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SOME FIXED POINT THEOREMS FOR WEAKLY
COMPATIBLE MAPPINGS IN NON-ARCHIMEDEAN MENGER

PROBABILISTIC METRIC SPACES VIA COMMON LIMIT
RANGE PROPERTY

SUNNY CHAUHAN - JELENA VUJAKOVIĆ

In this paper, we utilize the notion of common limit range property
in Non-Archimedean Menger PM-spaces and prove some fixed point the-
orems for two pairs of weakly compatible mappings. Some illustrative
examples are furnished to support our results. As an application to our
main result, we present a common fixed point theorem for four finite fam-
ilies of self mappings. Our results improve and extend several known
results existing in the literature.

1. Introduction

In 1974, Istrătescu and Crivăt [11] introduced the concept of Non-Archimedean
probablistic metric spaces (briefly, N.A. PM-spaces). Istrătescu [8, 9] obtained
some fixed point theorems on N.A. Menger PM-spaces and generalized the re-
sults of Sehgal and Bharucha-Reid [21] (also see [10, 12]). Further, Hadz̆ić [6]
improved the results of Istrătescu [8, 9].

In 1987, Singh and Pant [24] introduced the notion of weakly commut-
ing mappings on N.A. Menger PM-spaces and proved some common fixed
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point theorems. Dimri and Pant [5] studied the application of N.A. Menger
PM-spaces to product spaces. Jungck and Rhoades [13, 14] weakened the no-
tion of compatible mappings by introducing weakly compatible mappings and
proved common fixed point theorems without any requirement of continuity of
the involved mappings. Many mathematicians proved common fixed point the-
orems in N.A. Menger PM-spaces using different contractive conditions (see
[2, 4, 5, 15–17, 22, 23, 26]). In 2002, Aamri and Moutawakil [1] defined the no-
tion of property (E.A) which contained the class of non-compatible mappings. It
is observed that the property (E.A) requires the completeness (or closedness) of
the subspaces for the existence of the common fixed point. In 2011, Sintunavarat
and Kumam [27] defined the notion of common limit range property for a pair
of self mappings in fuzzy metric spaces. They showed that common limit range
property never requires the closedness of the subspace (also see [28]). Recently,
Singh et al. [25] proved a common fixed point theorem for a pair of weakly
compatible self mappings in N.A. Menger PM-space employing common limit
range property.

In this paper, we extend the notion of common limit range property to two
pairs of self mappings in N.A. Menger PM-spaces and prove some fixed point
theorems. Some examples are given which demonstrate the validity of our main
result. As an application to our main result, we derive a fixed point theorem for
four finite families of self mappings which can be utilized to derive common
fixed point theorems involving any finite number of mappings.

2. Preliminaries

Definition 2.1. [20] A t-norm T is a binary operation on the unit interval [0,1]
such that for all a,b,c,d ∈ [0,1] and the following conditions are satisfied:

1. T (a,1) = a;

2. T (a,b) = T (b,a);

3. T (a,b)≤ T (c,d), whenever a≤ c and b≤ d;

4. T (a,T (b,c)) = T (T (a,b),c).

Definition 2.2. [20] A mapping F : R→ R+ is said to be a distribution func-
tion if it is non-decreasing and left continuous with inf{F(t) : t ∈ R} = 0 and
sup{F(t) : t ∈R}= 1. We shall denote ℑ by the set of all distribution functions.

If X is a non-empty set, F : X ×X → ℑ is called a probabilistic distance on
X and F(x,y) is usually denoted by Fx,y.
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Definition 2.3. [9, 11] The ordered pair (X ,F) is said to be N.A. PM-space if
X is a non-empty set and F is a probabilistic distance satisfying the following
conditions: for all x,y,z ∈ X and t, t1, t2 > 0,

1. Fx,y(t) = 1⇔ x = y;

2. Fx,y(t) = Fy,x(t);

3. if Fx,y(t1) = 1 and Fy,z(t2) = 1 then Fx,z(max{t1, t2}) = 1.

