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THE CONE OF HILBERT FUNCTIONS IN THE
NON-STANDARD GRADED CASE

DANIEL BRINKMANN - MARIANNE MERZ

We describe the cone of Hilbert functions of artinian graded modules
finitely generated in degree 0 over the polynomial ring R = k[x,y] with the
non-standard grading deg(x) = 1 and deg(y) = n, where n is any natural
number.

1. Introduction

In 2006 Mats Boij and Jonas Söderberg conjectured a beautiful structure the-
orem on the cone of Betti tables of graded modules over the polynomial ring
R = k[x1, . . . ,xn] with standard grading deg(xi) = 1. They described the cone
in terms of the extremal rays and gave an algorithm to decompose any finitely
generated Cohen-Macaulay module in a positive rational combination of some
tables generating the extremal rays, calling these tables pure. The existence of
pure Betti tables were proved in char(k)= 0 by Eisenbud, Fløystad and Schreyer
in 2007. The full conjecture was subsequently proven in arbitrary characteris-
tic by Eisenbud and Schreyer by providing a connection between Betti tables
of modules over R and cohomology tables of special vector bundles over Pn−1,
calling these vector bundles supernatural. There is a recent comprehensive sur-
vey by Gunnar Fløystad [5].
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A natural question is what happens in the non-standard graded case. A research
group at a summer-school in Snowbird, UT in 2010 [1] investigated the case
R = k[x,y] with deg(x) = 1 and deg(y) = 2 and they realized that even in this
very special case of non-standard grading it was not possible to describe the
extremal rays by similar easy to define ”pure” tables.
Thus, the next step is to look at a coarser invariant of graded modules: the
Hilbert function. In the standard graded case, Mats Boij and Greg Smith de-
scribed the cone of Hilbert functions of modules of dimension d finitely gener-
ated in degree 0, which coincides with the Hilbert polynomial in degrees larger
than a fixed a by the extremal rays as well as by the supporting hyperplanes, see
[2] and [7].
In the present article, we look at a similar cone for a simple non-standard graded
case. Indeed, we consider artinian graded modules generated in degree 0 over
R = k[x,y], where deg(x) = 1 and deg(y) = n for some n ∈ N. We can specify
the extremal rays by a recursive structure (see theorem (2.7)), which provides us
an algorithm to decompose any h-vector of the mentioned modules in a positive
rational combination of generators of the extremal rays.

2. Describing the Cone

Let R = k[x,y] be the graded ring with deg(x) = 1 and deg(y) = n, n≥ 1, where
k is a field of characteristic zero. For an N-graded R-module M =

⊕
i≥0 Mi

the Hilbert function hM : N→ N is defined by hM(i) := dimk Mi. As we are
only looking at artinian modules, the Hilbert function has only finitely many
nontrivial values and it therefore coincides with the h-vector of M. For more
details about Hilbert functions and h-vectors see [3].
If we allow generators of our module to be in arbitrary degrees, there is no
restriction on the possible h-vectors, in fact they would cover the whole positive
orthant, so we concentrate on modules generated in degree 0.
The set of h-vectors, more generally Hilbert functions, naturally forms a semi-
group: hM⊕N(i) = hM(i)+ hN(i). Therefore it makes sense to look at the cone
of h-vectors, denoted by

H := cone{h-vector of artinian R−modules gen. indeg 0} ⊆
⊕
j∈N

Q.

We want to make our h-vectors live in a finite dimensional vectorspace. There-
fore we usually work with limited degrees: H(d) :=H∩Qd+1. We freely iden-
tify (h0, . . . ,he,0, . . .) with (h0, . . . ,he).
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Because of the additivity of the Hilbert function, we can write any h-vector
h ∈H of a module as a sum of h-vectors of R-algebras, which can be identified
with quotients R/I with I an homogeneous ideal. In the sequel we need the
notion of lex-segment ideals, which uses the lexicographic order.

Definition 1. The lexicographic order of monomials xa1yb1 , xa2yb2 ∈ k[x,y] (with
arbitrary N-grading) is defined as

xa1yb1 <lex xa2yb2 :⇔ a1 > a2 or a1 = a2 and b1 > b2.

