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THE H-VECTOR OF THE UNION OF TWO SETS OF POINTS
IN THE PROJECTIVE PLANE

ORNELLA GRECO - MATEY MATEEV - CHRISTOF SÖGER

Given two h-vectors, h and h′, we study which are the possible h-
vectors for the union of two disjoint sets of points in P2, respectively
associated to h and h′ and how they can be constructed. We will give
some bounds for the resulting h-vector and we will show how to construct
the minimal h-vector of the union among all possible ones.

1. Introduction

Let k be an algebraically closed field, P2 = P2(k) be the projective plane over
k and S = k[x0,x1,x2] its homogeneous coordinate ring. Let Hilbn(P2) be the
Hilbert scheme of zero-dimensional subschemes of degree n in P2. It is well
known that it is a smooth connected projective variety of dimension 2n. As the
map I −→ V (I) provides a one to one correspondence between homogeneous
radical ideals of height 2 in S and reduced zero-dimensional schemes of P2, we
will refer to a set of points in P2 also as a reduced zero-dimensional scheme
X ⊆ P2.
If X ∈ Hilbn(P2) then we will denote by HX(i) = dimk((S/IX)i) its Hilbert
function and by h = (h0, . . . ,ht) its h-vector where h0 = 1 and hi =4HX(i) =
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HX(i)−HX(i− 1) ∀ i > 0. If X is reduced we clearly have h0 + · · ·+ ht =
deg(X) = number of points in X . Hilbert functions provide a natural stratifi-
cation of the Hilbert scheme. For any Hilbert function H of a degree n zero-
dimensional scheme, let us define a smooth connected subscheme of Hilbn(P2)
by

G(H) = {X ∈ Hilbn(P2)| HX = H}.

Gotzmann proved that this stratum is smooth, connected and locally closed (see
[8]).

In this paper we will concentrate on the h-vectors of reduced zero-dimensio-
nal schemes. The classification of all possible h-vectors of a reduced zero-
dimensional subscheme of P2 is well known (see for example [6]). Despite this
fact it is not clear what might be the h-vector of the union of two sets of points
with given h-vectors h and h′. In particular an interesting question is whether
there are some bounds on the h-vector of the union.

In Section 2 we start with some background results concerning the h-vector
of the union of two sets of points when one of the sets consists of only one point.
We also look at the case when the two sets of points are geometrically linked.
Moreover we introduce a partial ordering on the set of the Hilbert functions.

In Section 3 we give some bounds for the h-vector of the union. We also
introduce some exclusion criteria which help us to understand which are the
possible h-vectors for the union of two given sets of points with fixed h-vectors.

In Section 4, we present an algorithm for obtaining the possible h-vectors
for ”the union” of two given h-vectors.

Finally, in Section 5, we prove our main result Proposition: 5.1 . For any
two given h-vectors one can construct the unique minimal (with respect to the
introduced partial order) h-vector among all admissible h-vectors for the union.
This h-vector achieves the bounds given in Section 3.

2. Preliminaries

In order to answer the question of what may be the h-vector of the union of two
disjoint sets of points in the projective plane it is natural to see what happens
to the h-vector of the union if one of the sets is just a single point or if the sets
are ”related” (more precisely linked). We will start in this direction introducing
first some definitions.

Remark 2.1. To a given h-vector, (h0,h1, . . . ,ht), we can assign a diagram by
drawing columns of hi boxes for all i. For example if h = (1,2,3,3,1), we will
draw the following picture.
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Definition 2.2. (A) Let A be a homogeneous Artinian graded k-algebra. We
define :

τ(A) = max{i| HA(i) 6= 0}.

(B) Let X ⊆ P2 be a zero-dimensional scheme with defining saturated ideal IX .
Then there is a linear form L which is a non-zerodivisor with respect to
S/IX such that HS/(IX+(L)) =4HX . We define as in (A):

τ(X) := τ(S/(IX +(L))) = max{i| 4HX(i) 6= 0}.

Definition 2.3. Let X ,Y ⊆ Pn be two projective subschemes such that no com-
ponent of X is contained in any component of Y and conversely. Then, X is
geometrically directly linked to Y by an arithmetically Gorenstein (aG) scheme,
Z, if Z = X ∪Y . This means, in terms of defining ideals, that IZ = IX ∩ IY . We
also say that X is geometrically G-linked to Y . If Z is a complete intersection
(CI) we say X is geometrically CI-linked to Y .

Note that if X and Y are linked by Z, then deg(Z) = deg(X)+deg(Y ).
As already mentioned in this section the first question we approach is how

does the Hilbert Function of a set of points X ⊆ P2 change if we add another
point which is not in X . It is well known that in this case HX will increase by one
from a certain degree on. We give a short proof of this fact just for convenience.
For more details on this and on a related questions see [6].

Lemma 2.4. Let X ⊆ P2 be a reduced zero-dimensional scheme and let P ∈
P2−X. Then there exists an integer d such that:

HX∪{P}(i) =
{

HX(i), i < d
HX(i)+1, i≥ d.

Proof. From the short exact sequence

0−→ S/IX ∩ IP −→ S/IX ⊕S/IP −→ S/(IX + IP)−→ 0,

follows that

HX∪{P}(i) = HX(i)+1−HS/(IX+IP)(i).
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On the other side S/IP ∼= k[t] and

S/(IX + IP)∼=
S/IP

IX(S/IP)
∼= k[t]/IX k[t].

As k[t] is a principal ideal domain (PID), the ideal IX k[t] is generated by some
homogeneous polynomial F of degree d. Therefore we have IX k[t] = (td) and
S/(IX + IP)∼= k[t]/(td). This concludes the proof.

Remark 2.5. (A) From Lemma 2.4 follows, if h = (h0, . . . ,hτ(X)) is the h-
vector of X then d ≤ τ(X)+1 (more precisely b ≤ d ≤ τ(X)+1, where
b = inDeg(IX) is the least degree of a generator of IX (see Theorem 2.10)
and the h-vector of X ∪{P} is given by

h′ =
{

(h0, . . . ,hd−1,hd +1,hd+1, . . . ,hτ(X)), d < τ(X)+1
(h0, . . . ,hτ(X),1), d = τ(X)+1

It holds especially

τ(X)+1≥ τ(X ∪{P})≥ τ(X)

(B) Looking at the proof of Lemma 2.4 , it can be easily seen that the statement
does not change if we replace the set of points X with any projective
variety V ⊆ P2 such that P does not lie on V .