The ordered triplet (X ,F ,T ) is called a N.A. Menger PM-space if (X ,F) is
a N.A. PM-space, T is a t-norm and the following inequality holds:

Fx,z(max{t1, t2})≥ T (Fx,y(t1),Fy,z(t2)) ,

for all x,y,z ∈ X and t1, t2 > 0.

Example 2.4. Let X be any set with at least two elements. If we define Fx,x(t) =
1 for all x ∈ X , t > 0 and

Fx,y(t) =
{

0, if t ≤ 1;
1, if t > 1,

where x,y ∈ X ,x 6= y, then (X ,F ,T ) is a N.A. Menger PM-space with
T (a,b) = min{a,b} or (ab) for all a,b ∈ [0,1].

Example 2.5. Let X = R be the set of real numbers equipped with metric de-
fined by d(x,y) = |x− y| and

Fx,y(t) =
{ t

t+|x−y| , if t > 0;
0, if t = 0.

Then (X ,F ,T ) is a N.A. Menger PM-space with T as continuous t-norm
satisfying T (a,b) = min{a,b} or (ab) for all a,b ∈ [0,1].

Definition 2.6. [4] A N.A. Menger PM-space (X ,F ,T ) is said to be of type
(C)g if there exists a g ∈Ω such that

g(Fx,z(t))≤ g(Fx,y(t))+g(Fy,z(t)),

for all x,y,z ∈ X , t ≥ 0, where Ω = {g | g : [0,1]→ [0,∞) is continuous,
strictly decreasing with g(1) = 0 and g(0)< ∞}.

Definition 2.7. [4] A N.A. Menger PM-space (X ,F ,T ) is said to be of type
(D)g if there exists a g ∈Ω such that

g(T (t1, t2))≤ g(t1)+g(t2),

for all t1, t2 ∈ [0,1].
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Remark 2.8. [4] If a N.A. Menger PM-space (X ,F ,T ) is of type (D)g then

1. it is of type (C)g.

2. it is metrizable, where the metric d on X is defined by

d(x,y) =
∫ 1

0
g(Fx,y(t))dt,

for all x,y ∈ X .

Throughout this paper (X ,F ,T ) is a N.A. Menger PM-space of type (D)g
with a continuous strictly increasing t-norm T .

Let φ : [0,∞)→ [0,∞) be a function satisfying the condition (Φ): φ is upper
semi-continuous from the right and φ(t)< t for t > 0.

Lemma 2.9. [4] If a function φ : [0,∞)→ [0,∞) satisfies the condition (Φ) then
we have:

1. for all t ≥ 0, limn→∞ φ n(t) = 0, where φ n(t) is the nth iteration of φ(t).

2. If {tn} is a non-decreasing sequence of real numbers and tn+1 ≤ φ(tn)
where n = 1,2, . . . then limn→∞ tn = 0. In particular, if t ≤ φ(t), for each
t ≥ 0 then t = 0.

Definition 2.10. A pair (A,S) of self mappings of a N.A. Menger PM-space
(X ,F ,T ) is said to satisfy (E.A) property if there exists a sequence {xn} in X
such that

lim
n→∞

Axn = lim
n→∞

Sxn = z,

for some z ∈ X .

Definition 2.11. [19] A pair (A,S) of self mappings of a non-empty set X is
said to be weakly compatible (or coincidentally commuting) if they commute at
their coincidence points, i.e. if Az = Sz for some z ∈ X , then ASz = SAz.

It is known that a pair (A,S) of compatible mappings is weakly compatible
but converse is not true in general.

Remark 2.12. It is noticed that the notions of weak compatibility and property
(E.A) are independent to each other [18, Example 2.2].

