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SOME INEQUALITIES OF HERMITE-HADAMARD TYPE FOR
GA-CONVEX FUNCTIONS WITH APPLICATIONS TO MEANS

TIAN-YU ZHANG - AI-PING JI - FENG QI

In the paper, the authors, by Hölder’s integral inequality, establish
some Hermite-Hadamard type integral inequalities for GA-convex func-
tions and apply these inequalities to construct several inequalities for spe-
cial means.

1. Introduction

It is general knowledge that if f : I ⊆ R = (−∞,∞)→ R is a convex function
and a,b ∈ I with a < b, then

f
(

a+b
2

)
≤ 1

b−a

∫ b

a
f (x)dx≤ f (a)+ f (b)

2
. (1.1)

This inequality is well known in the literature as Hermite-Hadamard’s inequality
for convex functions.

The usual concept of convex functions has been generalized in diverse man-
ners. One of them is the so-called s-convex functions.
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Definition 1.1 ([6]). Let s ∈ (0,1]. A function f : I ⊆ R0 = [0,∞)→ R is said
to be s-convex (in the second sense) if

f (λx+(1−λ )y)≤ λ
s f (x)+(1−λ )s f (y) (1.2)

holds for all x,y ∈ I and λ ∈ [0,1].

The following Hermite-Hadamard type inequalities for the usual convex
functions and the s-convex functions were obtained in [5, 8, 9].

Theorem 1.2 ([5, Theorem 2.2]). Let f : I◦ ⊆ R→ R be a differentiable map-
ping and a,b ∈ I◦ with a < b. If | f ′(x)| is convex on [a,b], then∣∣∣∣ f (a)+ f (b)

2
− 1

b−a

∫ b

a
f (x)dx

∣∣∣∣≤ (b−a)
8

(
| f ′(a)|+ | f ′(b)|

)
. (1.3)

Theorem 1.3 ([8, Theorems 2.3 and 2.4]). Let f : I ⊆R0→R be differentiable
on I◦ and a,b ∈ I with a < b. If | f ′(x)|p is s-convex on [a,b] for some s ∈ (0,1]
and p > 1, then∣∣∣∣ f(a+b

2

)
− 1

b−a

∫ b

a
f (x)dx

∣∣∣∣≤ b−a
16

(
4

p+1

)1/p(
| f ′(a)|+ | f ′(b)|

)
(1.4)

and∣∣∣∣ f(a+b
2

)
− 1

b−a

∫ b

a
f (x)dx

∣∣∣∣≤ b−a
4

(
4

p+1

)1/p{[
| f ′(a)|p/(p−1)

+3| f ′(b)|p/(p−1)]1−1/p
+
[
3| f ′(a)|p/(p−1)+ | f ′(b)|p/(p−1)]1−1/p

}
. (1.5)

Theorem 1.4 ([9, Theorem 3]). Let f : I ⊆ R0 → R be differentiable on I◦,
a,b ∈ I with a < b, and f ′ ∈ L[a,b]. If | f ′(x)|q is s-convex on [a,b] for some
s ∈ (0,1] and q > 1, then

∣∣∣∣ f (a)+ f (b)
2

− 1
b−a

∫ b

a
f (x)dx

∣∣∣∣≤ b−a
2

[
q−1

2(2q−1)

]1−1/q( 1
s+1

)1/q

×
{[
| f ′(a)|q +

∣∣∣∣ f ′(a+b
2

)∣∣∣∣q]1/q

+

[
| f ′(b)|q +

∣∣∣∣ f ′(a+b
2

)∣∣∣∣q]1/q}
. (1.6)

In recent years, some Hermite-Hadamard type inequalities for other types
of convex functions were established in, for example, [1, 2, 4, 7, 14, 16–23].