(C) If X and Y are two disjoint sets of points in the projective plane then:

HX∪Y (i) = HX(i)+HY (i)−HS/(IX+IY )(i).

In particular S/(IX + IY ) is an artinian ring.

The h-vectors of geometrically linked sets of points in P2 are well studied.
For example the following is known:

Proposition 2.6. Let X ,Y be two reduced zero-dimensional schemes in P2 which
are geometrically linked over the CI scheme Z. If X ,Y and Z have h-vectors
(1,a1, . . . ,aτ(X)), (1,b1, . . . ,bτ(Y )) and (1,2,c2 . . . ,cτ(Z)−2,2,1). Then

ci−ai = b(τ(Z)−i).

Proof. [2], Theorem 3.

Remark 2.7. Notice that the last shift in the minimal free resolution of the CI
ideal IZ from Proposition 2.6 is τ(Z)+2.

Example 2.8. Consider the following set of points in P2:
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c c c c sc c s s ss s s s s

Denote by X the white dots, by Y the black dots and by Z the set of all
points. Then the CI Z links X to Y . The defining ideal of Z, IZ is a CI of type
(3,5) i.e. the generators of IZ are of degrees 3 and 5 respectively (one could take
for example the first generator to be the product of the three horizontal lines and
the second the product of the five vertical lines going through the points). Using
the Koszul complex we can easily compute the minimal free resolution of IZ

and thus also the h-vector for Z which is (1,2,3,3,3,2,1). The h-vector of X
can also be easily computed and is (1,2,2,1). Now Proposition 2.6 tells us that
going to the diagrams of the h-vectors:

×××
×××
×××

where the white squares constitute the h-vector of X , the remaining (crossed)
squares (read from right to left) constitutes the h-vector of Y i.e. (1,2,3,2,1).

If our zero-dimensional reduced schemes are geometrically linked, using
Proposition 2.6 we can obtain some more information about the ring S/(IX +IY ).

Lemma 2.9. Let X ,Y be two reduced zero-dimensional schemes in P2 which
are geometrically linked over the CI scheme Z. Then :

(1) S/(IX + IY ) is Gorenstein;

(2) 4HS/(IX+IY )(i) =4HY (i)−4HY (τ(X ∪Y )− i) ∀i≥ 0;

(3) τ(S/(IX + IY )) = τ(X ∪Y ).

Proof. (1) This is a well known fact. It can be easily proved using the mapping
cone (see for example [9], Chapter II, section 4 ) on the sequence

0−→ S/IZ −→ S/IX ⊕S/IY −→ S/(IX + IY )−→ 0.

(2) Let (1,a1, . . . ,aτ(X)), (1,b1, . . . ,bτ(Y )) and (1,2,c2 . . . ,cτ(X∪Y )−2,2,1) be the
h-vectors of X ,Y and Z = X ∪Y respectively.
By Proposition 2.6 using the above exact sequence we have:

4HS/(IX+IY )(i) = ai +bi− ci = bi−bτ(X∪Y )−i, ∀i≥ 0.
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(3) By Remark 2.5 (A) we have τ(Y )≤ τ(X ∪Y ). According to Proposition 2.6
ci−ai = bτ(X∪Y )−i and thus bτ(X∪Y ) = 0. Therefore τ(Y )< τ(X ∪Y ).
In (2) we have seen4HS/(IX+IY )(i) = bi−bτ(X∪Y )−i, ∀i≥ 0 so that

4HS/(IX+IY )(τ(X ∪Y )) = bτ(X∪Y )−b0 =−1

and

HS/(IX+IY )(i) = 0 ∀i≥ τ(X ∪Y )+1.

Therefrom τ(S/(IX + IY )) = τ(X ∪Y ).

From the h-vector of a set of points in P2 using the following theorem due
to E. D. Davis (see [1]) one can also obtain information about the geometric
properties and the defining ideal of the points.

Theorem 2.10 (Davis). The h-vector (h0, . . . ,hτ(X)) of a reduced zero-dimensio-
nal scheme X ⊂ P2 satisfies the following conditions:

• hd = d +1, for d = 0,1, . . . ,b−1, and hb ≤ b;

• hd+1 ≤ hd , for d ≥ b−1;

• If hd = hd+1 = e for some d ≥ b−1, the generators of IX of degree at most
d + 1 have a common factor of degree e. This leads to a partition of X
into X1∪X2, where X1 lies on a curve of degree e and X2 has the h-vector
given by (he− e,he+1− e, . . . ,hd−1− e) .
Where b = inDeg(IX) is the least degree of a generator of IX .

Definition 2.11. Let h = (h0, . . . ,hτ(X)) be the h-vector of some reduced zero-
dimensional scheme X ⊂ P2. If hd = hd+1 = e, for some d ≥ b− 1, where
b = inDeg(IX) we say that the h-vector of X has a flat of height e.

Remark 2.12. (A) The result of Davis can be used to exclude some h-vectors
which cannot be the h-vector of the union of two sets of points with given
h-vectors h and h′ . For example the h-vector (1,2,1,1,1) cannot be the
h-vector of the union of two sets of points with h-vectors (1,1,1) and
(1,1,1), simply because it corresponds to a set of points where 5 are on a
line and one is out and (1,1,1) correspond to 3 points on a line. A similar
argument shows that the h-vector (1,2,3,3,2,2,1,1,1,1) cannot be the h-
vector of the the union of two sets of points with h-vectors (1,2,3,3,1,1)
and (1,2,3).
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(B) Let X ⊆ P2 be a reduced zero-dimensional scheme with defining ideal IX =
(F1, . . . ,Fs) and let F be a common factor of degree e for some of the
minimal generators of IX as in Theorem 2.10. Then X is the union of two
sets of points X1 and X2 where X1 are the points in X lying on the curve
F . Scheme-theoretically the defining saturated ideals of X1 and X2 are

IX1 = (IX +(F))Sat and IX2 = (IX :
S

F).