Definition 2. Let I be a monomial ideal in R = k[x,y] with deg(x) = 1 and
deg(y) = n, Id the group of homogeneous elements of degree d in I.
We call I a lex-segment ideal iff for every monomial xayb ∈ Id the monomials
xa+nyb−1, . . . ,xd−ny, xd belong to Id .

The following theorem due to G. Dalzotto and E. Sbarra states that H is gener-
ated by the h-vectors of the R-algebras R/I, where I is a lex-segment ideal.

Theorem 2.1 ([4], Theorem 4.16). Let R = k[x,y], I be a homogeneous ideal
in R with deg(x) = 1 and deg(y) = n, n ∈ N. There exists a unique lex-segment
ideal L such that hR/I(t) = hR/L(t) for any t ∈ N.

The lex-segment ideals are monomial ideals and there is a very nice and conve-
nient way of illustrating them as staircases in the bivariate case, a more general
description can be found in [6].

Example 2.2. Let deg(y) = 2 and I = 〈x6,x2y,xy2,y3〉. Then the lattice points
in the non-shaded area form a k-basis of R/I.

x

y

Drawing for every generator a box marked with the corresponding degree, we
get a more simple diagram:

0 1 2 3 4 5
2 3
4
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The h-vector of this module is h = (1,1,2,2,2,1), but there exist other mono-
mial ideals with the same h-vector for the quotient:

〈x4,xy2,y3〉

0 1 2 3
2 3 4 5
4

〈x4,x3y,x2y2,y3〉

0 1 2 3
2 3 4
4 5

The encircled staircase corresponds to the lex-segment ideal with respect to h;
just stack the boxes as far left as possible. In the sequel we will identify fre-
quently an h-vector with the corresponding staircase diagram of the lex-segment
ideal.

Given the h-vector h as a sum of h-vectors hi of R-algebras we attach to this
decomposition a three-dimensional diagram with boxes nested in a corner as
follows:

1. Tilt the corresponding staircases forward so they are lying flat on the floor.

2. Blow them up to cubes of height one.

3. Stack the resulting box diagrams with respect to their degrees.

4. Some of these boxes may overlap, then drop these boxes down to the next
lower box of the same degree.

We call this stack an h-diagram corresponding to the h-vector h. Note that these
diagrams depend on the decomposition of h, only the total number of boxes in
each degree is fixed by h.
We demonstrate the construction in an example:

Example 2.3. Let n = 3 and h = (3,2,1,4,1,0,2,1) =
= (1,1,1,2,0,0,0,0) + (1,1,0,1,1,0,1,1) + (1,0,0,1,0,0,1,0)
The corresponding staircases look like this:

0 1 2 3
3

0 1
3 4
6 7

0
3
6
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Turning the staircases down and blowing them up gives:

0 1 2 3
3

0 1
3 4

6 7

0
3

6

Stacking these box diagrams with respect to their degrees we get one big stack:

2 3
1

4
7

0
3

6

Now some of these boxes are not grounded so we let them drop:

7
4

2 3 level 16

1 level 2

0
3

level 3

first row

first
co

lum
n

Figure 1: An example of an h-diagram

We denote the maximal layers of the h-diagram where no internal stairs occur
by levels and count them from the bottom. Later on these levels don’t have to
be of integer height. We are also talking about rows in the h-diagram meaning
the stack of boxes in the rows parallel to the rear wall and columns analogous
to the side wall as described in the picture.
The staircases are by construction decreasing, hence the boxes in the h-diagram
are also decreasing in every row and in every column. Of course, for any such
decreasing box diagram we can find a module with corresponding h-vector by
identifying every level with the staircase of an ideal times the height and sum-
ming up. Considering the cone of h-vectors is equivalent to allowing levels in
every rational height. Therefore we get the following proposition:
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Proposition 2.4. Let deg(y) = n, n ∈ N. An element h = (h0, . . . ,hd) ∈ Qd+1
≥0

belongs to the cone H(d) if and only if there exists a decomposition of the com-
ponents hi = ∑

si
j=1 h j

i with h j
i ≥ 0 for all i = 0, . . . ,d, si := b i

nc+1 and:

(1) h j
i ≥ h j

i+1 for all j = 1, . . . ,sd and i = n( j−1), . . . ,d

(2) h j
i ≥ h j+1

i+n for all i = 0, . . . ,d, j = 1, . . . ,sni .

