ON A q-DUNKL SONINE TRANSFORM

LASSAD BENNASR - RYM HASNA BETTAIEB - FERJANI NOURI

In this paper, we introduce and study the q-Dunkl Sonine transform and we establish a Plancherel formula for its dual. Furthermore we give many inversion formulas.

1. Introduction

The transmutation operators allow the transfer of some well known results related to a well known operator to those related to a new one, they play a central role in many areas of Mathematics and mathematical physics such as spectral theory, harmonic analysis, special functions and fractional calculus. This theory, introduced firstly by Delsart and Lions (see [5]), was extended by many authors (see for instance [$3,4,10,12,13,16-18,22,23,25]$), and recently was extended to quantum calculus in $[1-3,9,10]$.

In this paper we introduce and study the so-called q-Dunkl Sonine operator and its dual, we show that these operators are transmutation operators between two different q-Dunkl operators that generalize the q-Dunkl intertwining and its dual introduced in [1]. Furthermore, we give various inversion formulas for these operators.

This paper is organized as follows: in Section 2, we present some new preliminaries that we need. In Section 3, we collect some elements of q-Dunkl har-

Entrato in redazione: 1 luglio 2012

AMS 2010 Subject Classification: 33D60, 33D15, 42C40.
Keywords: Transmutation operators, q-Dunkl transforms, q-Dunkl Sonine, q- wavelets, Inversion formulas.
monic analysis (q-Dunkl kernel, q-Dunkl transform, q-Dunkl convolution,...). In section 4 we introduce the q-Dunkl-Sonine transform by

$$
\begin{aligned}
& \mathcal{S}_{\alpha, \beta}^{q}(f)(x)= \\
& \qquad \frac{(1+q) \Gamma_{q^{2}}(\beta+1)}{2 \Gamma_{q^{2}}(\alpha+1) \Gamma_{q^{2}}(\beta-\alpha)} \int_{-1}^{1} f(x t) W_{\beta-\alpha-\frac{1}{2}}\left(t ; q^{2}\right)(1+t)|t|^{2 \alpha+1} d_{q} t
\end{aligned}
$$

where $\beta>\alpha \geq-1 / 2$ and

$$
W_{\alpha}\left(t, q^{2}\right)=\frac{\left(t^{2} q^{2} ; q^{2}\right)_{\infty}}{\left(t^{2} q^{2 \alpha+1} ; q^{2}\right)_{\infty}}
$$

is the q-analogue of the kernel $\left.W_{\alpha}(t)=\left(1-t^{2}\right)^{\alpha-1 / 2}, \quad t \in\right]-1,1[$. We show that $\mathcal{S}_{\alpha, \beta}^{q}$ and its dual ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q}$ are transmutation operators between the q-Dunkl operators $\Lambda_{\alpha, q}$ and $\Lambda_{\beta, q}$. We also deal with the relations between these transforms and the q-Dunkl intertwining operator and its dual. In Sections 5 we give many formulations of the inversion formulas of the q-Dunkl Sonine transform and its dual using q-pseudo-differential operators in some q-analogues of the Lizorkin spaces and we give Plancherel formula for the dual q-Dunkl-Sonine transform. Section 6 is devoted to inversions formulas of the q-Dunkl Sonine transform and its dual by using q-Dunkl wavelets.

2. Notations and preliminaries

Throughout this paper, we assume $q \in] 0,1\left[\right.$. We write $\mathbb{R}_{q}=\left\{ \pm q^{n}: n \in \mathbb{Z}\right\}$ and we use the convention $\mathbb{N}=\{0,1,2, \ldots\}$. The q-shifted factorials of $a \in \mathbb{C}$ are defined as

$$
(a ; q)_{0}=1 ; \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad n=1,2, \ldots ; \quad(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right)
$$

The q-Factoriel of $n \in \mathbb{N}$ is $[n]_{q}!=\frac{(q ; q)_{n}}{(1-q)^{n}}$ and more generally, the q-Gamma function is defined for $x \in \mathbb{C}$ by (see [11])

$$
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}(1-q)^{1-x}, \quad x \neq 0,-1,-2, \ldots
$$

The normalized third Jackson's q-Bessel function is defined for $x \in \mathbb{C}$ by (see [9, 14])

$$
\begin{equation*}
j_{\alpha}\left(x ; q^{2}\right)=\Gamma_{q^{2}}(\alpha+1) \sum_{n=0}^{+\infty} \frac{(-1)^{n} q^{n(n+1)}}{\Gamma_{q^{2}}(\alpha+n+1) \Gamma_{q^{2}}(n+1)}\left(\frac{x}{1+q}\right)^{2 n} \tag{1}
\end{equation*}
$$

The q-trigonometric functions $\cos \left(x ; q^{2}\right)$ and $\sin \left(x ; q^{2}\right)$ are defined for $x \in \mathbb{C}$ by

$$
\begin{gathered}
\cos \left(x ; q^{2}\right)=j_{-\frac{1}{2}}\left(x ; q^{2}\right)=\sum_{n=0}^{+\infty}(-1)^{n} q^{n(n+1)} \frac{x^{2 n}}{[2 n]_{q}!}, \\
\sin \left(x ; q^{2}\right)=x j_{\frac{1}{2}}\left(x ; q^{2}\right)=\sum_{n=0}^{+\infty}(-1)^{n} q^{n(n+1)} \frac{x^{2 n+1}}{[2 n+1]_{q}!} .
\end{gathered}
$$

In connection with q^{2}-analogue Fourier analysis, R. Rubin [20, 21] constructed a q^{2}-analogue of the exponential function, $e\left(x ; q^{2}\right)$, and a q^{2}-derivative ∂_{q} as follows :

$$
e\left(i x ; q^{2}\right)=\cos \left(x, q^{2}\right)+i \sin \left(x ; q^{2}\right), \quad x \in \mathbb{C}
$$

and

$$
\partial_{q}(f)(x)= \begin{cases}\frac{f\left(q^{-1} x\right)+f\left(-q^{-1} x\right)-f(q x)+f(-q x)-2 f(-x)}{2(1-q) x} & \text { if } x \neq 0 \\ \lim _{x \rightarrow 0} \partial_{q}(f)(x) \quad\left(\text { in } \mathbb{R}_{q}\right) & \text { if } x=0\end{cases}
$$

so that for every $\lambda \in \mathbb{C}$ the q^{2}-exponential function satisfies

$$
\partial_{q}\left(e\left(i \lambda x ; q^{2}\right)=i \lambda e\left(i \lambda x ; q^{2}\right), \quad x \in \mathbb{C}\right.
$$

The q-Bessel function satisfies

$$
\begin{equation*}
\partial_{q} j_{\alpha}\left(x ; q^{2}\right)=-\frac{x}{[2 \alpha+2]_{q}} j_{\alpha+1}\left(x ; q^{2}\right) \tag{2}
\end{equation*}
$$

The q-integrals of Jackson are defined by (see [15])

$$
\begin{gathered}
\int_{0}^{a} f(x) d_{q} x=(1-q) a \sum_{n=0}^{\infty} q^{n} f\left(a q^{n}\right), \quad \int_{a}^{b} f(x) d_{q} x=\int_{0}^{b} f(x) d_{q} x-\int_{0}^{a} f(x) d_{q} x \\
\int_{0}^{\infty} f(x) d_{q} x=(1-q) \sum_{n=-\infty}^{\infty} q^{n} f\left(q^{n}\right)
\end{gathered}
$$

and

$$
\int_{-\infty}^{\infty} f(x) d_{q} x=(1-q) \sum_{n=-\infty}^{\infty} q^{n} f\left(q^{n}\right)+(1-q) \sum_{n=-\infty}^{\infty} q^{n} f\left(-q^{n}\right)
$$

provided that the series converge absolutely.
The operator ∂_{q} and the Jakson's q-integral allow us to introduce the following useful q-functional spaces :

- The space $\mathscr{E}_{q}\left(\mathbb{R}_{q}\right)$ of all functions f defined on \mathbb{R}_{q} such that, for all $n \in \mathbb{N}$, the limit $\lim _{x \rightarrow 0} \partial_{q}^{n} f(x)$ (in $\left.\mathbb{R}_{q}\right)$ exists. We provide the space $\mathscr{E}_{q}\left(\mathbb{R}_{q}\right)$ with the seminorms $P_{n, a, q}$ defined for $n \in \mathbb{N}$ and $a>0$ by

$$
P_{n, a, q}(f)=\sup \left\{\left|\partial_{q}^{k} f(x)\right| ; 0 \leq k \leq n ; x \in[-a, a] \cap \mathbb{R}_{q}\right\}, \quad f \in \mathscr{E}_{q}\left(\mathbb{R}_{q}\right)
$$

- The space $\mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$ of all functions $f \in \mathscr{E}_{q}\left(\mathbb{R}_{q}\right)$ satisfying

$$
Q_{n, m, q}(f)=\sup _{x \in \mathbb{R}_{q}}\left|x^{m} \partial_{q}^{n} f(x)\right|<+\infty, \quad n, m \in \mathbb{N}
$$

We provide $\mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$ with the topology defined by the semi-norms $Q_{n, m, q}$.

- $\mathscr{D}_{q}\left(\mathbb{R}_{q}\right)$ the subspace of $\mathscr{E}_{q}\left(\mathbb{R}_{q}\right)$ of functions with compact supports.
- $L_{q}^{\infty}\left(\mathbb{R}_{q}\right)$ the space of all bounded functions on \mathbb{R}_{q} endowed with the norm

$$
\|f\|_{\infty, q}=\sup _{x \in \mathbb{R}_{q}}|f(x)|, \quad f \in L_{q}^{\infty}\left(\mathbb{R}_{q}\right)
$$

- $L^{p}\left(\mathbb{R}_{q},|x|^{2 \alpha+1} d_{q} x\right)$ the space of all functions f defined on \mathbb{R}_{q} and satisfying

$$
\|f\|_{p, \alpha, q}=\left(\int_{-\infty}^{\infty}|f(x)|^{p}|x|^{2 \alpha+1} d_{q} x\right)^{\frac{1}{p}}<\infty
$$

provided with the norm $\|\cdot\|_{p, \alpha, q}$.

3. Elements of q-Dunkl Harmonic analysis

In this section, we collect some facts regarding some elements of q-Dunkl harmonic analysis introduced and studied in [1] and [2]. Throughout this section, unless otherwise stated, we assume $\alpha \geq-1 / 2$.