Definition 2.13. Two pairs (A,S) and (B,T ) of self mappings of a N.A. Menger
PM-space (X ,F ,T ) are said to satisfy the common property (E.A), if there
exists two sequences {xn}, {yn} in X for some z in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = z.
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Inspired by Sintunavarat and Kumam [27], we define the “common limit in
the range” property in N.A. Menger PM-space as follows:

Definition 2.14. A pair (A,S) of self mappings of a N.A. Menger PM-space
(X ,F ,T ) is said to satisfy the common limit range property with respect to
mapping S, denoted by (CLRS), if there exists a sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = z,

for some z ∈ S(X).

Definition 2.15. Two pairs (A,S) and (B,T ) of self mappings of a N.A. Menger
PM-space (X ,F ,T ) are said to satisfy the common limit range property with
respect to mappings S and T , denoted by (CLRST ), if there exist two sequences
{xn} and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = z,

where z ∈ S(X)∩T (X).

Now, we show examples for two pairs of self mappings (A,S) and (B,T )
which are satisfying the (CLRST ) property.

Example 2.16. Let (X ,F ,T ) be a N.A. Menger PM-space, where X = [1,∞)
and metric d is defined as condition (2) of Remark 2.8. Define the self mappings
A,B,S and T on X by A(x) = x+2, B(x) = x+1, S(x) = 3x and T (x) = 3x

2 for
all x ∈ X . Then with sequences {xn} = {1+ 1

n}n∈N and {yn} = {2+ 1
n}n∈N in

X , we can easily verify that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = 3 ∈ S(X)∩T (X),

which shows that the pairs (A,S) and (B,T ) satisfy the (CLRST ) property.

Example 2.17. Let (X ,F ,T ) be a N.A. Menger PM-space, where X = [0,∞)
and metric d is defined as condition (2) of Remark 2.8. Define the self mappings
A,B,S and T on X by A(x) = x

3 , B(x) = x
4 , S(x) = 2x

3 and T (x) = 3x
4 for all x∈ X .

Let the sequences {xn}= {1
n}n∈N and {xn}= {2

n}n∈N in X . Since

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = 0 ∈ S(X)∩T (X),

therefore both the pairs (A,S) and (B,T ) satisfy the (CLRST ) property.

Definition 2.18. [7] Two families of self mappings {Ai} and {S j} are said to be
pairwise commuting if:

1. AiA j = A jAi, i, j ∈ {1,2, . . . ,m},

2. SkSl = SlSk, k, l ∈ {1,2, . . . ,n},

3. AiSk = SkAi, i ∈ {1,2, . . . ,m}, k ∈ {1,2, . . . ,n}.
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3. Results

Before proving our main result, we begin with the following observation.

Lemma 3.1. Let A,B,S and T be four self mappings of a N.A. Menger PM-
space (X ,F ,T ), where T is a continuous t-norm. Suppose that

1. the pair (A,S) satisfies the (CLRS) property
(

or the pair (B,T ) satisfies

the (CLRT ) property
)

,

2. A(X)⊂ T (X)
(

or B(X)⊂ S(X)
)

,

3. T (X)
(

or S(X)
)

is a closed subset of X,

4. {Byn} converges for every sequence {yn} in X whenever {Tyn} con-
verges

(
or {Axn} converges for every sequence {xn} in X whenever {Sxn}

converges
)
,

5. g(FAx,By(t))≤ φ

(
max

{
g(FSx,Ty(t)),g(FSx,Ax(t)),g(FTy,By(t)),

1
2 (g(FSx,By(t))+g(FTy,Ax(t)))

})
, (1)

for all x,y ∈ X, t > 0, where g ∈Ω and φ satisfies the condition (Φ).

Then the pairs (A,S) and (B,T ) enjoy the (CLRST ) property.