We call any such decomposition an h-diagram.

Proof. To show that every element of the cone admits such a decomposition it
is enough to show it for the generators since both conditions are additive.
Let h = (1,h1, . . . ,hd) be a generator of the cone, e.g. the h-vector of some R/I.
By theorem (2.1) we may assume that I is monomial, hence we can look at the
corresponding staircase. Every box in this staircase marked with i stands for a
generator of R/I of degree i. Setting h j

i = 1 for having a box marked with i in the
j-th row and h j

i = 0 if not we get the desired decomposition. As the staircases
in the visualization of monomial ideals are always nested in one corner, saying
there are no holes and the boxes are decreasing from left to right, the conditions
(1) and (2) are fulfilled.
For the other direction we build an h-diagram out of the decomposition of a
vector h ∈ Qd+1

≥0 setting h j
i boxes in the j-th row and the (i− ( j− 1)n+ 1)-th

column of a three-dimensional diagram. Condition (1) ensures that the rows in
this diagram are decreasing and condition (2) that the columns are decreasing as
well. Cutting this diagram into levels as described before we get in every level
` a staircase corresponding to an ideal I` blown up to the levelheight q`.
Let q be a common multiple of the denominators of all q` then

M =
⊕

levels

qq` R/I`

is an R-module with h-vector q ·h of degree d and therefore h ∈H(d).

Next we want to list the extremal points that are the first integer points on the
extremal rays. We denote by Ex(d) the extremal points of the cone H(d) for a
fixed integer d.
There are some distinguished h-vectors we want to give a special notation. We
denote by sd = (1, ...,1︸ ︷︷ ︸

n

,2, . . . ,2,3, . . .bd
nc+ 1) the h-vector of length d + 1 of

an R-algebra generated in degree 0 with maximal entries and let sm be the m-th
coefficient of sd for nontrivial entries ignoring the upper d.



THE CONE OF HILBERT FUNCTIONS IN THE NON-STANDARD GRADED CASE 189

For d ∈ N write d = n ·m+ r where r ∈ {0, . . . ,n− 1}. We denote by td the
h-vector of the shape

(1, . . . ,1︸ ︷︷ ︸
r+1

,0, . . . ,0︸ ︷︷ ︸
n−r−1

,1, . . . ,1,0, . . . ,0, . . . ,1, . . . ,1︸ ︷︷ ︸
r+1

)

The parts 1, . . . ,1,0, . . . ,0 occur m times, therefore td has length d +1.
Note that this is the h-vector of the staircase given by a rectangle of size
(r+1)× (m+1), we call td the tower of degree d. In example (3.3) we will see
that the towers for d ≡ n−1 modulo n are decomposable.
To write down the extremal points we need a kind of glueing operation:

Definition 3. Let d = n ·m+ r with r ∈ {0, . . . ,n−1} and h ∈H(n ·m− r−3).
Then we define

td ∗h := td +(0, . . . ,0︸ ︷︷ ︸
r+1

,h0, . . . ,hn·m−r−3,0, . . . ,0︸ ︷︷ ︸
r+2

),

Remark 2.5. The definition of the ∗-operation is not as arbitrary as it may look.
Stated in terms of staircases, this is just the procedure of taking td and glueing
h on the right hand side. This is obviously still an h-vector of length d +1.

Example 2.6. Let n = 3,d = 7 = 3 ·2+1 and h = (1,1).
We get td = (1,1,0,1,1,0,1,1) and td ∗h = (1,1,1,2,1,0,1,1).
In the language of staircases:

∗ =

Now we can state our main result which will be proven in section 3:

Theorem 2.7. Let deg(y) = n ∈ N and d = n ·m+ r with m≥ 0 and
r ∈ {0, . . . ,n−1}. Then the extremal points of H(d) are given by:

(0) For d ≤ n−1 : Ex(d) = {h = (1, . . . ,1) of length ≤ d +1}.

(1) For r ∈ {0, . . . ,n−2} : Ex(d) = Ex(d−1)∪ sd ∪ td ∪ td ∗Ex(d−2r−3).

(2) For r = n−1 : Ex(d) = Ex(d−1)∪ sd .