As in [12], Chapter 1.3 using

IX +(F)

(F)
∼=

IX

IX ∩ (F)
=

IX

F · (IX :
S

F)

we can obtain two exact sequences:

(1) 0−→ IX2(−e)−→ IX −→
IX +(F)

(F)
−→ 0

and

(2) 0−→ S(−e)−→ IX +(F)−→ IX +(F)

(F)
−→ 0.

In order to find out what are the possible h-vectors of the union of two sets of
points, we would like to be able to ”compare” the h-vectors of zero-dimensional
reduced schemes in the projective plane. For this reason we will introduce a
partial order on the set

H := {4HX | X ⊆ P2 is a finite set of points}.

Definition 2.13. Let H1 = (HX(i))i∈N and H2 = (HY (i))i∈N be two Hilbert func-
tions, we will say that H2 is more generic than H1, and we will write H1 ≤g H2,
if HX(i) ≤ HY (i), ∀ i ∈ N. We say also in this situation that H1 is more special
than H2.

Remark 2.14. It follows immediately from the definition that ≤g is a partial
order. It is not difficult to see, considering for example the Hilbert functions
(1,3,6,7,8,9,10,11,−→) and (1,3,5,7,9,10,11,−→), that it is not a total or-
der.

This partial order induce also a partial order (we use the same notation ≤g ) on
H. Indeed, if (h0,h1, . . . ,hs) and (h′0,h

′
1, . . . ,h

′
t) are the h-vectors of two finite

sets of points in P2. Then:

(h0,h1, . . . ,hs)≤g (h′0,h
′
1, . . . ,h

′
t) :⇐⇒

j

∑
i=0

hi ≤
j

∑
i=0

h′i, ∀ j = 0, . . . ,s
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Going to the diagram of an h-vector, this means that if we move one box
from a row to an upper row, so that the result is admissible (i.e. there is a set of
points in P2 with this h-vector), we get a more generic h-vector. The following
example shows that.

Example 2.15. Given the two h-vectors, h = (1,2,3,2,1), h′ = (1,2,3,3). We
have clearly h≤g h′. Considering the corresponding diagrams

×

×

we see that if we move the crossed box to the upper row, we obtain a more
generic h-vector.

Remark 2.16. We have seen in Theorem 2.10 that if we have a set of points
X ⊆ P2 with given h-vector h = (h0, . . . ,ht) which has a flat of degree e < b =
inDeg(IX) then some of the points of X will be on a curve of degree e. In general
if an h-vector h and an integer d is given, one can consider the set{ Y ⊆ X ⊆ P2, X is a set of points with4HX = h

4HY Y lies on a curve of degree d,
which does not contain all of the points of X

}
.

According to the partial order introduced above this set is ordered and it contains
a unique maximal element (for a proof see [4], Theorem 3.15 ).

3. Bounds on the h-vectors of the union of sets of points

Given two h-vectors h and h′ we want to see what are the possible h-vectors h′′

for the union of two disjoint sets of points in P2 with the given h-vectors h and
h′. In this section we give some bounds that the resulting h-vector h′′ has to
satisfy.

We will use τ(X) as defined in 2.2. An equivalent description is

τ(X) = max{i | hi 6= 0}= min{i | HX(i) = HX(i+1)}.

The h-vector h corresponding to X has τ(X)+ 1 non-zero entries. We say that
τ(X)+ 1 is the length of the h-vector. Sometimes we will use τ(h) instead of
τ(X).

Proposition 3.1 (Subset criterion). Let X ⊂ Y be two sets of points in P2, let h
be the h-vector of X and h′ be the h-vector of Y . We have then:

h′i ≥ hi for all i = 0, . . . ,τ(X).
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Proof. By Remark 2.5 (A) the h-vector of X∪{P} is the h-vector of X increased
in some degree d by one. In particular if Y = X ∪{P} then hi ≤ h′i ∀i≥ 0.
The thesis easily follows by induction on |Y |.

Remark 3.2. (A) In our graphical way of representing h-vectors this means
that the h-vectors of X and Y have to fit into the h-vector of the union
X ∪Y . For example the h-vectors (1,2,1) and (1,1,1,1) fit into the h-
vector (1,2,2,1,1,1) but (1,2,3,1) does not. This is an easy way to see
that the h-vector (1,2,2,1,1,1) cannot be obtained as the union of the
h-vector (1,2,3,1) and something else.

(B) With the subset criterion, one can easily see that if X is a set of points in P2

with h-vector (h0, . . . ,hτ(X)) then at most τ(X)+1 of the points of X can
be collinear.

The result of the following Proposition is known but we prove it for com-
pleteness.

Proposition 3.3. Let X ⊆ P2 be a set of points with h-vector h = (h0, . . . ,hτ(X)).
Then the defining ideal of X, IX is generated in degree at most τ(X)+1.

Proof. Let

0−→
t⊕

i=1

S(−bi)−→
t+1⊕
i=1

S(−ai)−→ IX −→ 0

be the minimal free resolution of IX , where a1 ≤ a2 ≤ . . .≤ at+1 are the degrees
of the minimal generators of IX . For i = 1, . . . , t +1 denote by g j = |{ai|ai = j}|
the number of the integers ai equal to j. Let 4h be the first difference of the
h-vector of X i.e. 4h(i) = hi−hi−1 and w = min{i∈N| 4h(i)< 0}. According
to [11], Theorem 1.2 we have

−42h( j)≤ g j ≤−4h( j) ∀ j > w

As4h(τ(X)+1) =−hτ(X) 6= 0 and4h( j) = 0 for all j > τ(X)+1 the maximal
value of j for which g j could be non zero, or equivalently there exists some ai

equal j, is τ(X)+1.

We now want to give a bound on the length of the h-vector of the union of
X and Y .

Definition 3.4. A homogeneous element f of the homogeneous coordinate ring
S/IX of X is a separator of the point P ∈ X if f (P) 6= 0 and f (Q) = 0 for all
Q ∈ X , Q 6= P.
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Proposition 3.5. For any set of points X ⊂P2, τ(X) is the least degree for which
there are separators for every point P ∈ X.

Proof. For more details on separators and for the proof see [5].