The q-Dunkl operator $\Lambda_{\alpha, q}$ is defined for a complex function f, defined on \mathbb{R}_{q}, by

$$
\begin{equation*}
\Lambda_{\alpha, q}(f)(x)=\partial_{q}\left[f_{e}+q^{2 \alpha+1} f_{o}\right](x)+[2 \alpha+1]_{q} \frac{f(x)-f(-x)}{x} \tag{3}
\end{equation*}
$$

where f_{e} and f_{o} are respectively the even and the odd parts of f.
For any complex number λ, the q-Dunkl Kernel $\psi_{\lambda}^{\alpha, q}$ is defined on \mathbb{C} by

$$
\begin{equation*}
\psi_{\lambda}^{\alpha, q}(x)=j_{\alpha}\left(\lambda x ; q^{2}\right)+\frac{i \lambda x}{[2 \alpha+1]_{q}} j_{\alpha+1}\left(\lambda x ; q^{2}\right) \tag{4}
\end{equation*}
$$

where $j_{\alpha}\left(. ; q^{2}\right)$ is the q-Bessel function given by (1). Note that for $\alpha=-1 / 2$ we have $\psi_{\lambda}^{\alpha, q}(x)=e\left(i \lambda x ; q^{2}\right)$ and $\Lambda_{\alpha, q}=\partial_{q}$.

Proposition 3.1. (see [1]) For every $\lambda \in \mathbb{C}$, the q-Dunkl kernel $\psi_{\lambda}^{\alpha, q}$ is the unique analytic solution of the q-differential-difference equation

$$
\left\{\begin{array}{l}
\Lambda_{\alpha, q}(f)=i \lambda f \\
f(0)=1
\end{array}\right.
$$

When $\alpha>-1 / 2$, for every $\lambda \in \mathbb{C}$, the q-Dunkl kernel $\psi_{\lambda}^{\alpha, q}$ possesses the following q-integral representation of Mehler type:

$$
\psi_{\lambda}^{\alpha, q}(x)=\frac{(1+q) \Gamma_{q^{2}}(\alpha+1)}{2 \Gamma_{q^{2}}\left(\alpha+\frac{1}{2}\right)} \int_{-1}^{1} \frac{\left(t^{2} q^{2} ; q^{2}\right)_{\infty}}{\left(t^{2} q^{2 \alpha+1} ; q^{2}\right)_{\infty}}(1+t) e\left(i \lambda x t ; q^{2}\right) d_{q} t
$$

for all $x \in \mathbb{R}_{q}$. This formula gives rise to the q-Dunkl intertwining operator $V_{\alpha, q}$ defined for $f \in \mathscr{E}_{q}\left(\mathbb{R}_{q}\right)$ by

$$
\begin{equation*}
V_{\alpha, q}(f)(x)=\frac{(1+q) \Gamma_{q^{2}}(\alpha+1)}{2 \Gamma_{q^{2}}\left(\frac{1}{2}\right) \Gamma_{q^{2}}\left(\alpha+\frac{1}{2}\right)} \int_{-1}^{1} W_{\alpha}\left(t, q^{2}\right)(1+t) f(x t) d_{q} t, \quad x \in \mathbb{R}_{q} \tag{5}
\end{equation*}
$$

and the dual q-Dunkl intertwining operator ${ }^{t} V_{\alpha, q}$ defined for $f \in \mathscr{D}_{q}\left(\mathbb{R}_{q}\right)$ by

$$
\left({ }^{t} V_{\alpha, q}\right)(f)(x)=\frac{(1+q)^{-\alpha+\frac{1}{2}}}{2 \Gamma_{q^{2}}\left(\alpha+\frac{1}{2}\right)} \int_{|y| \geq q|x|} W_{\alpha}\left(\frac{x}{y} ; q^{2}\right)\left(1+\frac{x}{y}\right) f(y)|y|^{2 \alpha} d_{q} y
$$

for all $x \in \mathbb{R}_{q}$, where

$$
\begin{equation*}
W_{\alpha}\left(t, q^{2}\right)=\frac{\left(t^{2} q^{2} ; q^{2}\right)_{\infty}}{\left(t^{2} q^{2 \alpha+1} ; q^{2}\right)_{\infty}} \tag{6}
\end{equation*}
$$

Note that for every $\lambda \in \mathbb{C}$, we have $V_{\alpha, q}\left(e\left(-i \lambda \cdot ; q^{2}\right)\right)(x)=\psi_{-\lambda}^{\alpha, q}(x)$ for all $x \in \mathbb{R}_{q}$.

The operators $V_{\alpha, q}$ and ${ }^{t} V_{\alpha, q}$ are linked to each other by the duality relation

$$
\begin{equation*}
\int_{-\infty}^{+\infty} V_{\alpha, q}(f)(x) g(x)|x|^{2 \alpha+1} d_{q} x=\frac{(1+q)^{\alpha+\frac{1}{2}} \Gamma_{q^{2}}(\alpha+1)}{\Gamma_{q^{2}}\left(\frac{1}{2}\right)} \int_{-\infty}^{+\infty} f(t)\left({ }^{t} V_{\alpha, q}\right)(g)(t) d_{q} t \tag{7}
\end{equation*}
$$

for all $f \in \mathcal{E}_{q}\left(\mathbb{R}_{q}\right)$ and $g \in \mathscr{D}_{q}\left(\mathbb{R}_{q}\right)$. Moreover, it has been shown in[1] that the q-Dunkl intertwining operator $V_{\alpha, q}$ is a transmutation operator between $\Lambda_{\alpha, q}$ and ∂_{q} on $\mathscr{E}_{q}\left(\mathbb{R}_{q}\right)$, that is, a topological isomorphism from $\mathscr{E}_{q}\left(\mathbb{R}_{q}\right)$ into itself satisfying the following transmutation relation:

$$
\begin{equation*}
\Lambda_{\alpha, q} V_{\alpha, q}(f)=V_{\alpha, q}\left(\partial_{q} f\right), \quad f \in \mathscr{E}_{q}\left(\mathbb{R}_{q}\right) \tag{8}
\end{equation*}
$$

whereas, for the dual q-Dunkl intertwining operator ${ }^{t} V_{\alpha, q}$, only the transmutation relation

$$
\partial_{q}\left({ }^{t} V_{\alpha, q}(f)\right)={ }^{t} V_{\alpha, q}\left(\Lambda_{\alpha, q} f\right), \quad f \in \mathscr{D}_{q}\left(\mathbb{R}_{q}\right)
$$

have been shown. In the next section we will extend the operator ${ }^{t} V_{\alpha, q}$ to the space $L^{1}\left(\mathbb{R}_{q},|x|^{2 \alpha+1} d_{q} x\right)$ and we will show that it is a transmutation operator between ∂_{q} and $\Lambda_{\alpha, q}$ on $\mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$.

In the remainder of this paper, we assume, as in [1, 2, 20, 21], that

$$
\frac{\log (1-q)}{\log q} \in 2 \mathbb{Z}
$$

The q-Dunkl kernel $\psi_{\lambda}^{\alpha, q}, \lambda \in \mathbb{C}$, gives rise to the q-Dunkl transform $F_{D}^{\alpha, q}$ defined for $f \in L^{1}\left(\mathbb{R}_{q},|x|^{2 \alpha+1} d_{q} x\right)$ by

$$
F_{D}^{\alpha, q}(f)(\lambda)=\frac{(1+q)^{-\alpha}}{2 \Gamma_{q^{2}}(\alpha+1)} \int_{-\infty}^{+\infty} f(x) \psi_{-\lambda}^{\alpha, q}(x)|x|^{2 \alpha+1} d_{q} x, \quad \lambda \in \mathbb{R}_{q},
$$

which is a q-analogue of the classical Dunkl transform studied in $[6-8,19]$.
Remark 3.2. For $\alpha=-1 / 2$, the q-Dunkl transform is the q^{2}-analogue Fourier transform (see $[20,21]$) given by

$$
\begin{equation*}
F_{q}(f)(\lambda)=\frac{(1+q)^{\frac{1}{2}}}{2 \Gamma_{q^{2}}\left(\frac{1}{2}\right)} \int_{-\infty}^{+\infty} f(x) e\left(-i \lambda x ; q^{2}\right) d_{q} x, \quad \lambda \in \mathbb{R}_{q} \tag{9}
\end{equation*}
$$

and on the space of even functions, $F_{D}^{\alpha, q}$ coincides with the q-Bessel transform given by (see [1, 2, 9])

$$
\begin{equation*}
F_{\alpha, q}(f)(\lambda)=\frac{(1+q)^{-\alpha}}{\Gamma_{q^{2}}(\alpha+1)} \int_{0}^{+\infty} f(x) j_{\alpha}\left(\lambda x ; q^{2}\right) x^{2 \alpha+1} d_{q} x, \quad \lambda \in \mathbb{R}_{q} \tag{10}
\end{equation*}
$$

Proposition 3.3.

(a) The q-Dunkl transform $F_{D}^{\alpha, q}$ is a topological automorphism of $\mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$.
(b) For $f \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$, we have $F_{D}^{\alpha, q}\left(\Lambda_{\alpha, q} f\right)(\lambda)=i \lambda F_{D}^{\alpha, q}(\lambda)$ for all $\lambda \in \mathbb{R}_{q}$.
(c) Inversion formula : For $f \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$ we have

$$
\begin{equation*}
f(x)=\frac{(1+q)^{-\alpha}}{2 \Gamma_{q^{2}}(\alpha+1)} \int_{-\infty}^{+\infty} F_{D}^{\alpha, q}(f)(\lambda) \psi_{\lambda}^{\alpha, q}(x)|\lambda|^{2 \alpha+1} d_{q} \lambda, \quad x \in \mathbb{R}_{q} . \tag{11}
\end{equation*}
$$

(d) Plancherel formula: For all $f \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$ we have

$$
\begin{equation*}
\left\|F_{D}^{\alpha, q}(f)\right\|_{2, \alpha, q}=\|f\|_{2, \alpha, q} . \tag{12}
\end{equation*}
$$

For any $y \in \mathbb{R}_{q} \cup\{0\}$ we define the generalized q-Dunkl translation operator $T_{y}^{\alpha ; q}$ for $f \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$ by

$$
\begin{equation*}
T_{y}^{\alpha ; q}(f)(x)=\frac{(1+q)^{-\alpha}}{2 \Gamma_{q^{2}}(\alpha+1)} \int_{-\infty}^{\infty} F_{D}^{\alpha, q}(f)(\lambda) \psi_{\lambda}^{\alpha, q}(x) \psi_{\lambda}^{\alpha, q}(y)|\lambda|^{2 \alpha+1} d_{q} \lambda \tag{13}
\end{equation*}
$$

for all $x \in \mathbb{R}_{q}$. The q -Dunkl translation operators allow us to define a q-Dunkl convolution product $*_{\alpha, q}$ on $\mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$ as follows (see [2]): for $f, g \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$,

$$
f *_{\alpha, q} g(x)=\frac{(1+q)^{-\alpha}}{2 \Gamma_{q^{2}}(\alpha+1)} \int_{-\infty}^{\infty} T_{x}^{\alpha ; q} f(-y) g(y)|y|^{2 \alpha+1} d_{q} y, \quad x \in \mathbb{R}_{q}
$$

This convolution product is commutative and associative. Moreover, for f, g in $\mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$ we have $f *_{\alpha, q} g \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$, and $F_{D}^{\alpha, q}\left(f *_{\alpha, q} g\right)=F_{D}^{\alpha, q}(f) \cdot F_{D}^{\alpha, q}(g)$.