There is a natural partial ordering in Qd+1:

h≤ g :⇔ hi ≤ gi for all i = 0, . . . ,d.

The chains in this partial ordering offer totally ordered subsets in Qd+1.
In fact, this partial ordering harmonizes perfectly with the visualization of the
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h-vectors of R-algebras by staircases of lex-segment ideals by embedding the
box-diagrams in each other. Moreover, from any h-diagram we get a stack
of staircases embedded consecutively and that involves a chain of h-vectors of
R-algebras.
The decomposition algorithm that we use to prove theorem (2.7) leads to an
h-diagram with staircases of extremal points in each level and as already men-
tioned this implies a totally ordered chain in the usual partial ordering in H(d).

Corollary 2.8. Every element h ∈ H(d) can be written as h = ∑i∈I qi·vi, with
vi ∈ Ex(d), where the (vi)i∈I form a totally ordered chain.

This decomposition does not have to be unique even with a total order:

Example 2.9. Let n = 2,
h = (2,1,2,0,1) = (1,1,1,0,1)+(1,0,1,0,0) = t4 ∗ s0 + t2 =

= (1,1,2,0,1)+(1,0,0,0,0) = t4 ∗ s1+s0.
Both decompositions are totally ordered.

Example 2.10. Let deg(y) = 2. We look for the extremal points up to degree 6:

degree 0
degree 1

degree 2
degree 3 ...

degree 6

The encircled parts show the recursive structure of the extremal points by using
the ∗-operator. The arrows in the picture are reflecting the partial ordering.
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3. Proof of Theorem 2.7

To prove the theorem we use an algorithm that decomposes any h-vector of an
artinian graded module over R finitely generated in degree 0.
To get the right intuition we illustrate an example.

Example 3.1. Let deg(y) = 3 and h = (3,3,2,4,2,1,2,1) =
= (1,1,1,2,1,1,1,0) + (1,1,0,1,1,0,1,1) + (1,1,1,1,0,0,0,0)
The corresponding staircases look like this:

0 1 2 3
3 4 5
6

0 1
3 4
6 7

0 1 2
3

In this case we get as an h-diagram:

0
3

6
7

4
5

1
2

3

We can rearrange the boxes in a way so that all the degrees only sit over the
allowed spots dedicated by staircases. In every level the area is filled out as
large as possible and take the maximal height in this level, but the rows and
columns should still decrease. In this process the boxes can be cut horizontally
in every rational proportion, so the levels can have any positive rational height.
In our example we get the following stack:

0 1
2 3

4
5 6 7

3
4

5 6 76
7

1
3

1
6

1
2

1
1

Running the algorithm coming up next we get the following decomposition:

h =
1
3
· s7 +

1
6
· s6 +

1
2
(t6 ∗ s3) + s3 + s1

The largest area that can be filled out up to a fixed degree is given by the staircase
of the maximal h-vector of the same degree. If that does not fit, the maximal
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h-vector of lower degree must be combined with a tower on the left and so on.
So we get layers of staircases of extremal points in a total order. That is what
the algorithm does. An explicit description of the algorithm as a flowchart can
be found in the appendix.
We now follow the algorithm and prove the accuracy of theorem (2.7) in several
steps.
Starting with any element h = (h0, . . . ,hd) ∈Qd+1

≥0 we want to decide whether it
is in the cone H(d) and if so we want to give a positive rational decomposition
in extremal points.
First we subtract a rational multiple of the maximal h-vectors sd as large as
possible, so the rest stays non-negative. We continue by lowering the degree in
every loop until we end up in h = (0) or we get a trivial entry in a coordinate
with index smaller than the degree, but hd > 0. Let’s call this a reduced h-vector.

Lemma 3.2. If g ∈ H(d) then h = g−q · sd with q≤ min
i∈{0,··· ,d}

{gi
si
} is still in H.

Proof. We have a decomposition gi = ∑
si
j=1 g j

i with properties (1) and (2) of

proposition (2.4) and as q ≤ min{gi
si
} we may assume that g j

i ≥ q for all i, j.
We can achieve this for example by replacing with ḡsd

d = gd − q(sd − 1) and
ḡ j

d = q for all j < sd in the highest degree. To fill the gaps g j
i < q in the lower

degrees we take the material from the other spots of same degree starting with
the smallest row but never underrunning q and always ensuring that the rows
and columns are still decreasing looking upwards from degree i.
Having such a decomposition we set h j

i = g j
i −q for h = (g0−q, . . . ,gd−qsd) .