Proof. If the pair (A,S) satisfies the (CLRS) property, then there exists a se-
quence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = z (2)

where z∈ S(X). Since A(X)⊂ T (X), hence for each {xn}⊂X there corresponds
a sequence {yn}⊂X such that Axn = Tyn. Therefore, due to closedness of T (X),

lim
n→∞

Tyn = lim
n→∞

Axn = z, (3)

where z ∈ S(X)∩T (X). Thus in all, we have Axn→ z, Sxn→ z and Tyn→ z as
n→ ∞. By (4), the sequence {Byn} converges and in all we need to show that
Byn→ z as n→ ∞. On using inequality (1) with x = xn, y = yn, we get

g(FAxn,Byn(t))≤ φ

(
max

{
g(FSxn,Tyn(t)),g(FSxn,Axn(t)),g(FTyn,Byn(t)),

1
2 (g(FSxn,Byn(t))+g(FTyn,Axn(t)))

})
,

Let Byn→ l(6= z) as n→ ∞. Then, passing to limit as n→ ∞, we get
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g(Fz,l(t))≤ φ

(
max

{
g(Fz,z(t)),g(Fz,z(t)),g(Fz,l(t)),

1
2 (g(Fz,l(t))+g(Fz,z(t)))

})
,

= φ

(
max

{
g(1),g(1),g(Fz,l(t)),

1
2
(g(Fz,l(t))+g(1))

})
= φ

(
max

{
0,0,g(Fz,l(t)),

1
2
(g(Fz,l(t)))

})
= φ (g(Fz,l(t))) .

Owing Lemma 2.9, we have z = l. Hence the pairs (A,S) and (B,T ) share
the (CLRST ) property.

Theorem 3.2. Let A,B,S and T be four self mappings of a N.A. Menger PM-
space (X ,F ,T ), where T is a continuous t-norm satisfying inequality (1) of
Lemma 3.1. Suppose that the pairs (A,S) and (B,T ) share the (CLRST ) prop-
erty, then (A,S) and (B,T ) have a coincidence point each. Moreover, A,B,S and
T have a unique common fixed point provided both the pairs (A,S) and (B,T )
are weakly compatible.

Proof. Since the pairs (A,S) and (B,T ) enjoy the (CLRST ) property, there exist
two sequences {xn} and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Tyn = lim
n→∞

Byn = z,

where z ∈ S(X)∩ T (X). Since z ∈ S(X), there exists a point u ∈ X such that
Su = z. First we assert that Au = Su. On using inequality (1) with x = u, y = yn,
we get

g(FAu,Byn(t))≤ φ

(
max

{
g(FSu,Tyn(t)),g(FSu,Au(t)),g(FTyn,Byn(t)),

1
2 (g(FSu,Byn(t))+g(FTyn,Au(t)))

})
,

which on making n→ ∞, reduces to

g(FAu,z(t))≤ φ

(
max

{
g(Fz,z(t)),g(Fz,Au(t)),g(Fz,z(t)),

1
2 (g(Fz,z(t))+g(Fz,Au(t)))

})
= φ

(
max

{
g(1),g(Fz,Au(t)),g(1),

1
2
(g(1)+g(Fz,Au(t)))

})
= φ (g(Fz,Au(t))) .

On employing Lemma 2.9, we get Au = Su = z, which shows that u is a
coincidence point of the pair (A,S).
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Again, z ∈ T (X), there exists a point v ∈ X such that T v = z. We show that
Bv = T v. On using inequality (1) with x = u, y = v, we get

g(FAu,Bv(t))≤ φ

(
max

{
g(FSu,T v(t)),g(FSu,Au(t)),g(FT v,Bv(t)),

1
2 (g(FSu,Bv(t))+g(FT v,Au(t)))

})
g(Fz,Bv(t))≤ φ

(
max

{
g(Fz,z(t)),g(Fz,z(t)),g(Fz,Bv(t)),

1
2 (g(Fz,Bv(t))+g(Fz,z(t)))

})
= φ

(
max

{
g(1),g(1),g(Fz,Bv(t)),

1
2
(g(Fz,Bv(t))+g(1))

})
= φ (g(Fz,Bv(t))) .

Appealing to Lemma 2.9, we have Bv = T v = z, which shows that v is a
coincidence point of the pair (B,T ).