HERMITE-HADAMARD TYPE INEQUALITIES AND APPLICATIONS 231

Definition 1.5 ([10, 11]). A function f : I ⊆R0→ R is said to be a GA-convex
function on I if

f
(
xλ y1−λ

)
≤ λ f (x)+(1−λ ) f (y) (1.7)

holds for all x,y ∈ I and λ ∈ [0,1], where xλ y1−λ and λ f (x)+ (1−λ ) f (y) are
respectively called the weighted geometric mean of two positive numbers x and
y and the weighted arithmetic mean of f (x) and f (y).

In what follows, we also need some notions of means. For positive numbers
a > 0 and b > 0 with a 6= b, the quantities

A(a,b) =
a+b

2
, L(a,b) =

b−a
lnb− lna

, (1.8)

and

Lp(a,b) =



[
bp+1−ap+1

(p+1)(b−a)

]1/p

, p 6=−1,0

L(a,b), p =−1
1
e

(
bb

aa

)1/(b−a)

, p = 0

(1.9)

are called the arithmetic mean, the logarithmic mean, and the generalized log-
arithmic mean of order p ∈ R respectively. For more information on means,
please refer to [3, 12, 13, 15] and a number of references therein.

The goal of this paper is to establish some new integral inequalities of
Hermite-Hadamard type for GA-convex functions and to apply them to con-
struct inequalities of special means.

2. A lemma

To reach our goal, we need the following lemma.

Lemma 2.1. Let f : I ⊆ R+ = (0,∞)→ R be differentiable on I◦ and a,b ∈ I◦

with a < b. If f ′ ∈ L([a,b]) , then

[b f (b)−a f (a)]−
∫ b

a
f (x)dx = (lnb− lna)

∫ 1

0
b2ta2(1−t) f ′

(
bta1−t)dt. (2.1)

Proof. Integrating by part and changing variables of definite integral yield∫ 1

0
b2ta2(1−t) f ′

(
bta1−t)dt =

1
lnb− lna

∫ 1

0
bta(1−t) f ′

(
bta1−t)d

(
bta1−t)

=
1

lnb− lna

∫ b

a
x f ′(x)dx =

b f (b)−a f (a)
lnb− lna

− 1
lnb− lna

∫ b

a
f (x)dx.

Lemma 2.1 is thus proved.
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3. Some new integral inequalities of Hermite-Hadamard type

Now we set off to create some integral inequalities of Hermite-Hadamard type
for GA-convex functions.

Theorem 3.1. Let f : I ⊆ R+ → R be a differentiable function on I◦, a,b ∈ I
with a < b, and f ′ ∈ L([a,b]). If | f ′(x)|q is GA-convex on [a,b] for q≥ 1, then∣∣∣∣[b f (b)−a f (a)]−

∫ b

a
f (x)dx

∣∣∣∣≤ [(b−a)A(a,b)]1−1/q

21/q

×
{[

L
(
a2,b2)−a2]| f ′(a)|q + [b2−L

(
a2,b2)]| f ′(b)|q}1/q

. (3.1)

Proof. Since | f ′(x)|q is GA-convex on [a,b], from Lemma 2.1 and Hölder’s
inequality, we drive∣∣∣∣[b f (b)−a f (a)]−

∫ b

a
f (x)dx

∣∣∣∣
≤ a2(lnb− lna)

∫ 1

0

(
b
a

)2t∣∣ f ′(bta1−t)∣∣dt

≤ a2(lnb− lna)
[∫ 1

0

(
b
a

)2t

dt
]1−1/q

×
{∫ 1

0

(
b
a

)2t

[(1− t)| f ′(a)|q + t| f ′(b)|q]dt
}1/q

= (lnb− lna)
[

b2−a2

2(lnb− lna)

]1−1/q[ 1
2(lnb− lna)

]1/q

×
[

b2−2a2(lnb− lna)−a2

2(lnb− lna)
| f ′(a)|q

+
2b2(lnb− lna)−b2 +a2

2(lnb− lna)
| f ′(b)|q

]1/q

=
[(b−a)A(a,b)]1−1/q

21/q

{[
L
(
a2,b2)−a2]| f ′(a)|q

+
[
b2−L

(
a2,b2)]| f ′(b)|q}1/q

.