Then the computation

si

∑
j=1

h j
i =

si

∑
j=1

g j
i −q · si = gi−q · si

shows that both conditions in proposition (2.4) are fulfilled, hence h ∈H.

Example 3.3. Let h = tn·m−1 be the tower of degree n ·m− 1. The staircase
corresponding to this h-vector is a rectangle of size n× (m+ 1). The previous
lemma gives the decomposition in extremal points ∑

m
`=1 q` · sn`−1 with

qm =
1
m

and q` =
1
`
−

m

∑
k=`+1

1
qk
.

Lemma 3.4. There is no reduced h-vector of degree d = n·m−1.

Proof. Let h be reduced, thus there exists k < d with hk = 0 but hd > 0.
Let k = n·mk + rk be maximal among those indices fufilling the previous condi-
tions. From the decreasing of the columns in the h-diagram follows hn`+rk = 0
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for all ` ≥ mk and from the decreasing of the rows follows the contradiction
0 = hn(m−1)+rk

≥ hnm−1 > 0. Therefore no such k can exist.

The central part of the proof of theorem (2.7) is given by the following lemma.

Lemma 3.5. Every element of the cone H(d) decomposes into a positive ratio-
nal linear combination of extremal points.

Proof. The proof goes by induction over the degree d. Set r = d−bd
ncn.

It is clear up to d = n−1, since there is only one row in the h-diagram and the
extremal points are just of the form s` = (1, . . . ,1), with `≤ d. So we can use
lemma (3.2) to decompose.
Let h ∈ H(d) with hd > 0. By lemma (3.2) and lemma (3.4) we can assume
that h is reduced and d 6= (n− 1)mod n. For a given h ∈ H(d) there are many
decompositions fulfilling proposition (2.4). We choose one that is maximal in
the truncated sum ∑i, j h̄ j

i with h̄ j
i = q for h j

i ≥ q and h̄ j
i = h j

i else. We also can
achieve this by shifting the boxes as far to the right as possible.
As h is reduced there exists a k < d with hk = 0. From descending row and
column condition we get hk+1 = 0 for all k 6= (n−1)mod n and hk+n = 0 for all
k+n < d. Therefore hb d

n cn−1 = 0 and hsd
d = hd .

Coming back to the h-diagram we cut off anything to the right of column
r + 1, saying next to the tower td and call the diagram on the right side h′.
A visualisation of this process and the next steps is given in example (3.6). The
boxes of the new diagram are still nested in the corner with decreasing rows
and columns therefore we get again an h-diagram, that has by construction at
most bd

nc rows and d − 2r− 2 columns. Hence the maximal degree of h′ is
d′ = d−2r−3 and we can use induction to decompose h′, but we only do this
up to height hd . Glueing this back to the first r+ 1 columns again we have an
h-diagram. The layers of h′ up to height hd are corresponding to staircases of
extremal points in Ex(d′), which are glued by the ∗-operator to the towers td

with the corresponding height, or maybe there is nothing left to glue we just
take the tower itself.
Next we cut off anything above height hd and get the upper h-diagram h′′ with
degree strictly less than d and therefore we can use induction again. The lowest
level of h′′ is with respect to the partial ordering smaller than the lower adjacent
level to height hd in the last completed h-diagram, because we shifted as many
boxes as possible under height hd and decomposed h′ only up to height hd .
Therefore we get a decomposition in a total order as stated in corollary (2.8).
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Example 3.6. Let n = 4 and h = (3,3,2,2,3,3,2,0,1,1), a possible h-diagram
could look like this:

−→

shifting the boxes

−→

cutting off h′ and decompose it
up to height hd

h′

glueing and cutting off h′′

h′′

←−

←−

decompose h′′ and glue

The algorithm leads to h = t9 ∗ s4+ 1
2 s5+ 1

2 s3+ s1, however without shifting the
boxes we get h = t9 ∗ t4 ∗ s0 + 1

2 s6 + 1
2 s5 + s1.