4. The q-Dunkl-Sonine transform

From now on, unless otherwise stated, we assume that $\beta>\alpha \geq-1 / 2$.
Proposition 4.1. For every $\lambda \in \mathbb{C}$, the function $j_{\alpha}\left(\lambda \cdot ; q^{2}\right)$ admits the q-integral representation of Sonine type:

$$
\begin{align*}
& j_{\beta}\left(\lambda x ; q^{2}\right) \\
& \quad=\frac{(1+q) \Gamma_{q^{2}}(\beta+1)}{\Gamma_{q^{2}}(\alpha+1) \Gamma_{q^{2}}(\beta-\alpha)} \int_{0}^{1} j_{\alpha}\left(\lambda x t ; q^{2}\right) W_{\beta-\alpha-\frac{1}{2}}\left(t ; q^{2}\right) t^{2 \alpha+1} d_{q} t, \quad x \in \mathbb{C}, \tag{14}
\end{align*}
$$

where $W_{\beta-\alpha-\frac{1}{2}}\left(t ; q^{2}\right)$ is given by (6).
Proof. It follows from (1) that

$$
\begin{aligned}
\int_{0}^{1} j_{\alpha}\left(\lambda x t ; q^{2}\right) W_{\beta-\alpha-\frac{1}{2}}\left(t ; q^{2}\right) t^{2 \alpha+1} d_{q} t & = \\
& \sum_{n=0}^{+\infty} \frac{(-1)^{n} q^{n(n+1)} \Gamma_{q^{2}}(\alpha+1) I_{n}}{\Gamma_{q^{2}}(n+\alpha+1) \Gamma_{q^{2}}(n+1)}\left(\frac{\lambda x}{1+q}\right)^{2 n}
\end{aligned}
$$

for all $x \in \mathbb{C}$, where

$$
I_{n}=(1+q) \int_{0}^{1} \frac{\left(t^{2} q^{2} ; q^{2}\right)_{\infty}}{\left(t^{2} q^{2(\beta-\alpha)} ; q^{2}\right)_{\infty}} t^{2 \alpha+2 n+1} d_{q} t
$$

Using the q-Beta integral (see the proof of Theorem 1 in [9])

$$
\frac{\Gamma_{q^{2}}(x) \Gamma_{q^{2}}(y)}{\Gamma_{q^{2}}(x+y)}=(1+q) \int_{0}^{1} \frac{\left(t^{2} q^{2} ; q^{2}\right)_{\infty}}{\left(t^{2} q^{2 y} ; q^{2}\right)_{\infty}} t^{2 x-1} d_{q} t, \quad x, y>0
$$

we get the q-Sonine formule (14).
In the following proposition, we extend (14) to the q-Dunkl setting.
Proposition 4.2. For every $\lambda \in \mathbb{C}$, the q-Dunkl-Sonine formula

$$
\begin{align*}
& \psi_{\lambda}^{\beta, q}(x) \\
& \quad=\frac{(1+q) \Gamma_{q^{2}}(\beta+1)}{2 \Gamma_{q^{2}}(\alpha+1) \Gamma_{q^{2}}(\beta-\alpha)} \int_{-1}^{1} \psi_{\lambda}^{\alpha, q}(x t) W_{\beta-\alpha-\frac{1}{2}}\left(t ; q^{2}\right)(1+t)|t|^{2 \alpha+1} d_{q} t \tag{15}
\end{align*}
$$

holds for all $x \in \mathbb{C}$.

Proof. Set $a_{\alpha, \beta}^{q}=\frac{(1+q) \Gamma_{q^{2}}(\beta+1)}{2 \Gamma_{q^{2}}(\alpha+1) \Gamma_{q^{2}}(\beta-\alpha)}$. By parity argument, formula (14) can be written as

$$
\begin{equation*}
j_{\beta}\left(\lambda x ; q^{2}\right)=a_{\alpha, \beta}^{q} \int_{-1}^{1} j_{\alpha}\left(\lambda x t ; q^{2}\right) W_{\beta-\alpha-\frac{1}{2}}\left(t ; q^{2}\right)(1+t)|t|^{2 \alpha+1} d_{q} t \tag{16}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
\lambda \partial_{q}\left(j_{\beta}\left(. ; q^{2}\right)\right) & (\lambda x) \\
& =a_{\alpha, \beta}^{q} \int_{-1}^{1} \lambda t \partial_{q}\left(j_{\alpha}\left(. ; q^{2}\right)\right)(\lambda x t) W_{\beta-\alpha-\frac{1}{2}}\left(t ; q^{2}\right)(1+t)|t|^{2 \alpha+1} d_{q} t .
\end{aligned}
$$

Using (2), we get

$$
\begin{aligned}
& \frac{\lambda x}{[2 \beta+2]_{q}} j_{\beta+1}\left(\lambda x ; q^{2}\right) \\
& \quad=a_{\alpha, \beta}^{q} \int_{-1}^{1} \frac{\lambda x t}{[2 \alpha+2]_{q}} j_{\alpha+1}\left(\lambda x t ; q^{2}\right) W_{\beta-\alpha-\frac{1}{2}}\left(t ; q^{2}\right)(1+t)|t|^{2 \alpha+1} .
\end{aligned}
$$

Combining this with (16) yields the q-Dunkl-Sonine formula (15).
Definition 4.3. The q-Dunkl Sonine transform $\mathcal{S}_{\alpha, \beta}^{q}$ is defined, for $f \in \mathscr{E}_{q}\left(\mathbb{R}_{q}\right)$, by

$$
\begin{align*}
& \mathcal{S}_{\alpha, \beta}^{q}(f)(x) \\
& \quad=\frac{(1+q) \Gamma_{q^{2}}(\beta+1)}{2 \Gamma_{q^{2}}(\alpha+1) \Gamma_{q^{2}}(\beta-\alpha)} \int_{-1}^{1} f(x t) W_{\beta-\alpha-\frac{1}{2}}\left(t ; q^{2}\right)(1+t)|t|^{2 \alpha+1} d_{q} t, \tag{17}
\end{align*}
$$

for all $x \in \mathbb{R}_{q}$, which can be written as

$$
\begin{align*}
& \mathcal{S}_{\alpha, \beta}^{q}(f)(x) \\
= & \frac{(1+q) \Gamma_{q^{2}}(\beta+1)}{2 \Gamma_{q^{2}}(\alpha+1) \Gamma_{q^{2}}(\beta-\alpha)|x|^{2 \alpha+2}} \int_{-|x|}^{|x|} f(y) W_{\beta-\alpha-\frac{1}{2}}\left(\frac{y}{x} ; q^{2}\right)\left(1+\frac{y}{x}\right)|y|^{2 \alpha+1} d_{q} y, \tag{18}
\end{align*}
$$

for all $x \in \mathbb{R}_{q}$.

Remark 4.4.

(a) For every $\lambda \in \mathbb{C}$, we have $\psi_{\lambda}^{\beta, q}=\mathcal{S}_{\alpha, \beta}^{q}\left(\psi_{\lambda}^{\alpha, q}\right)$.
(b) If $\alpha=-\frac{1}{2}$, then the q-Dunkl Sonine transform $\mathcal{S}_{\alpha, \beta}^{q}$ reduces to the q-Dunkl intertwining operator $V_{\beta, q}$ given by (5).
Definition 4.5. The dual q-Dunkl-Sonine transform ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q}$ is defined for suitable function f, by

$$
\begin{equation*}
{ }^{t} \mathcal{S}_{\alpha, \beta}^{q}(f)(x)=\frac{(1+q)^{\alpha-\beta+1}}{2 \Gamma_{q^{2}}(\beta-\alpha)} \int_{|y| \geq q|x|} f(y) W_{\beta-\alpha-\frac{1}{2}}\left(\frac{x}{y} ; q^{2}\right)\left(1+\frac{x}{y}\right)|y|^{2(\beta-\alpha)-1} d_{q} y \tag{19}
\end{equation*}
$$

for all $x \in \mathbb{R}_{q}$.

Proposition 4.6. (a) The dual q-Dunkl-Sonine transform ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q}$ is a continuous linear mapping from $L^{1}\left(\mathbb{R}_{q},|x|^{2 \beta+1} d_{q} x\right)$ into $L^{1}\left(\mathbb{R}_{q},|x|^{2 \alpha+1} d_{q} x\right)$.
(b) For $f \in \mathscr{E}_{q}\left(\mathbb{R}_{q}\right) \cap L_{q}^{\infty}\left(\mathbb{R}_{q}\right)$ and $g \in L^{1}\left(\mathbb{R}_{q},|x|^{2 \beta+1} d_{q} x\right)$, we have the duality relation

$$
\begin{align*}
& \int_{-\infty}^{+\infty} \mathcal{S}_{\alpha, \beta}^{q}(f)(x) g(x)|x|^{2 \beta+1} d_{q} x \\
&=\frac{(1+q)^{\beta} \Gamma_{q^{2}}(\beta+1)}{(1+q)^{\alpha} \Gamma_{q^{2}}(\alpha+1)} \int_{-\infty}^{+\infty} f(x)^{t} \mathcal{S}_{\alpha, \beta}^{q}(g)(x)|x|^{2 \alpha+1} d_{q} x \tag{20}
\end{align*}
$$

Proof. To prove (a), let $f \in L^{1}\left(\mathbb{R}_{q},|x|^{2 \beta+1}\right)$. Using Tonelly's Theorem and series manipulations, we obtain

$$
\begin{aligned}
& \int_{-\infty}^{+\infty}\left(\int_{|y| \geq q|x|}|f(y)| W_{\beta-\alpha-\frac{1}{2}}\left(\frac{x}{y} ; q^{2}\right)\left(1+\frac{x}{y}\right)|y|^{2(\beta-\alpha)-1} d_{q} y\right)|x|^{2 \alpha+1} d_{q} x \\
& \quad=\int_{-\infty}^{+\infty}\left(\frac{1}{|y|^{2 \alpha+2}} \int_{-|y|}^{|y|} W_{\beta-\alpha-\frac{1}{2}}\left(\frac{x}{y} ; q^{2}\right)\left(1+\frac{x}{y}\right)|x|^{2 \alpha+1} d_{q} x\right)|f(y)||y|^{2 \beta+1} d_{q} y
\end{aligned}
$$

