1 and we prove that

AssS(S/Ik) = AssS(S/I)∪{(x1, . . . ,xn)}.

For the inclusion ”⊇”, one has AssS(S/Ik) ⊇ AssS(S/I), by [8]. It remains
to prove that m= (x1, . . . ,xn)∈AssS(S/Ik), that is there is a monomial m∈ S/Ik

such that m= Ik : m. We analyze two cases:
Case 1. If k ≤ d + 2, then, using the assumption d + 2 ≤ n− d − 1, we

obtain d + k < n. We consider the monomial m = xk−1
1 xd+2 · · ·xd+kxn. We

have that deg(m) = 2k− 1 hence m /∈ G(Ik). For all 1 ≤ i ≤ n, we get xim ∈
Ik. Indeed, if i ≤ d + 1, then xim = xk−1

1 xixd+2 · · ·xd+kxn ∈ G(Ik) since n−
i ≥ n− d − 1 ≥ d + 2 > d. If i = d + s, for some 2 ≤ s ≤ k, then xim =
xk−1

1 xd+2 · · ·xi · · ·xd+kxn ∈ G(Ik) since i−1 = d + s−1 > d. Finally, if d + k <
i ≤ n, then xim = xk−1

1 xd+2 · · ·xd+kxixn ∈ G(Ik) since i−1 > d + k−1 > d and
n− (d +2)≥ d +1 > d.

Case 2. For d + 2 < k, we take m = x1 · · ·xd+2 · · ·xkxk+1 · · ·x2k−1. We ob-
serve that m /∈ G(Ik) since deg(m) = 2k− 1. Then for all 1 ≤ i ≤ n we obtain
xim ∈ Ik. Indeed, the assertion is clear for i≤ 2k−1. For i > 2k−1, the mono-
mial xim = x1 · · ·xd+2 · · ·xkxk+1 · · ·x2k−1xi ∈ G(Ik) since i− k > k−1 > d.

Therefore m= (x1, . . . ,xn) ∈ AssS(S/Ik) and we get the desired inclusion.
Conversely, we have to prove that AssS(S/Ik)⊆ AssS(S/I)∪{(x1, . . . ,xn)}.

Let p ∈ AssS(S/Ik), that is p = Ik : m, for some monomial m /∈ Ik. We assume
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that p ( m = (x1, . . . ,xn), thus there exists xi /∈ p and i is minimal with this
property.

We note that we must have i ≤ n− d. Indeed, assume that i > n− d,
hence p ⊇ (x1, . . . ,xn−d). Then xn−dm ∈ Ik, that is xn−dm = m1 · · ·mkw, with
m1, . . . ,mk ∈ G(I) and w ∈ S. Moreover, we have that xn−d | mt , for some
1 ≤ t ≤ k. Since every minimal monomial generator u ∈ G(I) has the prop-
erty that min(u)< n−d, it results that mt = x jxn−d , for some integer j such that
n−d− j > d. Then xim = m1 · · ·mt−1mt+1 · · ·mk(x jxi)w ∈ Ik, since x jxi ∈ G(I)
having i > n−d > j+d. This implies that xi ∈ Ik : m = p, a contradiction, thus
i≤ n−d.

Next, we prove that p= P[n]\{i,i+1,...,i+d}, hence p ∈ AssS(S/I).
Let x j ∈ P[n]\{i,i+1,...,i+d}. By the minimality of xi we obtain x j ∈ p, if j < i.

Otherwise, if j > i+d, we get xix j ∈G(I) and (xix j)
k ∈ Ik. Since p= Ik : m⊇ Ik,

it results that (xix j)
k ∈ p. Therefore x j ∈ p, because xi /∈ p. We proved that

p⊇ P[n]\{i,i+1,...,i+d}.
It remains to prove that we cannot have p ) P[n]\{i,i+1,...,i+d}. In order to

prove this, we need some more considerations.
One may note that xi−1 ∈ p, by the minimality of i. Then xi−1m= u1 · · ·ukw′,

with u1, . . . ,uk ∈ G(I). Since m /∈ Ik, we may assume, possibly after a renum-
bering, that xi−1 | uk. Then uk = xi−1xl , for some l such that l− (i−1) > d, or
uk = xlxi−1, with i− 1− l > d. Assume that we are in the second case, that is
uk = xlxi−1, with i−1− l > d, Then in particular i− l > d and we obtain xim =
u1 · · ·uk−1(xlxi)w′ ∈ Ik, a contradiction with xi /∈ p. Hence uk = xi−1xl , with
l− (i−1)> d. Moreover, if l− i > d, arguing as before, we obtain again a con-
tradiction. Therefore we must have uk = xi−1xi+d . Since m = u1 · · ·uk−1xi+dw′