Since the pair (A,S) is weakly compatible and Au = Su, hence Az = ASu =
SAu = Sz. Now, we show that z is a common fixed point of the pair (A,S).
Putting x = z and y = v in inequality (1), we have

g(FAz,Bv(t))≤ φ

(
max

{
g(FSz,T v(t)),g(FSz,Az(t)),g(FT v,Bv(t)),

1
2 (g(FSz,Bv(t))+g(FT v,Az(t)))

})
g(FAz,z(t))≤ φ

(
max

{
g(FAz,z(t)),g(FAz,Az(t)),g(Fz,z(t)),

1
2 (g(FAz,z(t))+g(Fz,Az(t)))

})
= φ

(
max

{
g(FAz,z(t)),g(1),g(1),

1
2
(g(FAz,z(t))+g(Fz,Az(t)))

})
= φ (g(FAz,z(t))) .

In view of Lemma 2.9, we have Az= z= Sz which shows that z is a common
fixed point of the pair (A,S).

Also the pair (B,T ) is weakly compatible and Bv = T v, then Bz = BT v =
T Bv = T z. On using inequality (1) with x = u, y = z, we have

g(FAu,Bz(t))≤ φ

(
max

{
g(FSu,T z(t)),g(FSu,Au(t)),g(FT z,Bz(t)),

1
2 (g(FSu,Bz(t))+g(FT z,Au(t)))

})
g(Fz,Bz(t))≤ φ

(
max

{
g(Fz,Bz(t)),g(Fz,z(t)),g(FBz,Bz(t)),

1
2 (g(Fz,Bz(t))+g(FBz,z(t)))

})
= φ

(
max

{
g(Fz,Bz(t)),g(1),g(1),

1
2
(g(Fz,Bz(t))+g(FBz,z(t)))

})
= φ (g(Fz,Bz(t))) .

On using Lemma 2.9, we have Bz = z = T z which shows that z is a common
fixed point of the pair (B,T ) and in all z is a common fixed point of the pairs
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(A,S) and (B,T ). The uniqueness of common fixed point is an easy consequence
of inequality (1) in view of Lemma 2.9. This concludes the proof.

From the proof of Theorem 3.2, it is asserted that the common limit range
property never requires any condition on closedness of the underlying sub-
spaces, continuity of one or more mappings and containment of ranges amongst
involved mappings.

Remark 3.3. Theorem 3.2 improves the results of Cho et al. [4], Singh et al.
[22, Theorem 3.1, Corollary 3.3] and Singh et al. [23, Theorem 3.1, Corollary
3.1] and generalizes the results of Rao and Ramudu [19, Theorem 14].

Now, we give an example which demonstrates the validity of the hypothe-
ses and degree of generality of our main result over comparable ones from the
existing literature.

Example 3.4. Let (X ,d) be a metric space with the usual metric d where X =
[1,15) and let (X ,F ,T ) be the induced N.A. Menger PM-space with g(t)= 1−t
and Fx,y(t)= t

t+|x−y| for all x,y∈X and t > 0. Let A,B,S and T be four mappings
from X to itself defined as

A(x) =
{

1, if x ∈ {1}∪ (3,15);
14, if x ∈ (1,3].

B(x) =
{

1, if x ∈ {1}∪ (3,15);
5, if x ∈ (1,3].

S(x) =


1, if x = 1;
6, if x ∈ (1,3];
x+1

4 , if x ∈ (3,15).
T (x) =


1, if x = 1;
9+ x, if x ∈ (1,3];
x−2, if x ∈ (3,15).

Then we have A(X)= {1,14}* [1,13)= T (X) and B(X)= {1,5}* [1,4)∪
{6}= S(X). Taking the sequences {xn}=

{
3+ 1

n

}
, {yn}= {1}

(
or {xn}= {1},

{yn} =
{

3+ 1
n

})
, the pairs (A,S) and (B,T ) satisfy the(CLRST ) property, that

is,
lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = 1 ∈ S(X)∩T (X).