Since by (18) together with Remark 4.4 (a), we have

$$
\begin{aligned}
\frac{(1+q) \Gamma_{q^{2}}(\beta+1)}{2 \Gamma_{q^{2}}(\alpha+1) \Gamma_{q^{2}}(\beta-\alpha)|y|^{2 \alpha+2}} \int_{-|y|}^{|y|} W_{\beta-\alpha-\frac{1}{2}}\left(\frac{x}{y} ; q^{2}\right)\left(1+\frac{x}{y}\right)|x|^{2 \alpha+1} & d_{q} x \\
& =\psi_{0}^{\alpha, q}(y)=1
\end{aligned}
$$

for all $y \in \mathbb{R}_{q}$, it follows that

$$
\begin{aligned}
& \int_{-\infty}^{+\infty}\left(\int_{|y| \geq q|x|}|f(y)| W_{\beta-\alpha-\frac{1}{2}}\left(\frac{x}{y} ; q^{2}\right)\left(1+\frac{x}{y}\right)|y|^{2(\beta-\alpha)-1} d_{q} y\right)|x|^{2 \alpha+1} d_{q} x \\
&=\frac{2 \Gamma_{q^{2}}(\alpha+1) \Gamma_{q^{2}}(\beta-\alpha)}{(1+q) \Gamma_{q^{2}}(\beta+1)}\|f\|_{1, \beta, q}
\end{aligned}
$$

Hence, by the Fubini theorem, the function ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q}(f)$ is defined on \mathbb{R}_{q}, belongs to $L^{1}\left(\mathbb{R}_{q},|x|^{2 \alpha+1} d_{q} x\right)$ and satisfies

$$
\left\|^{t} \mathcal{S}_{\alpha, \beta}^{q}(f)\right\|_{1, \alpha, q} \leq \frac{(1-q)^{\alpha} \Gamma_{q^{2}}(\alpha+1)}{(1-q)^{\beta} \Gamma_{q^{2}}(\beta+1)}\|f\|_{1, \beta, q} .
$$

Thus, ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q}$ maps continuously $L^{1}\left(\mathbb{R}_{q},|x|^{2 \beta+1}\right)$ into $L^{1}\left(\mathbb{R}_{q},|x|^{2 \alpha+1}\right)$.
Part (b) can be proved using the Fubini's theorem and series manipulations.
Remark 4.7. The relation (20) holds also for $f \in \mathscr{E}_{q}\left(\mathbb{R}_{q}\right)$ and $g \in \mathscr{D}_{q}\left(\mathbb{R}_{q}\right)$.
Corollary 4.8. The q-Dunkl transform $F_{D}^{\beta, q}$ admits the factorization

$$
\begin{equation*}
F_{D}^{\beta, q}=F_{D}^{\alpha, q} \circ{ }^{t} \mathcal{S}_{\alpha, \beta}^{q} \tag{21}
\end{equation*}
$$

on $L^{1}\left(\mathbb{R}_{q},|x|^{2 \beta+1} d_{q} x\right)$.

Proof. Let $f \in L^{1}\left(\mathbb{R}_{q},|x|^{2 \beta+1} d_{q} x\right)$ and $\lambda \in \mathbb{R}_{q}$. It follows from Remark 4.4 (a) that

$$
F_{D}^{\beta, q}(f)(\lambda)=\frac{(1+q)^{-\beta}}{2 \Gamma_{q^{2}}(\beta+1)} \int_{-\infty}^{+\infty} f(x) \mathcal{S}_{\alpha, \beta}^{q}\left(\psi_{-\lambda}^{\alpha, q}\right)|x|^{2 \beta+1} d_{q} x
$$

Since, by Proposition 6 of [1], we have $\left|\psi_{\lambda}^{\alpha, q}(x)\right| \leq 4 /(q, q)_{\infty}$, for all $x \in \mathbb{R}_{q}$, it follows that $\psi_{\lambda}^{\alpha, q} \in \mathscr{E}_{q}\left(\mathbb{R}_{q}\right) \cap L_{q}^{\infty}\left(\mathbb{R}_{q}\right)$. Hence, using the duality relation (20), we obtain

$$
\begin{aligned}
F_{D}^{\beta, q}(f)(\lambda) & =\int_{-\infty}^{+\infty} f(x) \mathcal{S}_{\alpha, \beta}^{q}\left(\psi_{-\lambda}^{\alpha, q}\right)|x|^{2 \beta+1} d_{q} x \\
& =\frac{(1+q)^{-\alpha}}{2 \Gamma_{q^{2}}(\alpha+1)} \int_{-\infty}^{+\infty}{ }^{t} \mathcal{S}_{\alpha, \beta}^{q}(f)(x) \psi_{-\lambda}^{\alpha, q}(x)|x|^{2 \alpha+1} d_{q} x \\
& =F_{D}^{\alpha, q}\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q} f\right)(\lambda)
\end{aligned}
$$

Thus, $F_{D}^{\beta, q}(f)=F_{D}^{\alpha, q} \circ{ }^{t} \mathcal{S}_{\alpha, \beta}^{q}(f)$ for all $f \in L^{1}\left(\mathbb{R}_{q},|x|^{2 \beta+1} d_{q} x\right)$.
Next, we extend the definition of the dual q-Dunkl intertwining operator, ${ }^{t} V_{\alpha}$, to the space $L^{1}\left(\mathbb{R}_{q},|x|^{2 \alpha+1} d_{q} x\right)$.

Definition 4.9. Let $\alpha>-1 / 2$. We define the dual q-Dunkl intertwining operator ${ }^{t} V_{\alpha, q}$, for $f \in L^{1}\left(\mathbb{R}_{q},|x|^{2 \alpha+1} d_{q} x\right)$, by

$$
\left({ }^{t} V_{\alpha, q}\right)(f)(x)=\frac{(1+q)^{-\alpha+\frac{1}{2}}}{2 \Gamma_{q^{2}}\left(\alpha+\frac{1}{2}\right)} \int_{|y| \geq q|x|} W_{\alpha}\left(\frac{x}{y} ; q^{2}\right)\left(1+\frac{x}{y}\right) f(y)|y|^{2 \alpha} d_{q} y, \quad x \in \mathbb{R}_{q}
$$

Remark 4.10.

(a) For $\alpha>-1 / 2$, we have ${ }^{t} V_{\alpha, q}={ }^{t} \mathcal{S}_{-\frac{1}{2}, \alpha}^{q}$.
(b) For $\beta>\alpha \geq-1 / 2$, we have ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q}={ }^{t} V_{\beta-\alpha-\frac{1}{2}, q}$.

Proposition 4.11.

(a) The dual q-Dunkl intertwining operator ${ }^{t} V_{\alpha, q}$ is a continuous linear mapping from $L^{1}\left(\mathbb{R}_{q},|x|^{2 \alpha+1} d_{q} x\right)$ into $L^{1}\left(\mathbb{R}_{q}, d_{q} x\right)$.
(b) The q-Dunkl transform $F_{D}^{\alpha, q}$ is linked to the q^{2}-analogue Fourier transform F_{q} by

$$
\begin{equation*}
F_{D}^{\alpha, q}(f)=\left(F_{q} \circ^{t} V_{\alpha, q}\right)(f), \quad f \in L^{1}\left(\mathbb{R}_{q},|x|^{2 \alpha+1} d_{q} x\right) \tag{22}
\end{equation*}
$$

(c) The dual q-Dunkl intertwining operator ${ }^{t} V_{\alpha, q}$ is a topological automorphism of $\mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$ and satisfies the transmutation relation

$$
\begin{equation*}
\partial_{q}\left({ }^{t} V_{\alpha, q}(f)\right)={ }^{t} V_{\alpha, q}\left(\Lambda_{\alpha, q} f\right), \quad f \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right) \tag{23}
\end{equation*}
$$

Proof. Part (a) easily follows from Proposition 4.6 (a) together with Remark 4.10. Part (b) follows from Corollary 4.8 and Remark 4.10. For part (c), it follows from part (b) that ${ }^{t} V_{\alpha, q}=F_{q}^{-1} \circ F_{D}^{\alpha, q}$ on $\mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$. So, by Proposition 3.3 (a), ${ }^{t} V_{\alpha, q}$ is a topological automorphism of $\mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$. Moreover, using part (b) of Proposition 3.3 together with (22), we obtain

$$
\begin{aligned}
F_{q}\left(\partial_{q}\left({ }^{t} V_{\alpha, q}(f)\right)\right)=i \lambda F_{q}\left({ }^{t} V_{\alpha, q}(f)\right) & \\
& =i \lambda F_{D}^{\alpha, q}(f)=F_{D}^{\alpha, q}\left(\Lambda_{\alpha, q} f\right)=F_{q}\left({ }^{t} V_{\alpha, q}\left(\Lambda_{\alpha, q} f\right)\right),
\end{aligned}
$$

for all $f \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$. Hence, (23) follows from the injectivity of F_{q}.
Theorem 4.12. Let $\alpha, \beta \in]-\frac{1}{2},+\infty[$ such that $\beta>\alpha$.
(a) The dual q-Dunkl-Sonine transform ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q}$ is a topological automorphism of $\mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$, and satisfies the following relations:

$$
\begin{array}{ll}
{ }^{t} \mathcal{S}_{\alpha, \beta}^{q}(f)=\left({ }^{t} V_{\alpha, q}\right)^{-1} \circ{ }^{t} V_{\beta, q}(f), & f \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right), \\
\Lambda_{\alpha, q}\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q}(f)\right)={ }^{t} \mathcal{S}_{\alpha, \beta}^{q}\left(\Lambda_{\beta, q} f\right), & f \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right) \tag{25}
\end{array}
$$

(b) The q-Dunkl-Sonine transform $\mathcal{S}_{\alpha, \beta}^{q}$ is a topological automorphism of $\mathscr{E}_{q}\left(\mathbb{R}_{q}\right)$ and satisfies the following relations

$$
\begin{array}{ll}
\mathcal{S}_{\alpha, \beta}^{q}(f)=V_{\beta, q} \circ\left(V_{\alpha, q}\right)^{-1}(f), & f \in \mathscr{E}_{q}\left(\mathbb{R}_{q}\right), \\
\Lambda_{\beta, q}\left(\mathcal{S}_{\alpha, \beta}^{q}(f)\right)=\mathcal{S}_{\alpha, \beta}^{q}\left(\Lambda_{\alpha, q} f\right), & f \in \mathscr{E}_{q}\left(\mathbb{R}_{q}\right) \tag{27}
\end{array}
$$

Proof. For part (a), by Corollary 4.8, we have ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q}=\left(F_{D}^{\alpha, q}\right)^{-1} \circ F_{D}^{\beta, q}$. Hence, part (a) of Proposition 3.3 infers that ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q}$ is a topological automorphism of $\mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$. Moreover, (24) follows immediately from (22). The proof of (25) runs in a similar way as the proof of (23) using Corollary 4.8 and Proposition 3.3 (b).