Theorem 3.6. Given two sets of points X and Y in P2, we have that

max{τ(X),τ(Y )} ≤ τ(X ∪Y )≤ τ(X)+ τ(Y )+1.

In other words, the length of the h-vector of the union is at most the sum of the
lengths of the given h-vectors.

Proof. Let P be a point in X , then there exists a separator f of P ∈ X which has
degree τ(X). If P 6∈ Y we can find a generator g of IY such that g(P) 6= 0, it has
degree at most τ(Y )+ 1. In the case P ∈ Y we choose g to be a separator of P
in Y of degree less than τ(Y )+1. Now f g is a separator of P in X ∪Y of degree
at most τ(X)+ τ(Y )+ 1. This can be done for all points in X and Y . Now the
theorem follows from Proposition 3.5. The first inequality follows from Remark
2.5.

Definition 3.7. We define b(X) = max{hi| i = 0,1, . . . ,τ(X)} as the height of
the h-vector associated to X .

Proposition 3.8. For any set of points X ⊆ P2, we have that the height of the
h-vector is equal to the initial degree of the ideal of X.

b(X) = inDeg(IX).

Proof. The height of the h-vector is equal to the initial degree of the ideal IX ,
as by Davis’ Theorem the h-vector grows by one in each degree until it gets the
maximum value b(X) and then, it starts to decrease (not necessarily strictly).
This means that the Hilbert function of X is equal to the Hilbert function of S up
to degree b(X)−1. From degree b(X) on the Hilbert function of S/IX is strictly
smaller than the one of S, this means that IX has no generators of degree smaller
than b(X) and it has at least one generator in degree b(X).

Theorem 3.9. Given two sets of points X and Y in P2, we have the following
bounds for the height of the resulting h-vector:

max{b(X),b(Y )} ≤ b(X ∪Y )≤min{b(X)+b(Y ),b(G)}

where G consists of deg(X ∪Y ) generic points.
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Proof. We first observe that the height of G is given exactly by

b(G) = max
{

i
∣∣∣ i(i+1)

2
≤ deg(X ∪Y )

}
,

and this is the h-vector with maximal height that we can have for deg(X ∪Y )
points: so, b(X ∪Y )≤ b(G). Moreover, it is easily proved that the height is also
bounded by the sum of the heights: indeed, IX · IY ⊆ IX ∩ IY , and so b(X ∪Y )≤
InDeg(IX · IY ) = b(X)+b(Y ).

The lower bound for the b(X ∪Y ) is obtained from the inclusions
IX ∩ IY ⊆ IX , IY .

Example 3.10. We now show in two simple examples how to exclude h-vectors
from the set of the admissible ones for the union of two given h-vectors. The
h-vectors (1,1,1) and (1,1,1,1) cannot give the h-vector (1,2,3,1), since the
maximum height that we can have is the sum of the heights, i.e. 2. Another
example of exclusion is that we cannot achieve (1,2,1,1,1,1) from (1,2,1) and
(1,2), since the maximal length of the union is 5.

Another useful exclusion technique uses arguments about the number of
points that lie on a curve of certain degree.

Definition 3.11. We define

η(h,d) :=
τ(X)

∑
i=0

min{hi,d}.

One can think of η(h,d) as the sum of the entries of the h-vector h when we
cut it off in height d. The following proposition gives a bound on η .

Proposition 3.12. Let X ⊆ P2 be a set of points such that n points of X lie on a
curve of degree d. Then the h-vector of X is such that

η(h,d)≥ n.

Proof. Let Y be the subset of X consisting of n points lying on the degree d
curve. The curve is an element of IY hence by Proposition 3.8, the height of the
h-vector is at most d. Moreover, the sum of the components of h-vector of Y is
n. Now the result follows from the subset criterion.

Together with Davis’ Theorem, we can use the proposition above to introduce
another exclusion criterion for generic h-vectors.
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Proposition 3.13. Let h be the h-vector of X with flat of height r, h’ the h-vector
of Y with flat of height s and h′′ the h-vector of X ∪Y . Then we have

η(h′′,r+ s)≥ η(h,r)+η(h′,s).

Proof. We know that at least η(h,r) points lie on a curve of degree r and another
η(h′,s) points lie on a degree s curve, so these points together lie on a degree
r+ s curve.

Remark 3.14. When we apply the previous statement to the case in which both
r and s are equal to the maximal height of the h-vector we get the upper bound
for the height.

The following exclusion criterion makes use of the flats in the h-vectors.
Instead of a flat we can also use the maximal height.

Theorem 3.15. Given two h-vectors h and h′ with a flats of degree d and d′

respectively. For the union we can then exclude h-vectors h′′ which have a flat
of degree d′′ ≥ d,d′ with

max
{

η(h,d′′)+η(h′,d′′+d′)−η(h′,d′)+
(

d′+2
2

)
−2,η(h′,d′′)+

η(h,d′′+d)−η(h,d)+
(

d +2
2

)
−2
}
< η(h′′,d′′)< η(h,d)+η(h′,d′).

Proof. We want to show that it is not possible to satisfy both inequalities. So
we assume the second one holds and then show that the first cannot hold.

By hypothesis, h,h′ and h′′ have flats respectively of degrees, d,d′ and d′′,
so let C, C′ and C′′ be the curves given by Davis’ Theorem. Because of the
second inequality not both curves C and C′ can be components of C′′. We will
now investigate how many points of X ∪Y can lie on C′′ given this restriction.
If we assume C is a component of C′′ then at most η(h,d′′) points from X lie
on C′′. At most

(d′+2
2

)
− 2 points in Y ∩C′ can lie on C′′, since otherwise C′

would be a component of C′′. The remaining points in Y not on C′ have the
h-vector which you get from h′ by cutting of the last d′ lines, so here at most
η(h,d′′+d)−η(h,d) can lie on a degree d′′ curve. If we add up these numbers
we get the first entry of the max, the second one is yield by exchanging the roles
of C and C′.

Example 3.16. Configurations of points with h-vectors (1,2,3,4,5,2,2,2) and
(1,1,1,1,1,1,1,1) (8 on a line) cannot give h-vectors with a flat of degree 2 and
17 < η(h′′,2)< 24.
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4. Linear Configurations and Partitions

Later in this section, we will introduce a construction for the ”union” of two
h-vectors. In order to do this, we need first to give some tools, namely, we need
to define linear configurations, 2-type vectors and pseudo 2-type vectors.