and m /∈ Ik, we get supp(w′)⊆{i, i+1, . . . , i+d}. Indeed, if there exists an inte-
ger s∈ supp(w′) such that s < i, then xsxi+d ∈G(I), thus m∈ Ik, and if s > i+d,
then m = u1 · · ·uk−1(xixs)w′/xs ∈ Ik. In both cases, we get a contradiction, thus
supp(w′)⊆ {i, i+1, . . . , i+d}.

Let 1 ≤ s ≤ k− 1 and us = xasxbs , with bs− as > d such that us | m. We
remark that if as ≤ i−1 and bs > i+d, then

xim = u1 · · ·us−1us+1 · · ·uk−1(xixbs)(xasxi+d)w′ ∈ Ik,

a contradiction. Hence as ≥ i or bs ≤ i+d. This allow us to write

m = (xa1xb1) · · ·(xasxbs)(xas+1xbs+1) · · ·(xak−1xbk−1)xi+dw′,

where a1, . . . ,as < i and as+1, . . . ,ak−1 ≥ i. Moreover, it results that b1, . . . ,bs ≤
i+ d. Using the fact that b j > a j + d ≥ i+ d, for all s+ 1 ≤ j ≤ k− 1, we get
bs+1, . . . ,bk−1 > i+d.
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Firstly, in order to prove that {b1, . . . ,bs} ⊆ {i, . . . , i+ d}, assume by con-
tradiction that br < i for some 1≤ r ≤ s. This yields to xim ∈ Ik, since

xim =

(
∏

1≤ j 6=r≤s
(xa j xb j)

)
(xar xi)(xbr xi+d)

(
∏

s+1≤ j≤k−1
(xa j xb j)

)
w′,

where xar xi,xbr xi+d ∈ G(I), a contradiction. Hence b1, . . . ,bs ≥ i, thus

{b1, . . . ,bs} ⊆ {i, . . . , i+d}.

Secondly, we claim that {as+1, . . . ,ak−1} ⊆ {i, . . . , i+ d}. Assume by con-
tradiction ar > i+d for some s+1≤ r ≤ k−1. Then

xim =

(
∏

1≤ j≤s
(xa j xb j)

)
(xixar)(xi+dxbr)

(
∏

s+1≤ j 6=r≤k−1
(xa j xb j)

)
w′ ∈ Ik,

since xixar ,xi+dxbr ∈ G(I), again a contradiction. Thus

{as+1, . . . ,ak−1} ⊆ {i, . . . , i+d}.

We conclude that p= Ik : m, with

m = (xa1xb1) · · ·(xasxbs)(xas+1xbs+1) · · ·(xak−1xbk−1)xi+dw′,

supp(w′)⊆ {i, . . . , i+d}, a1, . . . ,as < i, bs+1, . . . ,bk−1 > i+d, and

{b1, . . . ,bs,as+1, . . . ,ak−1} ⊆ {i, . . . , i+d}.

We claim that for all j ∈ {i, . . . , i+ d}, we get x jm /∈ Ik. This statement
implies that p= P[n]\{i,i+1,...,i+d}.

Assume that x jm ∈ Ik, for some j ∈ {i, . . . , i+d}. Then

x jm = (xa1xb1) · · ·(xasxbs)(xas+1xbs+1) · · ·(xak−1xbk−1)xi+dx jw′ ∈ Ik,

where a1, . . . ,as < i, { j,b1, . . . ,bs,as+1, . . . ,ak−1} ∪ supp(w′) ⊆ {i, . . . , i + d}
and bs+1, . . . ,bk−1 > i+ d. Then we can obtain at most s minimal monomial
generators of I, divisible by one of a1, . . . ,as, and at most k− s− 1 monomi-
als belonging to G(I), which are divisible by bs+1, . . . ,bk−1. Thus x jm can be
written as a product of at most k−1 minimal monomial generators of I, contra-
diction.

Hence x jm /∈ Ik, for all j ∈ {i, . . . , i+d}, and we get p= P[n]\{i,i+1,...,i+d}, as
desired.
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