For (b), we start by proving (26) which is equivalent to $\mathcal{S}_{\alpha, \beta}^{q} \circ V_{\alpha, q}=V_{\beta, q}$. It suffices, therefore, to prove that for all $f \in \mathscr{E}_{q}\left(\mathbb{R}_{q}\right)$ and $g \in \mathscr{D}_{q}\left(\mathbb{R}_{q}\right)$ we have

$$
\int_{-\infty}^{+\infty} \mathcal{S}_{\alpha, \beta}^{q}\left(V_{\alpha, q} f\right)(x) g(x)|x|^{2 \beta+1} d_{q}=\int_{-\infty}^{+\infty} V_{\beta, q} f(x) g(x)|x|^{2 \beta+1} d_{q} x .
$$

Let $f \in \mathscr{E}_{q}\left(\mathbb{R}_{q}\right)$ and $g \in \mathscr{D}_{q}\left(\mathbb{R}_{q}\right)$. To simplify the notations, set

$$
K_{\alpha, q}=\frac{(1+q)^{\alpha+\frac{1}{2}} \Gamma_{q^{2}}(\alpha+1)}{\Gamma_{q^{2}}\left(\frac{1}{2}\right)} \quad \text { and } \quad K_{\alpha, \beta}^{q}=\frac{(1+q)^{\beta-\alpha} \Gamma_{q^{2}}(\beta+1)}{\Gamma_{q^{2}}(\alpha+1)}
$$

By Remark 4.6, we can apply the duality relation (20) as follows

$$
\int_{-\infty}^{+\infty} \mathcal{S}_{\alpha, \beta}^{q}\left(V_{\alpha, q} f\right)(x) g(x)|x|^{2 \beta+1} d_{q}=K_{\alpha, \beta}^{q} \int_{-\infty}^{+\infty} V_{\alpha, q} f(x)^{t} \mathcal{S}_{\alpha, \beta}^{q}(g)(x)|x|^{2 \alpha+1} d_{q} x .
$$

Since, obviously, ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q}(g) \in \mathscr{D}_{q}\left(\mathbb{R}_{q}\right)$, we can apply the duality relation (7). We obtain

$$
\int_{-\infty}^{+\infty} V_{\alpha, q} f(x)^{t} \mathcal{S}_{\alpha, \beta}^{q}(g)(x)|x|^{2 \alpha+1} d_{q} x=K_{\alpha, q} \int_{-\infty}^{+\infty} f(x)\left({ }^{t} V_{\alpha, q}{ }^{t} \mathcal{S}_{\alpha, \beta}^{q}\right)(g)(x) d_{q} x
$$

Using (24) we get

$$
\int_{-\infty}^{+\infty} V_{\alpha, q} f(x)^{t} \mathcal{S}_{\alpha, \beta}^{q}(g)(x)|x|^{2 \alpha+1} d_{q} x=K_{\alpha, q} \int_{-\infty}^{+\infty} f(x)\left({ }^{t} V_{\beta, q}\right)(g)(x) d_{q} x .
$$

Hence, using the duality relation (7) and the fact that $K_{\alpha, \beta}^{q}=\frac{K_{\beta, q}}{K_{\alpha, q}}$, we deduce that

$$
\int_{-\infty}^{+\infty} \mathcal{S}_{\alpha, \beta}^{q}\left(V_{\alpha, q} f\right)(x) g(x)|x|^{2 \beta+1} d_{q}=\int_{-\infty}^{+\infty} V_{\beta, q} f(x) g(x)|x|^{2 \beta+1} d_{q} x
$$

This achieves the proof of (26) which, together with the fact that, as mentioned in Section 2, $V_{\alpha, q}$ is a topological isomorphism of $\mathscr{E}_{q}\left(\mathbb{R}_{q}\right)$, infers that $\mathcal{S}_{\alpha, \beta}^{q}$ is a topological automorphism of $\mathscr{E}_{q}\left(\mathbb{R}_{q}\right)$.

To prove (27), let $f \in \mathscr{E}_{q}\left(\mathbb{R}_{q}\right)$. From the factorization Relation (26) and the transmutation relation (8), we have

$$
\Lambda_{\beta, q}\left(\mathcal{S}_{\alpha, \beta}^{q}(f)\right)=\Lambda_{\beta, q} V_{\beta, q}\left(V_{\alpha, q}^{-1}(f)\right)=V_{\beta, q}\left(\partial_{q} V_{\alpha, q}^{-1}(f)\right)
$$

Since (8) implies that $\partial_{q}\left(V_{\alpha, q}^{-1} f\right)=V_{\alpha, q}^{-1}\left(\Lambda_{\alpha, q} f\right)$, it follows that

$$
\Lambda_{\beta, q}\left(\mathcal{S}_{\alpha, \beta}^{q} f\right)=V_{\beta, q} \circ V_{\alpha, q}^{-1}\left(\Lambda_{\alpha, q}(f)\right)=\mathcal{S}_{\alpha, \beta}^{q} \Lambda_{\alpha, q}(f)
$$

This completes the proof of the theorem.

5. Inversion formulas for the q-Dunkl-Sonine transform and its dual using q -pseudo-differential operators

In this section, we give inversion formulas for the q-Dunkl sonine transform $\mathcal{S}_{\alpha, \beta}^{q}$ and its dual ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q}$ using q-pseudo-differential operators. Next, we give Plancherel formula for the dual q-Dunkl-sonine transform.

We begin by introducing the q-analogues of the Lizorkin spaces (see [22]) :

- $\Phi_{\alpha}^{q}\left(\mathbb{R}_{q}\right)=\left\{f \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right): \int_{-\infty}^{+\infty} f(x)|x|^{2 \alpha+k+1}=0, \quad k=0,1, \ldots\right\} ;$
- $\Psi_{q}\left(\mathbb{R}_{q}\right)=\left\{f \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right): \partial_{q}^{k} f(0)=0, \quad k=0,1, \ldots\right\}$.

Proposition 5.1. (see [2]) For every $\alpha \geq-1 / 2$, the q-Dunkl transform $F_{D}^{\alpha, q}$ is an isomorphism from $\Phi_{\alpha}^{q}\left(\mathbb{R}_{q}\right)$ into $\Psi_{q}\left(\mathbb{R}_{q}\right)$.

Lemma 5.2. (see $[2,3])$ For every $\lambda \in \mathbb{C}$, the multiplication operator $M_{\lambda}: f \mapsto|x|^{\lambda} f$ is a topological automorphism of $\Psi_{q}\left(\mathbb{R}_{q}\right)$, its inverse operator is $M_{-\lambda}$.

Proposition 5.3. If $f \in \Phi_{\alpha}^{q}\left(\mathbb{R}_{q}\right)$, then for all $\lambda \in \mathbb{R}_{q}$, we have

$$
\begin{equation*}
F_{D}^{\beta, q}\left(\mathcal{S}_{\alpha, \beta}^{q} g f\right)(\lambda)=\frac{(1+q)^{\beta} \Gamma_{q^{2}}(\beta+1)}{(1+q)^{\alpha} \Gamma_{q^{2}}(\alpha+1)} \frac{1}{|\lambda|^{2(\beta-\alpha)}} F_{D}^{\alpha, q}(f)(\lambda) \tag{28}
\end{equation*}
$$

Proof. By the inversion formula (11), we have

$$
f(x)=\frac{(1+q)^{-\alpha}}{2 \Gamma_{q^{2}}(\alpha+1)} \int_{-\infty}^{+\infty} F_{D}^{\alpha, q}(f)(\lambda) \psi_{\lambda}^{\alpha, q}(x)|\lambda|^{2 \alpha+1} d_{q} \lambda, \quad x \in \mathbb{R}_{q}
$$

Using Fubini's theorem and the fact that $\psi_{\lambda}^{\beta, q}=\mathcal{S}_{\alpha, \beta}^{q}\left(\psi_{\lambda}^{\alpha, q}\right)$, we obtain

$$
\begin{aligned}
\mathcal{S}_{\alpha, \beta}^{q} f(x) & =\frac{(1+q)^{-\alpha}}{2 \Gamma_{q^{2}}(\alpha+1)} \int_{-\infty}^{+\infty} F_{D}^{\alpha, q}(f)(\lambda) \psi_{\lambda}^{\beta, q}(x)|\lambda|^{2 \alpha+1} d_{q} \lambda \\
& =\frac{(1+q)^{-\beta}}{2 \Gamma_{q^{2}}(\beta+1)} \int_{-\infty}^{+\infty} h_{\alpha, \beta}^{q}(\lambda) \psi_{\lambda}^{\beta, q}(x)|\lambda|^{2 \beta+1} d_{q} \lambda
\end{aligned}
$$

for all $x \in \mathbb{R}_{q}$, where

$$
h_{\alpha, \beta}^{q}(\lambda)=\frac{(1+q)^{\beta} \Gamma_{q^{2}}(\beta+1)}{(1+q)^{\alpha} \Gamma_{q^{2}}(\alpha+1)} \frac{1}{|\lambda|^{2(\beta-\alpha)}} F_{D}^{\alpha, q}(f)(\lambda), \quad \lambda \in \mathbb{R}_{q}
$$

Since $f \in \Phi_{\alpha}^{q}\left(\mathbb{R}_{q}\right)$, it follows from Proposition 5.1 that $F_{D}^{\alpha, q}(f) \in \Psi_{q}\left(\mathbb{R}_{q}\right)$ and hence, Lemma 5.2 infers that $h_{\alpha, \beta}^{q} \in \Psi_{q}\left(\mathbb{R}_{q}\right)$, and the conclusion of the proposition follows from the above inversion formula.