Definition 4.1. A 2-type vector is a vector (d1,d2, . . . ,dt), where 0 < d1 < d2 <
· · ·< dt .

To any h-vector, associated to a reduced zero-dimensional subscheme of
P2, corresponds only one 2-type vector. The following theorem explains this
correspondence.

Theorem 4.2 ([7], Theorem 2.4 and Theorem 2.5). Let S2 denote the collection
of Hilbert functions of all reduced zero-dimensional schemes in P2. Then, there
is a 1-1 correspondence between S2 and the set of 2-type vectors. Moreover,
let T = (d1,d2, . . . ,dt) be a 2-type vector , and Hi the Hilbert function of di

collinear points. Then, T corresponds to the Hilbert function defined by H( j) =
Ht( j)+ · · ·+H1( j− (t−1)).

Once we have the definition of 2-type vector we can define the concept of
linear configuration.

Definition 4.3. Let T = (d1, . . . ,dt) be a 2-type vector. Let L1, . . . ,Lt be t dis-
tinct lines in P2 and Xi a set of di distinct points on Li, for all i = 1, . . . , t.
Moreover, we suppose that, for i 6= j, Li does not contain any point of X j. Then,
X= ∪t

i=1X j is called a linear configuration of type T .

The following result shows that the Hilbert function associated to a linear
configuration of a given type T depends only on the type, and not on the choice
of the lines and of the points on them.

Theorem 4.4 ([7], Theorem 2.8). Let X be a linear configuration of type T , and
let H be the Hilbert function associated to T . Then the Hilbert function of X,
HX is H.

The theorem above can be visualized in the following example: these two dif-
ferent linear configurations have the same Hilbert function.

Example 4.5. Let us fix the 2-type vector T = (1,3,5). Consider the following
linear configurations of this given type.

X1

L1

L2

L3

s s s s ss s ss X2

L1

L2

L3

s s s s ss s ss
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The two reduced zero-dimensional schemes, X1 and X2, have the same h-vector
since they are associated to the same 2-type vector.

Remark 4.6. Hence, whenever we have such linear configurations associated to
2-type vectors, we can choose any set of distinct of points on each line, and still
obtain a linear configuration with that given type, and with that given h-vector
associated to the type.
Moreover, given a reduced zero-dimensional scheme which is also a linear con-
figuration, its type is nothing else than a partition of the degree of the scheme
constituted by strictly increasing positive integers.

A similar definition of linear configurations can be given for partitions of
the degree of the scheme constituted by non-decreasing positive integers.

Definition 4.7. A pseudo type vector is a sequence of positive integers T =
(d1, . . . ,dt), where di ≤ di+1 ∀i, and if di−1 = di, then di < di+1.
A pseudo linear configuration of type T is a set of points X= ∪t

i=1Xi, where Xi

is a set of di distinct points on a line Li. The lines L1, . . . ,Lt are all different, and
none of the points of Xi lies on L j for i 6= j.

Also in this case, an O-sequence can be associated to a pseudo type vector (see
[7]), but in general the Hilbert function of a pseudo linear configuration of type
T = (d1, . . . ,dt) is not uniquely determined. It is uniquely determined only if a
certain condition on the first difference of the pseudo type vector holds, namely:

between any two zero entries o f ∆T there is at least one entry > 1. (1)

The Example 3.8 in [7] shows that in the case in which the previous condition
does not hold, for instance when T = (1,1,2,2), we cannot choose any set of
distinct points in the lines and keep the same Hilbert function.

X1

L1

L2

L3

L4

s ss sss X2

L1

L2

L3

L4

s ss s
ss

X1 and X2 have not the same h-vector, namely X1 has h-vector (1,2,2,1), and
X2 has h-vector (1,2,3), since they are 6 generic points.

Let (h0, . . . ,ht) be the h-vector of a reduced zero-dimensional scheme in P2.
To this given h-vector we can associate a monomial ideal I such that the standard
graded k-algebra S/I has the given h-vector. We do this as follows:

1. From the given h-vector (h0, . . . ,ht) we pass to its geometric representa-
tion by drawing hi boxes for all i.



THE H-VECTOR OF THE UNION OF TWO SETS OF POINTS IN P2 211

2. By Davis’s Theorem we have that hi = i+1 for i = 0, . . . ,b−1 and hi ≥
hi+1 ∀i ≥ b− 1. Denote by di the number of squares in the i-th row, for
i = 1, . . . ,b. Notice that the vector D = (d1, . . . ,db) is a 2-type vector.

3. Let I be the ideal generated by xdb ,xdb−1y, . . . ,yb. Then the k-algebra S/I
has h-vector (h0,h1, . . . ,ht). Note also that the ideal I is a lex-segment
ideal i.e. if a monomial M ∈ I then every larger monomial (with respect
to the lexicographical ordering) of the same degree is also in I. In this
way to a given h-vector of a reduced zero-dimensional scheme in P2 we
can assign in a unique way a lex-segment ideal.

Example 4.8. For h = (1,2,3,2,2,1) we have

Therefore b = 3,d3 = 6,d2 = 4,d1 = 1 and the corresponding ideal is

I = (x6,x4y,xy2,y3)

To the ideal I =(xdb ,xdb−1y, . . . ,yb) we can assign a set of points in P2, whose
defining ideal has the same h-vector. This set of points is a linear configuration
of type D. In order to get it we first choose two sets of distinct elements in k,
{α1, . . . ,αdb} and {β1, . . . ,βb}, and then replace every generator xiy j, of I by
(x−α1z) . . .(x−αiz)(y−β1z) . . .(y−β jz). The ideal that we obtain in this way
is the defining ideal of the following set of points in the projective plane:

db points with coordinates (αi : β1 : 1), i = 1, . . . ,db;

db−1 points with coordinates (αi : β2 : 1), i = 1, . . . ,db−1;
...

d1 points with coordinates (αi : βb : 1), i = 1, . . . ,d1.