The proof of Theorem 3.1 is thus complete.

Corollary 3.2. Under conditions of Theorem 3.1, if q = 1, then∣∣∣∣[b f (b)−a f (a)]−
∫ b

a
f (x)dx

∣∣∣∣≤ 1
2
{[

L
(
a2,b2)−a2]| f ′(a)|

+
[
b2−L

(
a2,b2)]| f ′(b)|}.
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Theorem 3.3. Let f : I ⊆ R+→ R be differentiable on I◦, a,b ∈ I with a < b,
and f ′ ∈ L([a,b]). If | f ′(x)|q is GA-convex for q > 1 on [a,b], then∣∣∣∣[b f (b)−a f (a)]−

∫ b

a
f (x)dx

∣∣∣∣≤ (lnb− lna)

×
[
L
(
a2q/(q−1),b2q/(q−1))]1−1/q[A(| f ′(a)|q, | f ′(b)|q)]1/q

. (3.2)

Proof. Since | f ′(x)|q is a GA-convex function on [a,b], from Lemma 2.1 and
Hölder’s inequality, we have∣∣∣∣[b f (b)−a f (a)]−

∫ b

a
f (x)dx

∣∣∣∣
≤ a2(lnb− lna)

∫ 1

0

(
b
a

)2t∣∣ f ′(bta1−t)∣∣dt

≤ a2(lnb− lna)
[∫ 1

0

(
b
a

)2q/(q−1)t

dt
]1−1/q[∫ 1

0

∣∣ f ′(bta1−t)∣∣q dt
]1/q

≤ (lnb− lna)
[

b2q/(q−1)−a2q/(q−1)

2q(lnb− lna)/(q−1)

]1−1/q

×
{∫ 1

0
[(1− t)| f ′(a)|q + t| f ′(b)|q]dt

}1/q

= (lnb− lna)
[
L
(
a2q/(q−1),b2q/(q−1))]1−1/q[A(| f ′(a)|q, | f ′(b)|q)]1/q

.

The proof of Theorem 3.3 is complete.

Theorem 3.4. Let f : I ⊆ R+→ R be differentiable on I◦, a,b ∈ I with a < b,
and f ′ ∈ L([a,b]). If | f ′(x)|q is GA-convex on [a,b] for q≥ 1, then∣∣∣∣[b f (b)−a f (a)]−

∫ b

a
f (x)dx

∣∣∣∣≤ (lnb− lna)1−1/q

(2q)1/q

×
{[

L
(
a2q,b2q)−a2q]| f ′(a)|q + [b2q−L

(
a2q,b2q)]| f ′(b)|q}1/q

. (3.3)

Proof. Since | f ′(x)|q is a GA-convex function on [a,b], from Lemma 2.1 and
Hölder’s inequality, we have∣∣∣∣[b f (b)−a f (a)]−

∫ b

a
f (x)dx

∣∣∣∣
≤ a2(lnb− lna)

∫ 1

0

(
b
a

)2t∣∣ f ′(bta1−t)∣∣dt

≤ a2(lnb− lna)
(∫ 1

0
1dt
)1−1/q[∫ 1

0

(
b
a

)2qt∣∣ f ′(bta1−t)∣∣q dt
]1/q
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≤ a2(lnb− lna)
{∫ 1

0

(
b
a

)2qt

[(1− t)| f ′(a)|q + t| f ′(b)|q]dt
}1/q

= (lnb− lna)
[

b2q−a2q(lnb2q− lna2q)−a2q

(lnb2q− lna2q)2 | f ′(a)|q

+
b2q(lnb2q− lna2q)−b2q +a2q

(lnb2q− lna2q)2 | f ′(b)|q
]1/q

≤ (lnb− lna)1−1/q

(2q)1/q

{[
L
(
a2q,b2q)−a2q]| f ′(a)|q

+
[
b2q−L

(
a2q,b2q)]| f ′(b)|q}1/q

.