Definition 5.4. We define the operators $K_{1, q}, K_{2, q}$ and $K_{3, q}$ by

$$
\begin{array}{ll}
K_{1, q}(f) & =\frac{(1+q)^{\alpha} \Gamma_{q^{2}}(\alpha+1)}{(1+q)^{\beta} \Gamma_{q^{2}}(\beta+1)}\left(F_{D}^{\alpha, q}\right)^{-1}\left(|\lambda|^{2(\beta-\alpha)} F_{D}^{\alpha, q}(f)\right), \quad f \in \Phi_{\alpha}^{q}\left(\mathbb{R}_{q}\right) ; \\
K_{2, q}(f)=\frac{(1+q)^{\alpha} \Gamma_{q^{2}}(\alpha+1)}{(1+q)^{\beta} \Gamma_{q^{2}}(\beta+1)}\left(F_{D}^{\beta, q}\right)^{-1}\left(|\lambda|^{2(\beta-\alpha)} F_{D}^{\beta, q}(f)\right), \quad f \in \Phi_{\beta}^{q}\left(\mathbb{R}_{q}\right) ; \\
K_{3, q}(f)=\left(F_{D}^{\alpha, q}\right)^{-1}\left(|\lambda|^{(\beta-\alpha)} F_{D}^{\alpha, q}(f)\right), \quad f \in \Phi_{\alpha}^{q}\left(\mathbb{R}_{q}\right) .
\end{array}
$$

Using the q-pseudo-differential operators $K_{1, q}, K_{2, q}$, we give in the following theorem, inversion formulas for the q-Dunkl Sonine operator $\mathcal{S}_{\alpha, \beta}^{q}$ and its dual ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q}$, and, using the q-pseudo-differential operator $K_{3, q}$, we give Plancherel formula for ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q}$.

Theorem 5.5.

(a) Inversion formulas: For all $f \in \Phi_{\alpha}^{q}\left(\mathbb{R}_{q}\right)$ and $g \in \Phi_{\beta}^{q}\left(\mathbb{R}_{q}\right)$, we have the following inversion formulas:
(i) $f=\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q} K_{2, q} \mathcal{S}_{\alpha, \beta}^{q}\right)(f)$.
(ii) $f=\left(K_{1, q}{ }^{t} \mathcal{S}_{\alpha, \beta}^{q} \mathcal{S}_{\alpha, \beta}^{q}\right)(f)$.
(iii) $g=\left(K_{2, q} \mathcal{S}_{\alpha, \beta}^{q}{ }^{t} \mathcal{S}_{\alpha, \beta}^{q}\right)(g)$.
(iv) $g=\left(\mathcal{S}_{\alpha, \beta}^{q} K_{1, q}{ }^{t} \mathcal{S}_{\alpha, \beta}^{q}\right)(g)$.
(b) Plancherel formula: For all $f \in \Phi_{\beta}^{q}\left(\mathbb{R}_{q}\right)$, we have

$$
\left.\int_{-\infty}^{+\infty}|f(t)|^{2}|t|^{2 \beta+1} d_{q} t=\int_{-\infty}^{+\infty} \mid K_{3, q}{ }^{t} \mathcal{S}_{\alpha, \beta}^{q}(f)\right)\left.(t)\right|^{2}|t|^{2 \alpha+1} d_{q} t .
$$

Proof. Part (a) Follows immediately from Proposition 5.3 together with the factorization relation (24).

For part (b), let $f \in \Phi_{\beta}^{q}\left(\mathbb{R}_{q}\right)$. Using the Plancherel formula (12) together with the factorization relation (24), we obtain

$$
\begin{aligned}
\int_{-\infty}^{+\infty}|f(t)|^{2}|t|^{2 \beta+1} d_{q} t & =\int_{-\infty}^{+\infty}\left|F_{D}^{\beta, q}(f)(\lambda)\right|^{2}|\lambda|^{2 \beta+1} d_{q} \lambda \\
& =\left.\left.\int_{-\infty}^{+\infty}| | \lambda\right|^{(\beta-\alpha)} F_{D}^{\alpha, q}\left(\mathcal{S}_{\alpha, \beta}^{q}(f)\right)(\lambda)\right|^{2}|\lambda|^{2 \alpha+1} d_{q} \lambda \\
& =\int_{-\infty}^{+\infty}\left|F_{D}^{\alpha, q}\left(K_{3, q}{ }^{t} \mathcal{S}_{\alpha, \beta}^{q}(f)\right)(\lambda)\right|^{2}|\lambda|^{2 \alpha+1} d_{q} \lambda \\
& =\int_{-\infty}^{+\infty} \mid K_{3, q}\left(\left.{ }^{t} \mathcal{S}_{\alpha, \beta}^{q}(f)(t)\right|^{2}|t|^{2 \alpha+1} d_{q} \lambda\right.
\end{aligned}
$$

This achieves the proof.

6. Inversions of the q-Dunkl-Sonine transform and its dual by the use of the q Dunkl wavelets

We begin this section by summarizing some facts about q-Dunkl wavelets introduced and studied in [2]. Next, we study the effect of the q-Dunkl-Sonine transform $\mathcal{S}_{\alpha, \beta}^{q}$ and its dual ${ }^{t} S_{\alpha, \beta}$ on q-Dunkl wavelets and as applications, we give the inversion formulas for these integral transforms using q-Dunkl wavelets.

Definition 6.1. Let $g \in L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)$. We say that g is a q-wavelet associated with the q-Dunkl operator $\Lambda_{\alpha, q}$, if it satisfies the following admissibility condition

$$
\begin{equation*}
0<C_{\alpha, q}(g)=\int_{-\infty}^{\infty}\left|F_{D}^{\alpha, q}(g)(a)\right|^{2} \frac{d_{q} a}{|a|}<\infty . \tag{29}
\end{equation*}
$$

Proposition 6.2. Let $g \neq 0$ be a function in $L_{\alpha, q}^{2}\left(\mathbb{R}_{q}\right)$. If g satisfies

- The function $F_{D}^{\alpha, q}(g)$ is continuous at 0 .
- There exists $v>0$ such that

$$
F_{D}^{\alpha, q}(g)(x)-F_{D}^{\alpha, q}(g)(0)=O\left(x^{v}\right) \text { as } x \rightarrow 0, x \in \mathbb{R}_{q}
$$

Then, the admissibility condition (29) is equivalent to $F_{D}^{\alpha, q}(g)(0)=0$.

For $g \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right), a \in \mathbb{R}_{q}$ and $b \in \mathbb{R}_{q} \cup\{0\}$, we define the function $g_{a, b}^{\alpha, q}$ by

$$
g_{a, b}^{\alpha, q}(x)=\sqrt{|a|} T_{b}^{\alpha, q}\left(g_{a}^{\alpha, q}\right)(x), \quad x \in \mathbb{R}_{q}
$$

where $T_{b}^{\alpha ; q}$ is the generalized q-Dunkl translation operator defined by (13) and

$$
\begin{equation*}
g_{a}^{\alpha, q}(x)=\frac{1}{|a|^{2 \alpha+2}} g\left(\frac{x}{a}\right), \quad x \in \mathbb{R}_{q} \tag{30}
\end{equation*}
$$

In the following proposition, we give some properties of function $g_{a}^{\alpha, q}$, the proof is straightforward.

Proposition 6.3. If $g \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$ and $a \in \mathbb{R}_{q}$ then:
(a) $g_{a}^{\alpha, q} \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$.
(b) $F_{D}^{\alpha, q}\left(g_{a}^{\alpha, q}\right)(\lambda)=F_{D}^{\alpha, q}(g)(a \lambda)$ and $\left\|g_{a}^{\alpha, q}\right\|_{2, \alpha, q}=\|g\|_{2, \alpha, q}$.
(c) $K_{1, q}\left(g_{a}^{\alpha, q}\right)=\frac{1}{|a|^{2(\beta-\alpha)}}\left(K_{2, q}(g)\right)_{a}^{\alpha, q}$ and
$K_{2, q}\left(g_{a}^{\alpha, q}\right)=\frac{1}{|a|^{2(\beta-\alpha)}}\left(K_{2, q}(g)\right)_{a}^{\beta, q}$
where $K_{1, q}$ and $K_{2, q}$ are given by Definition 5.4
(d) ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q}\left(g_{a}^{\alpha, q}\right)=\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q}(g)\right)_{a}^{\beta, q}$ and $^{t} \mathcal{S}_{\alpha, \beta}^{q}\left(g_{a}^{\beta, q}\right)=\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q}(g)\right)_{a}^{\alpha, q}$

Proposition 6.4. If g is a q-wavelet associated with the q-Dunkl operator $\Lambda_{\alpha, q}$ in $\mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$, then for all $a \in \mathbb{R}_{q}$ and $b \in \mathbb{R}_{q} \cup\{0\}$, the function $g_{a, b}^{\alpha, q}$ is a q-wavelet associated with the q-Dunkl operator $\Lambda_{\alpha, q}$ in $\mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$ and we have

$$
C_{\alpha, q}\left(g_{a, b}^{\alpha, q}\right)=|a| \int_{-\infty}^{\infty}\left|\psi_{b}^{\alpha, q}\left(\frac{x}{a}\right)\right|^{2}\left|F_{D}^{\alpha, q}(g)(x)\right|^{2} \frac{d_{q} x}{|x|} .
$$

Definition 6.5. Let g be a q-wavelet associated with the q-Dunkl operator $\Lambda_{\alpha, q}$ in $\mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$. We define the continuous q-wavelet transform associated with the q-Dunkl operator $\Lambda_{\alpha, q}$ for $f \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$ by

$$
\begin{align*}
& \Psi_{g}^{\alpha, q}(f)(a, b) \\
& \quad=\frac{(1+q)^{-\alpha}}{2 \Gamma_{q^{2}}(\alpha+1)} \int_{-\infty}^{\infty} f(x) \overline{g_{a, b}^{\alpha, q}(-x)}|x|^{2 \alpha+1} d_{q} x, \quad a \in \mathbb{R}_{q}, b \in \mathbb{R}_{q} \cup\{0\}, \tag{31}
\end{align*}
$$

which can be written as

$$
\begin{equation*}
\Psi_{g}^{\alpha, q}(f)(a, b)=\sqrt{|a|}\left(f *_{\alpha, q} \overline{g_{a}^{\alpha, q}}\right)(b), \quad a \in \mathbb{R}_{q}, b \in \mathbb{R}_{q} \cup\{0\} \tag{32}
\end{equation*}
$$

Theorem 6.6. Inversion formula: If $g \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$ is a q-Dunkl wavelet associated with the q-Dunkl operator $\Lambda_{\alpha, q}$, then for all $f \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$ we have

$$
f(x)=\frac{(1+q)^{-\alpha}}{2 \Gamma_{q^{2}}(\alpha+1) C_{\alpha, q}(g)} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Psi_{q, g}^{\alpha}(f)(a, b) g_{a, b}^{\alpha, q}(-x)|b|^{2 \alpha+1} \frac{d_{q} a d_{q} b}{|a|^{2}},
$$

for all $x \in \mathbb{R}_{q}$.

Note that for the continuous q-Dunkl wavelet transform, there are also Parseval and Plancherel formulas (see [2] for more details).