In the special case where α1 = 0, . . . ,αdb = db−1 and β1 = 0, . . . ,βb = b−1 we
get

db points with coordinates (i : 0 : 1), i = 0, . . . ,db−1;

db−1 points with coordinates (i : 1 : 1), i = 0, . . . ,db−1−1;
...

d1 points with coordinates (i : b−1 : 1), i = 0, . . . ,d1−1.

We will call this the standard linear configuration of type D.
Note that by this construction every box in the diagram of a given h-vector
corresponds to a point in the projective plane.



212 ORNELLA GRECO - MATEY MATEEV - CHRISTOF SÖGER

Example 4.9. Consider again the h-vector h = (1,2,3,2,2,1). Using the stan-
dard linear configuration, we obtain

d3 = 6 points with coordinates (i : 0 : 1), i = 0, . . . ,5

d2 = 4 points with coordinates (i : 1 : 1), i = 0, . . . ,3

d1 = 1 point with coordinates (0 : 2 : 1)

i.e. we obtain the following picture

s s s s s ss s s ss

Remark 4.10. The picture in the previous example can also be seen as the set
of all monomials in x,y which are not in the ideal I = (x6,x4y,xy2,y3). In the
following, such a picture will have the same double interpretation.

To find all other possible pseudo linear configurations associated to a given
h-vector, different from the standard one, we use the following idea, which
comes from a paper of Maggioni and Ragusa, see [11].

Given an h-vector h = (h0,h1,h2, . . . ,ht), associated to a set of points in P2,
let us consider the first difference ∆(h), and the second difference, ∆2(h), let
gi be the number of generators in degree i in an ideal with that given h-vector,
and si the number of first syzygies in degree i, let w = min{i |∆2h(i)< 0}, then
according to [11], Theorem 1.2, we have the following bounds:

gw =−∆
2h(w), sw = 0;

−∆
2h(i)≤ gi ≤−∆h(i), si = gi +∆

2h(i), ∀ i > w.
(2)

All the numbers, gi and s j, satisfying these bounds are allowed and give a set a
possibilities for the generators and the syzygies.
Let x = max{i| ∆h(i) 6= 0} = τ(h)+ 1 = length(h), let us write the degrees of
the generators and the syzygies in the following table

gw times︷ ︸︸ ︷
w w · · ·w

gw+1 times︷ ︸︸ ︷
w+1 · · ·w+1 · · ·

gx times︷ ︸︸ ︷
x · · ·x

sw+1 times︷ ︸︸ ︷
w+1 · · ·w+1 · · · · · ·

sx times︷ ︸︸ ︷
x · · ·x .

(3)

From such a table, we can construct different partitions of the degree of the
scheme, i.e. we can obtain all different pseudo type vectors corresponding to
the given h-vector. Notice that this way we obtain also different lex-segment
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monomial ideals, associated to the given h-vector. More precisely once we have
made the choice for the gi’s, and thus for the si’s, we can write the chosen values
in form of a table as follows .

D =

(
a1 a2 . . . aα+1
· b1 . . . bα

)
.

where α ≤ τ(h)+1 = length(h).

Proposition 4.11. Starting from the table D, the partition of the degree of the
scheme is obtained in the following way:

b1−a2 times︷ ︸︸ ︷
a2− [(bα −aα+1)+ · · ·+(b2−a3)] , . . . ,a2− [(bα −aα+1)+ · · ·+(b2−a3), ],

. . . ,

bα−1−aα times︷ ︸︸ ︷
aα − (bα −aα+1), . . . ,aα − (bα −aα+1),

bα−aα+1 times︷ ︸︸ ︷
aα+1, . . . ,aα+1,

Proof. Let us introduce ei = bi−ai and f j = b j−a j+1, for i, j = 1, . . . ,α . Since
deg(X) =∑i≤ j ei f j (see [3], Corollary 3.10) and ∑

α
i=1 bi =∑

α+1
j=1 a j, we have that

deg(X) =
α

∑
i=1

fi(e1 + · · ·+ ei) =

α−1

∑
i=1

(bi−ai+1) [ai+1− (bα −aα+1)−·· ·− (bi+1−ai+2)]+(bα −aα+1)aα+1;

which is what we wanted to prove.
Note that the elements of the partition are ordered in a non-decreasing way.

Remark 4.12. By permuting elements in the first row and elements in the sec-
ond row of D, but maintaining the conditions b j > a j+1 for each j, we will get
other partitions of the degree of the scheme, with the same choice of g′is.

Remark 4.13. The partition of the degree of the scheme that we get with this
construction have not to be necessarily 2-type vectors or pseudo vectors. For in-
stance, by using Remark 4.12, given the h-vector (1,1,1), we have the following
corresponding tables

A1 =

(
1 3
· 4

)
, A2 =

(
3 1
· 4

)
.

They correspond to the partitions (3) and (1,1,1) respectively. The first is a
2-type vector but the second is not even a pseudo type vector.
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We give now the algorithm for this construction and then an example on
what it actually does. It takes as an input a h-vector, and gives as an output all
the associated partitions.

Name : FindPartition;

Input : h− vector,h = (h0,h1, . . . ,ht);

Output : all the partitions associated to h o f
t

∑
i=0

hi;

h′0 = 1

FOR i = 1, . . . , t +1

h′i = hi−hi−1

END FOR;

h′′0 = 1

FOR i = 1, . . . , t +2

h′′i = h′i−h′i−1

END FOR;

w := min{i| h′′i < 0}
gw :=−h′′w;sw := 0;

FOR gw+1 = max{0,−h′′w+1}, . . . ,−h′w+1; . . .

FOR gt+2 = max{0,−h′′t+2}, . . . ,−h′t+2;

FOR j = w+1, . . . , t +2,

s j = g j +h′′j ,

Write what we get in 3 in the f orm(
a1 a2 . . . aα+1
· b1 . . . bα

)
.

FOR any σ ∈ Sα+1, FOR any δ ∈ Sα

IF (bδ (1) > aσ(2))& · · ·&(bδ (α) > aσ(α+1)),

compute

(aσ(2)−
α

∑
i=2

(bδ (i)−aσ(i+1)))(bδ (1)−aσ(2) times), . . . ,

. . . ,aσ(α+1)(bδ (α)−aσ(α+1) times),

END FOR;

END FOR;

END FOR; . . . ;END FOR.
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Example 4.14. Let us consider the h-vector h = (1,2,3,2). In this case, w =
3, x = 4, and moreover g3 = 2, 1≤ g4 ≤ 2, g5 = 0. Let us choose g4 = 2, this
implies that s4 = 1, s5 = 2.
The following degree tables all correspond to this choice:(

3 3 4 4
· 4 5 5

)
,

(
3 4 3 4
· 5 4 5

)
,

(
3 4 4 3
· 5 5 4

)
.