The example shows that shifting the boxes is not really necessary to get a de-
composition in extremal points and again that this decomposition is not unique.
But that it may be important to get a totally ordered chain of extremal points.

Now we know that Ex(d) is a generating system of H(d). It remains to show
that the points are extremal:

Lemma 3.7. Let v ∈ Ex(d). Then v is not in the convex hull of the remaining
points in Ex(d).

Proof. Let n ∈ N and d ≥ 1 be fixed, v = ∑i≥0 qivi with vi ∈ Ex(d) and qi ≥ 0.
Since vi

0 = 1 for all vi ∈ Ex(d) we get ∑qi = 1.

(i) If v = s` with `≤ d each vi belongs to Ex(`).
In the cases `≤ n−1 or `= n·k−1 for any k, the only extremal point in
Ex(`) with nontrivial (`+1)-th component is s`.
Otherwise s` = b `nc+ 1 > 1 and the only extremal points of length
`+ 1 with nontrivial (`+ 1)-th component except s` are t` and t` ∗w for
w ∈ Ex(`− 3− 2r) with ` = nm+ r, r ∈ {0, . . . ,n− 1} and their entry is
always 1. Assuming vi 6= s` we get the contradiction (∑qivi)` ≤ 1.

(ii) Let v = t` ∗w with `= nm+ r,r 6= n−1 and w ∈ Ex(`−2r−3)∪{(0)}.
We know vnm−1 = 0 and v0 = vnm = ...= vnm+r+1 = 1, therefore all vi in
the decomposition are of the form t` ∗wi with wi ∈ Ex(`−2r−3)∪{(0)}.
As the ∗-operator is a shifted addition we get

v = t` ∗w = ∑qi(t` ∗wi) = (∑qi)t` ∗∑qiwi = t` ∗∑qiwi.

This gives w = ∑qiwi and by induction over d we are done.
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Appendix

Flowchart of the ALGORITHM:

n ∈ N, d=d0 ≥ 1, h=h=(h0, . . . ,hd) ∈Qd+1
≥0 , h j =0 and s j =1 for j < 0, p0 = ∞, i = 0

m = bd
nc, r = d−m ·n

q = min
j∈{0,··· ,d}

{ h j
s j
},d<0: q=0

pi−q>0 qsd = pi, pi = 0

h=gi− ∑
v≤sdi−2ri−3

qv(0,..,0︸ ︷︷ ︸
ri+1

,v),

qtdi∗v=qv and
qv=0 for v≤sdi−2ri−3,
qtdi = pi,
d = di−1, i = i−1

pi = pi− q
h = h−q · sd

qsd = q

hd = 0r=n−1

i = 0h j =

{
h j−hd if j=r modn
h j else,

d = d−1

∃: h j <0 h /∈H

hd ≤ pihd = pi

i = i+1, pi = hd
gi = h−hd · td

∃: gi
j <0i = 1

h /∈H

i = i−1

h j=gi
j+r+1−gi

mn+k, if j+r+1mod n=k∈{0,..,r−1},
h j = gi

j+r+1, if j+r+1mod n /∈ {0,..,r−1}
and h j = 0 if j < 0 or j > d−2r−3,
di = d, ri = r,
pi−1 = pi−1− pi, d = d−2r−3

d = d−1

d < 1

qs0 = h0

i = 0 h0 ≤ pi qs0 = pi, pi = 0

pi = pi−h0

(qv),v ∈ Ex(d0) with h = ∑qv · v

yes

no

no

yes

no

no

yes

no

yes

yes

no

yes

no

yes

no

yes

no

yes

no no

yes

yes

The v′s here are always elements of Ex(d), d being large enough.
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Söderberg theory for non-standard graded rings, http://math.berkeley.edu/
~claudiu/mrc/nonStdBetti.pdf, 2010.

[2] M. Boij, Lecture Notes to the workshop PRAGMATIC, Catania, 2011.
[3] W. Bruns - J. Herzog, Cohen-Macauly rings, Cambridge University Press, Cam-

bridge, UK, 1998.
[4] G. Dalzotto - E. Sbarra, On non-standard graded algebras, Toyama Math. J. 31

(2008), 33–57.
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