Lemma 6.7. (see [2])
(a) If $f \in \Phi_{\alpha}^{q}\left(\mathbb{R}_{q}\right)$ and $g \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$, then $f *_{\alpha, q} g \in \Phi_{\alpha}^{q}\left(\mathbb{R}_{q}\right)$ and we have

$$
\begin{equation*}
K_{1, q}\left(f *_{\alpha, q} g\right)=\left(K_{1, q} f\right) *_{\alpha, q} g . \tag{33}
\end{equation*}
$$

(b) If $f \in \Phi_{\beta}^{q}\left(\mathbb{R}_{q}\right)$ and $g \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$, then $f *_{\beta, q} g \in \Phi_{\beta}^{q}\left(\mathbb{R}_{q}\right)$ and we have

$$
\begin{equation*}
K_{2, q}\left(f *_{\beta, q} g\right)=\left(K_{2, q} f\right) *_{\beta, q} g . \tag{34}
\end{equation*}
$$

Proposition 6.8.

(a) If $f, g \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$, then

$$
\begin{equation*}
{ }^{t} \mathcal{S}_{\alpha, \beta}^{q}\left(f *_{\beta} g\right)={ }^{t} \mathcal{S}_{\alpha, \beta}^{q} f *_{\alpha}{ }^{t} \mathcal{S}_{\alpha, \beta}^{q} g \tag{35}
\end{equation*}
$$

(b) If $f \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$ and $g \in \Phi_{\alpha}^{q}\left(\mathbb{R}_{q}\right)$, then

$$
\begin{equation*}
\mathcal{S}_{\alpha, \beta}^{q}\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q} f *_{\alpha, q} g\right)=f *_{\beta, q} \mathcal{S}_{\alpha, \beta}^{q}(g) \tag{36}
\end{equation*}
$$

Proof. Part (a) follows by applying $F_{D}^{\alpha, q}$ to both sides of the equation (35).
For part (b), by the inversion formula (ii) of Theorem 5.5, we have

$$
\mathcal{S}_{\alpha, \beta}^{q}\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q} f *_{\alpha} g\right)=\mathcal{S}_{\alpha, \beta}^{q}\left[{ }^{t} \mathcal{S}_{\alpha, \beta}^{q} f *_{\alpha}\left(K_{1, q}{ }^{t} \mathcal{S}_{\alpha, \beta}^{q} \mathcal{S}_{\alpha, \beta}^{q}\right)(g)\right]
$$

Using Lemma 6.7 (a), we get

$$
\mathcal{S}_{\alpha, \beta}^{q}\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q} f *_{\alpha} g\right)=\mathcal{S}_{\alpha, \beta}^{q} K_{1, q}\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q} f *_{\alpha}{ }^{t} \mathcal{S}_{\alpha, \beta}^{q}\left(\mathcal{S}_{\alpha, \beta}^{q} g\right)\right)
$$

So, by part (a) we obtain

$$
\mathcal{S}_{\alpha, \beta}^{q}\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q} f *_{\alpha} g\right)=\mathcal{S}_{\alpha, \beta}^{q} K_{1, q}^{t} \mathcal{S}_{\alpha, \beta}^{q}\left(f *_{\beta} \mathcal{S}_{\alpha, \beta}^{q} g\right)
$$

and (36) follows from the inversion formula (iv) of Theorem 5.5.
Now, we are in a situation to discuss the effect of the q-Dunkl-Sonine transform $\mathcal{S}_{\alpha, \beta}^{q}$ and its dual ${ }^{t} S_{\alpha, \beta}$ on the q-Dunkl wavelets.

Proposition 6.9. If g is a q-wavelet associated with the q-Dunkl operator $\Lambda_{\beta, q}$ in $\mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$ (respectively in $\Phi_{\beta}^{q}\left(\mathbb{R}_{q}\right)$), then ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q} g$ is a q-wavelet associated with the q Dunkl operator $\Lambda_{\alpha, q}$ in $\mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$ (respectively in $\Phi_{\alpha}^{q}\left(\mathbb{R}_{q}\right)$) and we have

$$
C_{\alpha, q}\left({ }^{t} S_{\alpha, \beta} g\right)=C_{\beta, q}(g)
$$

Proof. Assume that g is a q-wavelet associated with the q-Dunkl operator $\Lambda_{\beta, q}$ in $\mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$. Then Theorem 4.12 (a) implies that ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q} g \in \mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$. Moreover, using the factorization relation (21) together with the Plancherel formula (12) we deduce that $C_{\alpha, q}\left({ }^{t} S_{\alpha, \beta} g\right)=C_{\beta, q}(g)$. Hence, ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q} g$ is a q-wavelet associated with the operator $\Lambda_{\alpha, q}$ in $\mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$. To complete the proof, it remains only to show that if $g \in \Phi_{\beta}^{q}\left(\mathbb{R}_{q}\right)$ then ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q} g \in \Phi_{\alpha}^{q}\left(\mathbb{R}_{q}\right)$. This follows from the fact that ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q}=\left(F_{D}^{\alpha, q}\right)^{-1} \circ F_{D}^{\beta, q}$ on $\mathscr{S}_{q}\left(\mathbb{R}_{q}\right)$ and Proposition 5.1.

Proposition 6.10. Let g be a q-wavelet associated with the q-Dunkl operator $\Lambda_{\beta, q}$ in $\Phi_{\beta}^{q}\left(\mathbb{R}_{q}\right)$. If $f \in \Phi_{\beta}^{q}\left(\mathbb{R}_{q}\right)$, then

$$
\begin{equation*}
\left.\Psi_{g}^{\beta, q}(f)(a, b)=\mathcal{S}_{\alpha, \beta}^{q}\left[\Psi^{\tau} \mathcal{S}_{\alpha, \beta}^{q} g,\left(\mathcal{S}_{\alpha, \beta}^{q}\right)^{-1} f\right)(a, .)\right](b), \quad a, b \in \mathbb{R}_{q} \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\Psi^{{ }^{t} \mathcal{S}_{\alpha, \beta}^{q} g} \alpha, q\right)(a, b)={ }^{t} \mathcal{S}_{\alpha, \beta}^{q}\left[\Psi_{g}^{\beta, q}\left(\left(\mathcal{S}_{\alpha, \beta}^{q}\right)^{-1}(f)\right)(a, .)\right](b), \quad a, b \in \mathbb{R}_{q} . \tag{38}
\end{equation*}
$$

Proof. It follows, from Definition 6.5 together with Proposition 6.8 (b), that

$$
\begin{aligned}
\Psi_{g}^{\beta, q}(f)(a, b) & \left.=\sqrt{|a|} \overline{\left(g_{a}^{\beta, q}\right.} *_{\beta} f\right)(b) \\
& =\sqrt{|a|} S_{\alpha, \beta}\left(\mathcal{S}_{\alpha, \beta}^{q}\left(\overline{g_{a}^{\beta, q}}\right) * \alpha\left(\mathcal{S}_{\alpha, \beta}^{q}\right)^{-1} f\right)(b) \\
& =\mathcal{S}_{\alpha, \beta}^{q}\left(\sqrt{|a|}\left(\mathcal{S}_{\alpha, \beta}^{q}\right)^{-1} f *_{\alpha} \overline{\mathcal{S}^{q} \mathcal{S}_{\alpha, \beta}^{q}\left(g_{a}^{\beta, q}\right)}\right)(b) .
\end{aligned}
$$

Since ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q}\left(g_{a}^{\beta, q}\right)=\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q}(g)\right)_{a}^{\alpha, q}$, as mentioned in Proposition $6.3(\mathrm{~d})$, and ${ }^{t} \mathcal{S}_{\alpha, \beta}^{q} g$ is a q-Dunkl wavelet, by Proposition 6.9, we can write

$$
\begin{aligned}
\Psi_{g}^{\beta, q}(f)(a, b) & =\mathcal{S}_{\alpha, \beta}^{q}\left(\sqrt{|a|}\left(\mathcal{S}_{\alpha, \beta}^{q}\right)^{-1} f * \overline{\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q}(g)\right)_{a, \beta}}\right)(b) \\
& =\mathcal{S}_{\alpha, \beta}^{q}\left[\Psi_{{ }_{t} \mathcal{S}_{\alpha, \beta}^{q}}^{\alpha, q}\left(\left(\mathcal{S}_{\alpha, \beta}^{q}\right)^{-1} f\right)(a, .)\right](b) .
\end{aligned}
$$

Thus, we have proved (37). Similarly, (38) is derived using Proposition 6.8 (b) instead of Proposition 6.8 (a).

Lemma 6.11.

(a) If $g \in \Phi_{\alpha}^{q}\left(\mathbb{R}_{q}\right)$ is a q-wavelet associated with the q-Dunkl operator $\Lambda_{\alpha, q}$, then $K_{1, q} g$ is a q-wavelet associated with the q-Dunkl operator $\Lambda_{\alpha, q}$.
(b) If $g \in \Phi_{\beta}^{q}\left(\mathbb{R}_{q}\right)$ is a q-wavelet associated with the q-Dunkl operator $\Lambda_{\beta, q}$, then $K_{2, q} g$ is a q-wavelet associated with he q-Dunkl operator $\Lambda_{\beta, q}$.

Proof. For part (a), by Proposition 5.1, we have $K_{1, q} g \in \Psi_{q}\left(\mathbb{R}_{q}\right)$ and by Definition 5.4, we have

$$
F_{D}^{\alpha, q}\left(K_{1, q} g\right)(\lambda)=|\lambda|^{2(\beta-\alpha)} F_{D}^{\alpha, q}(g)(\lambda)
$$

Since $F_{D}^{\alpha, q}(g)$ is continuous at the orgin, it follows that

$$
F_{D}^{\alpha, q}\left(K_{1, q} g\right)(\lambda)=O\left(|\lambda|^{2(\beta-\alpha)}\right) \quad(\lambda \rightarrow 0)
$$

Hence, by Proposition 6.2, the function $K_{1, q} g$ is a q-wavelet associated with the q-Dunkl operator $\Lambda_{\alpha, q}$.