From these tables, we obtain that the following partitions are all associated to
the same choice of the gi’s.

s s s ss s ss
s s s ss ss s

s s ss s ss s
Once we have such a partition, say α1, · · · ,αn with α j ≤ α j+1, we can asso-

ciate to this a monomial ideal in x,y with the given invariants, i.e. the degrees
of the generators, the degrees of the first syzygies and, of course, the h-vector,
as described in the example below.

Example 4.15. Given h = (1,2,3,4,1), using the bounds in (2), we have that
an ideal, associated to this h-vector, can be generated by 4 elements of degree
4, i.e. g4 = 4, gi = 0 ∀ i > 4: this implies that there are 2 syzygies of degree 5,
and one of degree 6. So, in this case, the table we have chosen is:(

a1 a2 a3 a4
· b2 b3 b4

)
=

(
4 4 4 4
· 5 5 6

)
.

The degree of this scheme is 11, and, hence, a partition of 11, by Proposition
4.11, is given by: b4−a4 = 2 times a4 = 4, b3−a3 = 1 times a3− (b4−a4) =
2, b2− a2 = 1 time a2− [(b4− a4)+ (b3− a3)] = 1. So we get the partition
(1,2,4,4).

s s s ss s s ss ss

Therefore, the ideal I = (x4,x2y2,xy3,y4), associated to the picture above, is a
monomial ideal with the chosen degree table and such that k[x,y]/I has the given
h-vector.
According to Remark 4.12, also the following degree tables produce partitions
of 11: (

4 4 4 4
· 5 6 5

)
,

(
4 4 4 4
· 6 5 5

)
,

namely, (4,3,3,1) and (4,3,2,2).
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Remark 4.16. In the previous example, we have seen how to get a monomial
ideal from a partition. Chosen a table, by considering the transpose of a parti-
tion, we are simply looking at the monomial ideal with exchanged variables x
and y, which has still the same table and h-vector.

In this way, we can find all the partitions of the degree of the scheme associated
to its h-vector, and so all monomial ideals I in two variables, x,y, with pure
powers, such that k[x,y]/I has the given h-vector . We now use the theory of
2-type vectors and pseudo type vectors in order to introduce the concept of the
sum of two partitions.

Remark 4.17. Given a partition of a number n, i.e. (c1, . . . ,ct), where ci ≤ ci+1
and c1+ · · ·+ct = n, by adding zero entries, we get other partitions of n. Notice
that we need to consider them differently in order to define the concept of sum
of two partitions.

Definition 4.18. Let c = (c1, . . . ,ct) and d = (d1, . . . ,dv) be two partitions of n
respectively m. Assume in addition that at least one of those partitions is either a
2-type or a pseudo type vector whose first difference satisfies Condition (1). We
say that a partition of n+m is the sum of c and d, if it is obtained by ordering
the sequence

{ci +d j}i=1,...,t; j=1,...,v

(where each ci and d j appear exactly once in the sums) in a non-decreasing way.

Notice that if a vector, D= (d1, . . . ,dt), with non-decreasing positive integer
entries, satisfies Condition (1), it has to be at least a pseudo type vectors: by
contradiction, suppose there are three consecutive equal entries, i.e. di−1 = di =
di+1, for some i, then in ∆D the consecutive entries, di−di−1 and di+1−di, are
both zero, but there isn’t any entry between them which is greater than 1.
So Condition (1) is a sufficient condition for a partition to be 2-type vector or
a pseudo type vector. Hence, we can actually use Theorem 4.4 or the similar
result holding in the case of pseudo type vectors.
The following example shows why it is necessary that at least one of the two
partitions has to satisfy Condition (1).

Example 4.19. The vectors h = (1,1,1) and h′ = (1,1,1,2) are not a pseudo
type vectors. If we take their sum, by definition, we can get (1,1,1,1,1,3): it
sufficies to sum them as (1+0,1+0,0+1,0+1,0+1,1+2), where with the
bold font we indicate the partition associated to h′. This vector is associated to
the h-vector (1,2,2,1,1,1), which is not possible for geometric reasons (see the
table in Section 5).
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The following algorithm gives all the partitions associated to the possible
h-vectors of the union.

Name : hvectorO f T heUnion;

Input : h− vectors,h = (h0,h1, . . . ,ht),h′ = (h′0,h
′
1, . . . ,hv);

Output : all the partitions associated to the union;

A = FindPartition(h);
A′ = FindPartition(h′);
FOR P = (p1, . . . , pm) ∈ A & Q = (q1, . . . ,qn) ∈ A′

IF∆P SAT ISFIES COND. 1 OR ∆Q SAT ISFIES COND. 1;

IF n > m, DEFINE pm+1 = · · ·= pn = 0;

IF m > n, DEFINE qn+1 = · · ·= qm = 0;

FOR all σ ,δ ∈ Smax{n,m}

order in a non−decreasing way the set : {pα(i)+qδ (i)}i=1,...,max{n,m}

END FOR;

FOR all i = 1, . . . ,n &FOR all j = 1, . . . ,m

IF i+m = j+n,

DEFINE Pi = (p1, . . . , pm, pm+1, . . . , pm+i︸ ︷︷ ︸
=0

)

Q j = (q1, . . . ,qn,qn+1, . . . ,qn+ j︸ ︷︷ ︸
=0

)

FOR all σ ,δ ∈ Si+m

compute and sort {pσ(l)+qδ (l)}l=1,...,i+m

END FOR;

END FOR;

END FOR;

We can state here a conjecture on the construction of all the possible h-vectors
for the union of two sets of points in P2.