The proof of Theorem 3.4 is complete.

Theorem 3.5. Let f : I ⊆ R+ → R be a differentiable function on I◦, a,b ∈ I
with a < b, and f ′ ∈ L([a,b]). If | f ′(x)|q is GA-convex on [a,b] for q > 1 and
2q > p > 0, then∣∣∣∣[b f (b)−a f (a)]−

∫ b

a
f (x)dx

∣∣∣∣≤ (lnb− lna)1−1/q

p1/q

×
[
L
(
a(2q−p)/(q−1),b(2q−p)/(q−1))]1−1/q

×
{
[L(ap,bp)−ap]| f ′(a)|q +[bp−L(ap,bp)]| f ′(b)|q

}1/q
.

(3.4)

Proof. Since | f ′(x)|q is GA-convex on [a,b], from Lemma 2.1 and Hölder’s
inequality, we have∣∣∣∣[b f (b)−a f (a)]−

∫ b

a
f (x)dx

∣∣∣∣
≤ a2(lnb− lna)

∫ 1

0

(
b
a

)2t∣∣ f ′(bta1−t)∣∣dt

≤ a2(lnb− lna)
[∫ 1

0

(
b
a

)(2q−p)/(q−1)t

dt
]1−1/q

×
[∫ 1

0

(
b
a

)pt∣∣ f ′(bta1−t)∣∣q dt
]1/q

≤ a2(lnb− lna)
[

(b/a)(2q−p)/(q−1)−1
(2q− p)(lnb− lna)/(q−1)

]1−1/q

×
{∫ 1

0

(
b
a

)pt

[(1− t)| f ′(a)|q + t| f ′(b)|q]dt
}1/q

=
(lnb− lna)1−1/q

p1/q

[
L
(
a(2q−p)/(q−1),b(2q−p)/(q−1))]1−1/q
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×
{
[L(ap,bp)−ap]| f ′(a)|q +[bp−L(ap,bp)]| f ′(b)|q

}1/q
.

The proof of Theorem 3.5 is complete.

Corollary 3.6. Under conditions of Theorem 3.5, when p = q, we have∣∣∣∣[b f (b)−a f (a)]−
∫ b

a
f (x)dx

∣∣∣∣≤ (lnb− lna)1−1/q

q1/q

×
[
L
(
aq/(q−1),bq/(q−1))]1−1/q

×
{
[L(aq,bq)−aq]| f ′(a)|q +[bq−L(aq,bq)]| f ′(b)|q

}1/q
.

4. Applications to special means

Finally we apply Hermite-Hadamard type inequalities obtained in the above
section to construct several inequalities for special means.

Theorem 4.1. For b > a > 0, s > 0, q≥ 1, and sq 6= 1, we have

2[Ls+1(a,b)]s+1 ≤ (a+b)1−1/q

×
{
(sq+2)[Lsq+1(a,b)]sq+1− sqL

(
a2,b2)[Lsq−1(a,b)]sq−1}1/q

. (4.1)

Proof. Let

f (x) =
xs+1

s+1
(4.2)

for x ∈ R+ and s > 0. Then | f ′(x)|q = xsq is a GA-convex function on R+ and
both sides of the inequality (3.1) in Theorem 3.1 become∣∣∣∣[b f (b)−a f (a)]−

∫ b

a
f (x)dx

∣∣∣∣= bs+2−as+2

s+2
= (b−a)[Ls+1(a,b)]s+1 (4.3)

and

[(b−a)A(a,b)]1−1/q

21/q

{[
L
(
a2,b2)−a2]| f ′(a)|q + [b2−L

(
a2,b2)]| f ′(b)|q}1/q

=
(b−a)(a+b)1−1/q

2

[
(sq+2)(bsq+2−asq+2)

(sq+2)(b−a)
−L
(
a2,b2)sq(bsq−asq)

sq(b−a)

]1/q

=
(b−a)(a+b)1−1/q

2

{
(sq+2)[Lsq+1(a,b)]sq+1

−sqL
(
a2,b2)[Lsq−1(a,b)

]sq−1
}1/q

.