The proof of part (b) is similar to the proof of part (a).
Proposition 6.12. If g is a q-wavelet associated with the q-Dunkl operator $\Lambda_{\beta, q}$ in $\Phi_{\beta}^{q}\left(\mathbb{R}_{q}\right)$, then
(a) For all $f \in \Phi_{\beta}^{q}\left(\mathbb{R}_{q}\right)$ and all $a, b \in \mathbb{R}_{q}$, we have:

$$
\Psi_{g}^{\beta, q}(f)(a, b)=\frac{1}{|a|^{2(\beta-\alpha)}} \mathcal{S}_{\alpha, \beta}^{q}\left[\Psi_{K_{q, 1}\left(\mathcal{S}_{\alpha, \beta}^{q}\right)}^{\alpha, q}\left(\mathcal{S}_{\alpha, \beta}^{q} f\right)(a, .)\right](b)
$$

(b) For all $f \in \Phi_{\alpha}^{q}\left(\mathbb{R}_{q}\right)$ and all $a, b \in \mathbb{R}_{q}$ we have:

$$
\Psi_{{ }_{t} \mathcal{S}_{\alpha, \beta}^{\alpha} g}^{\alpha, q}(f)(a, b)=\frac{1}{|a|^{2(\beta-\alpha)}}{ }^{t} \mathcal{S}_{\alpha, \beta}^{q}\left[\Psi_{K_{q, 2} g}^{\alpha, q}\left(\mathcal{S}_{\alpha, \beta}^{q}(f)\right)(a, .)\right](b)
$$

Proof. We prove only part (a), the proof of part (b) is similar. Let $f \in \Phi_{\alpha}^{q}\left(\mathbb{R}_{q}\right)$. Since by the inversion formula (ii) of Theorem 5.5 we have

$$
\left(\mathcal{S}_{\alpha, \beta}^{q}\right)^{-1} f=K_{1, q}\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q}\right)(f),
$$

it follows that

$$
\Psi^{{ }^{\prime} \mathcal{S}_{\alpha, \beta}^{q} g}{ }^{\alpha, q}\left(\left(\mathcal{S}_{\alpha, \beta}^{q}\right)^{-1} f\right)(a, b)=\left(\left(K_{1, q}^{t} \mathcal{S}_{\alpha, \beta}^{q}\right)(f) *_{\alpha, q} \overline{\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q} g\right)_{a}^{\alpha, q}}\right)(b)
$$

Using Lemma 6.7 (a), we obtain

$$
\Psi_{t_{\alpha, \beta}}^{\alpha, q}\left(\left(\mathcal{S}_{\alpha, \beta}^{q}\right)^{-1} f\right)(a, b)=\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q}(f) *_{\alpha, q} K_{1, q}\left(\overline{\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q} g\right)_{a}^{\alpha, q}}\right)\right)(b)
$$

By simple computation, we can see that

$$
\left.K_{1, q} \overline{\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q} g\right)_{a}^{\alpha, q}}\right)=\overline{K_{1, q}\left(\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q} g\right)_{a}^{\alpha, q}\right)}
$$

Using Proposition 6.3 (d), we obtain

$$
\left.\begin{array}{rl}
\Psi_{{ }^{t} \mathcal{S}_{\alpha, \beta}^{q}}^{\alpha, q}
\end{array}\left(\left(\mathcal{S}_{\alpha, \beta}^{q}\right)^{-1} f\right)(a, b)=\frac{1}{|a|^{2(\beta-\alpha)}}\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q}(f) *{ }_{\alpha, q} \overline{\left(K_{1, q}{ }^{t} \mathcal{S}_{\alpha, \beta}^{q} g\right)_{a}^{\alpha, q}}\right)(b)\right)
$$

Hence, (37) can be written as

$$
\Psi_{g}^{\beta, q}(f)(a, b)=\frac{1}{|a|^{2(\beta-\alpha)}} \mathcal{S}_{\alpha, \beta}^{q}\left[\Psi_{\left.K_{q, 1}{ }^{t} \mathcal{S}_{\alpha, \beta}^{q} g\right)}^{\alpha, q}\left(\mathcal{S}_{\alpha, \beta}^{q} f\right)(a, .)\right](b)
$$

which achieves the proof.
Now, using Theorem 6.6 together with Proposition 6.12, we get inversion formulas for the q-dunkl-Sonine transform and its dual. This is the purpose of the following theorem.

Theorem 6.13. Let g be a q-wavelet associated with the q-Dunkl operator $\Lambda_{\beta, q}$ in $\Phi_{\beta}^{q}\left(\mathbb{R}_{q}\right)$ and set

$$
\widetilde{C}_{\beta, q}(g)=\frac{(1+q)^{-\beta}}{2 \Gamma_{q^{2}}(\beta+1) C_{\beta, q}(g)}
$$

(a) If $f \in \Phi_{\alpha}^{q}\left(\mathbb{R}_{q}\right)$, then for all $x \in \mathbb{R}_{q}$, we have

$$
\begin{aligned}
& \left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q}\right)^{-1}(f)(x)=\widetilde{C}_{\beta, q}(g) \times \\
& \left.\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} \mathcal{S}_{\alpha, \beta}^{q}\left[\Psi_{K_{q, 1}\left({ }^{t} \mathcal{S}_{\alpha, \beta}^{q}\right)}^{\alpha, q)}\left({ }^{(} \mathcal{S}_{\alpha, \beta}^{q}\right)(f)\right)(a, .)\right](b) g_{a, b}^{\beta, q}(-x) \frac{|b|^{2 \beta+1}}{|a|^{2(\beta-\alpha+1)}} d_{q} b\right) d_{q} a
\end{aligned}
$$

(b) If $f \in S_{\beta, q}\left(\mathbb{R}_{q}\right)$, then for all $x \in \mathbb{R}_{q}$, we have

$$
\begin{aligned}
& S_{\alpha, \beta}^{-1}(f)(x)=\widetilde{C}_{\beta, q}(g) \times \\
& \quad \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty}{ }_{-\infty}^{t} S_{\alpha, \beta}\left[\Psi_{K_{q, 2}(g)}^{\beta, q}(f)(a, .)\right](b)^{t} S_{\alpha, \beta}\left(g_{a, b}^{\beta, q}\right)(-x) \frac{|b|^{2 \beta+1}}{|a|^{2(\beta-\alpha+1)}} d_{q} b\right) d_{q} a
\end{aligned}
$$

REFERENCES

[1] N. Bettaibi - R.H. Bettaieb, q-Analogue of the Dunkl transform on the real line, Tamsui Oxf. J. Math. Sci. 25 (2) (2009), 178-206.
[2] N. Bettaibi - R. H. Bettaieb - S. Bouaziz, Wavelet transforms associated with the q-Dunkl operator, Tamsui Oxf. J. Math. Sci. 26 (1) (2010), 77-101.
[3] F. Bouzeffour, Inversion formulas for q-Riemann-Liouville and q-Weyl transforms, J. Math. Analys. App. 336 (2007), 833-848.
[4] H. Chebli - A. Fitouhi - M. M. Hamza, Expansion in series of Bessel functions and transmutations for perturbed Bessel operator, J. Math. Anal. Appl. 181 (3) (1994), 789-802.
[5] J. Delsarte - J. Lions, Transmutations d'opérateurs différentiels dans le domaine complexe, Comment. Mat. Helv. 32 (1957), 113-128.
[6] C.F. Dunkl, Differential-difference operators associated with reflections groups, Trans. Amer. Math. Soc. 311 (1989), 167-183.
[7] C.F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), 1213-1227.
[8] C. F. Dunkl, Hankel transforms associated to finite reflection groups, Contemp. Math. 138 (1992), 123-138.
[9] A. Fitouhi - M. M. Hamza - F. Bouzeffour, The $q-j_{\alpha}$ Bessel function, J. Approximation Theory 115 (2002), 114-166.
[10] A. Fitouhi - N. Bettaibi - W. Binous, Inversion formulas for the q-RiemannLiouville and q-Weyl transforms using wavelets, Fract. Calc. Appl. Anal. 10 (4) (2007), 327-342.
[11] G. Gasper - M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its application, Vol 35 Cambridge Univ. Press, Cambridge, UK, 1990.
[12] A. Jouini, Dunkl wavelets and applications to inversion of the Dunkl intertwining operator and its dual, Int. J. Math. Math. Sci. 6 (2004), 285-293.
[13] V. Kiryakova, Generalized Fractional Calculus and Applications, Longman, Harlow; John Wiley, N. Y. 1994.
[14] T. H. Koornwinder - R.F. Swarttouw, On q-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333 (1992), 445-461.
[15] T. H. Koornwinder, q-Special Functions, a Tutorial, in Deformation theory and quantum groups with applications to mathematical physics, M. Gerstenhaber and J. Stasheff (eds), Contemp. Math. 134, Amer. Math. Soc., 1992.
[16] B. M. Levitan, Transmutation Operators and the Inverse Spectral Problem, Applications of hypergroups and related measure algebra (Joint Summer Reserche Conference Seattle 1993) American Mathematical Society, Providence, 1994.
[17] M. A. Mourou, Inversion of the Dual Dunkl-Sonine Transform on \mathbb{R} Using Dunkl Wavelets, SIGMA 5 (2009), 071, arXiv: 0907.2341.
[18] M. A. Mourou, Sonine-type integraral transform related to the Dunkl operator on the real line, Integral Transform and Special Functions, 20 (11-12) (2009), 915924.
[19] M. Rösler, Bessel-type Signed Hypergroups on \mathbb{R}, H. Heyer and A. Mukherjea (eds.): Probability measures on groups and related structures XI (Oberwolfach 1994), 292-304. World Sci. Publ., River Edge, NJ, 1995.
[20] R. L. Rubin, A q^{2}-analogue operator for q^{2}-analogue Fourier Analysis, J. Math. Analys. App. 212 (1997), 571-582.
[21] R. L. Rubin, Duhamel solutions of non-homogenous q^{2}-analogue wave equations, Proc. of Amer. Math. Soc. 135 (3) (2007), 777-785.
[22] F. Soltani, Sonine Transform Associated to the Dunkl Kernel on the real line, SIGMA 4 (2008), paper 092.
[23] K. Trimèche, Generalized harmonic analysis and wavelet packets, Gordon and Breach Science Publishers, Amsterdam, 2001.
[24] K. Trimèche, The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual, Integral Transform. Spec. Funct. 12 (2001), 349-374.
[25] K. Trimèche, Inversion of Lions transmutation operators using generalized wavelets, Appl. Comput. Harmonic Anal. 4 (1997), 97-112.

LASSAD BENNASR
Département de Mathématiques et Informatique Institut préparatoire aux études d'ingénieur d'Elmanar

Tunis, Tunisie
e-mail: bennasr.lassad@yahoo.fr
RYM HASNA BETTAIEB
Department of Mathematics
Faculty of Sciences - King Faisal University
P.O. Box 400, 31982 Al-Ahasa

Kingdom of Saudi Arabia
e-mail: rym.bettaieb@yahoo.fr
FERJANI NOURI
Département de Mathématiques et Informatique Institut préparatoire aux études d'ingénieur de Nabeul

8000 Nabeul, Tunisie
e-mail: nouri.ferjani@yahoo.fr