Conjecture 4.20. Given h and h′ two h-vectors, associated to two disjoint re-
duced zero-dimensional schemes, with degrees, n respectively m, the h-vectors
of the monomials ideals associated to the partitions of n+m, that are obtained
by summing, according to the previous definition, any partition of n associated
to h and any partition of m associated to h′, are all the possible h-vectors for the
union of the two schemes.
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The following example explains what can be obtained with this method.

Example 4.21. Let h = (1,2,3,4,1) and h′ = (1,2,3,4,5,3), choosing the de-
gree tables, (

4 4 4 4 5
· 5 5 5 6

)
,

(
5 5 5 6 6 6
· 6 6 7 7 7

)
,

we obtain the partitions (1,2,3,5) and (1,2,4,5,6). Thus the corresponding
configurations of points are:

ss
ss

ss
s

ss s s cc
cc
cc

cc
cc
c

cc
cc

cc c
By summing these two partitions we get:

cc
cc
cc
s

cc
cc
sc

cc
cc
s

ss
cc

ss
c

ss s s
from which we can read the corresponding h-vector (1,2,3,4,5,6,7,1). As
expected this is the h-vector corresponding to 29 generic points, obtained as the
union of 11 and 18 generic points, which have respectively h-vectors h and h′.

5. Results and conjectures on the h-vectors of the union of two sets of
points

In Section 3 we have introduced some tools to exclude possibilities for the h-
vector of the union of two sets of points. In Section 4 we have showed a way to
construct possible h-vectors. In this section, we show, in an example, how to use
these tools practically. Moreover, we prove a theorem that constructs the least
generic possible h-vector. Finally, we state our conjecture on the construction
of possible h-vectors for the union.

We start with some examples. The following table shows the possible com-
binations of h-vectors of 5 points and 3 points. Here ”−” denotes not possible
and ”X” possible.
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5+3

+ X −∗ X X − −

+ − X X −+ X −

+ − X −∗ X X X

+ − − X X X X

+ − − X X X X

+ − − − X X X

To fill this table we first used the method described in Section 4 and got all the X.
The bounds in Section 3 give the areas at the lower left and upper right where
the combinations are not possible. Beside that we have 3 more combinations
which are not possible. The two marked with ∗ can be excluded using Theorem
3.15. For the one marked with + we use a similar argumentation: we have 5
points on a line and 3 points which are not on a line. In the result there cannot
be more than 5 on a line, so none of the 3 points is on the line of the 5 points.
Since the 3 points are not on a line, the 8 points cannot be on a quadric.

The least generic possibility is always easy to get. An informal description
is: “Put the diagrams of the h-vectors side by side and then move columns to
the left until you get a valid shape according to Davis’ Theorem.”

In the following proposition, we prove it formally by actually building the
most specific h-vector.

Proposition 5.1. For any two given h-vectors, we can always construct the
unique minimum h-vector for the union among all the admissible ones. This
h-vector achieves the lower bound for the height and the upper bound for the
length.

Proof. Let h = (h0,h1, . . . ,hb−1,hb, . . . ,hr) and h′ = (h′0,h
′
1, . . . ,h

′
c−1,h

′
c, . . . ,h

′
s)

be two given h-vectors, X and Y two sets of points with these h-vectors and
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b = b(X) , c = b(Y ). Let αi =
∣∣{ j| h j = i}

∣∣, for i = 1, . . . ,b and let

γi =
∣∣∣{ j| h′j = i}

∣∣∣, for i = 1, . . . ,c. W.L.O.G. assume that c ≤ b. We claim that
the least generic h-vector for the union X ∪Y is:

(1, . . . ,b−1,b, . . . ,b︸ ︷︷ ︸
αb

,b−1, . . . ,b−1︸ ︷︷ ︸
αb−1−1

, . . . ,c+1, . . . ,c+1︸ ︷︷ ︸
αc+1−1

, c, . . . ,c︸ ︷︷ ︸
αc+γc−1

, . . . ,1, . . . ,1︸ ︷︷ ︸
α1+γ1−1

)

It is clear that we cannot decrease by one any entry of the previous h-vector
until the degree αb +αb−1 +αb−2 + · · ·+αc+1 +c+1, since until that point we
have exactly the same entries of the h-vector with the biggest height. To obtain
a smaller h-vector (with respect to the introduced partial order) one has to move
one box from one row to a lower row. As we just mentioned, no box from the
top c− d rows of the diagram can be moved. It is also not possible to move
any box to the lowest row, since the maximal possible length for the h-vector is
already achieved . One can try to see if it possible to move one box from one
row to a lower row between b− c and 1.
To do this, we first observe that the values of the h-vector from 1 to c occur
at least two times each.This means that in the tail of our h-vector diagram the
values i = 1, . . . ,c−1 occur at least once. So by moving one box, we will obtain
a flat, and thus we can use Theorem 2.10.
Suppose we have moved the box to a row of degree f , where 1< f ≤ c−1. Then
in that degree we will have a flat of length α f +γ f , and, by Davis’ Theorem, the
following number of points will lie on a curve of degree f :

N = (α1 +2α2 + · · ·+ f αb)+(γ1 +2γ2 + · · ·+ f γc)+1.

Consider the set Z ⊆ X ∪Y consisting of all these points lying on the curve of
degree f . Let Z =X ′∪Y ′, where X ′⊆X and Y ′⊆Y . The h-vector corresponding
to Z must have height equal to f , and since X ′, Y ′ lie also on the curve of degree
f , their ideals must be generated at most in degree f , so their h-vectors have
length at most f . Moreover, by the subset criterion, the h-vectors of X ′ and
Y ′ have to fit into (h0,h1, . . . ,hb−1,hb, . . . ,hr) and (h′0,h

′
1, . . . ,h

′
c−1,h

′
c, . . . ,h

′
s).

respectively. But counting the number of boxes below the degree f in the given

h-vectors, we obtain
α1+···αc−1

∑
i=0

min{hi, f}+
γ1+···+γd−1

∑
i=0

min{h′i, f}=N−1, which

is a contradiction.

In the example at the beginning of the section, we have seen that all possible
h-vectors of the union of two sets of points can be obtained with the methods
introduced in Section 4. We conjecture that this is the case in general.

Conjecture 5.2. Given two h-vectors, every possible h-vector for the union of
two sets of points that have these h-vectors can be constructed with the methods
showed in Section 4.
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