Combining the above two equalities leads to (4.1). The proof of Theorem 4.1 is
complete.
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Corollary 4.2. Under conditions of Theorem 4.1, when q = 1 and s 6= 1, we
have

L
(
a2,b2)[Ls−1(a,b)]s−1 ≤ [Ls+1(a,b)]s+1. (4.4)

Theorem 4.3. For b > a > 0, s > 0, and q > 1, we have

[Ls+1(a,b)]s+1L(a,b)≤
[
L
(
a2q/(q−1),b2q/(q−1))]1−1/q

[A(asq,bsq)]1/q. (4.5)

Proof. Applying the function (4.2) to the upper bound of the inequality (3.2) in
Theorem 3.3 results in

(lnb− lna)
[
L
(
a2q/(q−1),b2q/(q−1))]1−1/q

[A(| f ′(a)|q, | f ′(b)|q)]1/q

= (lnb− lna)
[
L
(
a2q/(q−1),b2q/(q−1))]1−1/q

[A(asq,bsq)]1/q.

Combining this with (4.3) and rearranging yield (4.5). The proof of Theorem 4.3
is complete.

Theorem 4.4. Let b > a > 0, s > 0, q≥ 1, and sq 6= 1. Then

[Ls+1(a,b)]s+1[L(a,b)]1−1/q ≤ 1
(2q)1/q

{
(s+2)q[L(s+2)q−1(a,b)]

(s+2)q−1

− sqL
(
a2q,b2q)[Lsq−1(a,b)]sq−1}1/q

. (4.6)

Proof. The upper bound of the inequality (3.3) in Theorem 3.4 applied to the
function (4.2) becomes

(lnb− lna)1−1/q

(2q)1/q

{[
b2q−L

(
a2q,b2q)]| f ′(b)|q

+
[
L
(
a2q,b2q)−a2q]| f ′(a)|q}1/q

=
(lnb− lna)1−1/q

(2q)1/q (b−a)1/q{(s+2)q[L(s+2)q−1(a,b)]
(s+2)q−1

− sqL
(
a2q,b2q)[Lsq−1(a,b)]sq−1}1/q

.

Combining this with (4.3) and rearranging yield (4.6). The proof of Theorem 4.4
is complete.

Theorem 4.5. Let 0 < a < b, s > 0, q > 1, 2q > p > 0, and sq 6= 1. Then

[Ls+1(a,b)]s+1[L(a,b)]1−1/q ≤ 1
p1/q

[
L
(
a(2q−p)/(q−1),b(2q−p)/(q−1))]1−1/q

×
{
(p+ sq)[Lp+sq−1(a,b)]p+sq−1− sqL(ap,bp)[Lsq−1(a,b)]sq−1}1/q

. (4.7)
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Proof. The upper bound of the inequality (3.4) in Theorem 3.5 applied to the
function (4.2) is reduced to

(lnb− lna)1−1/q

p1/q

[
L
(
a(2q−p)/(q−1),b(2q−p)/(q−1))]1−1/q

×
{
[bp−L(ap,bp)]| f ′(b)|q +[L(ap,bp)−ap]| f ′(a)|q

}1/q

=
(lnb− lna)1−1/q

p1/q (b−a)1/q[L(a(2q−p)/(q−1),b(2q−p)/(q−1))]1−1/q

×
{
(p+ sq)[Lp+sq−1(a,b)]p+sq−1− sqL(ap,bp)[Lsq−1(a,b)]sq−1}1/q

.

Combining this with (4.3) and simplifying produce (4.7). The proof of Theo-
rem 4.4 is complete.
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