By a routine calculation, one can easily verify the inequality (1). Thus, all
the conditions of Theorem 3.2 are satisfied and 1 is a unique common fixed
point of the pairs (A,S) and (B,T ). It is noted that in this example that S(X)
and T (X) are not closed subsets of X . Also, all the involved mappings are even
discontinuous at their unique common fixed point 1.

Notice that the subspaces S(X) and T (X) are not closed subspaces of X ,
therefore Theorem 3.1 of Chauhan and Kumar [3] can not be used in the context
of this example which establishes the genuineness of our extension.
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Theorem 3.5. Let A,B,S and T be four self mappings of a N.A. Menger PM-
space (X ,F ,T ), where T is a continuous t-norm satisfying all the hypotheses
of Lemma 3.1. Then A,B,S and T have a unique common fixed point provided
both the pairs (A,S) and (B,T ) are weakly compatible.

Proof. In view of Lemma 3.1, the pairs (A,S) and (B,T ) share the (CLRST )
property, there exist two sequences {xn} and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Tyn = lim
n→∞

Byn = z,

where z ∈ S(X)∩T (X). The rest of the proof can be completed on the lines of
the proof of Theorem 3.2.

Here, it is worth noting that the conclusions in Example 3.4 cannot be
obtained using Theorem 3.5 as conditions (2) and (3) of Lemma 3.1 are not
fulfilled. In what follows, we give another example which creates a situation
wherein conclusion can be reached using Theorem 3.5.

Example 3.6. In the setting of Example 3.4, replace the self mappings A,B,S
and T by the following, besides retaining the rest:

A(x) =
{

1, if x ∈ {1}∪ (3,15);
10, if x ∈ (1,3].

B(x) =
{

1, if x ∈ {1}∪ (3,15);
4, if x ∈ (1,3].

S(x) =


1, if x = 1;
4, if x ∈ (1,3];
x+1

4 , if x ∈ (3,15).
T (x) =


1, if x = 1;
13, if x ∈ (1,3];
x−2, if x ∈ (3,15).

It is noted that A(X)= {1,10}⊂ [1,13] = T (X) and B(X)= {1,4}⊂ [1,4] =
S(X). Clearly, both the pairs (A,S) and (B,T ) satisfy the (CLRST ) property, that
is,

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = 1 ∈ S(X)∩T (X).

Also all the conditions of Theorem 3.5 can be easily verified and 1 is a
unique common fixed point of the pairs (A,S) and (B,T ). Here, it is worth
noting that Theorems 3.2 can not be used in the context of this example as S(X)
and T (X) are closed subsets of X . Also, all the involved mappings are even
discontinuous at their unique common fixed point 1.

By choosing A,B,S and T suitably, we can deduce corollaries involving
two as well as three self mappings. The details of possible corollaries are not
included here.

Now we utilize the notion of commuting pairwise due to Imdad et al. [7]
and extend Theorem 3.2 to six self mappings in N.A. Menger PM-spaces.
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Theorem 3.7. Let A,B,R,S,H and T be six self mappings of a N.A. Menger
PM-space (X ,F ,T ), where T is a continuous. Suppose that

1. the pairs (A,SR) and (B,T H) satisfy the (CLR(SR)(T H)) property,

2. g(FAx,By(t))≤ φ

max


g(FSRx,T Hy(t)),g(FSRx,Ax(t)),

g(FT Hy,By(t)),
1
2 (g(FSRx,By(t))+g(FT Hy,Ax(t)))


, (4)

for all x,y ∈ X, t > 0, where g ∈ Ω and φ satisfies the condition (Φ). Then
(A,SR) and (B,T H) have a coincidence point each. Moreover, A,B,H,R,S and
T have a unique common fixed point provided AS = SA, AR = RA, SR = RS,
BT = T B, BH = HB and T H = HT .

Proof. By Theorem 3.2, A,B,SR and T H have a unique common fixed point
z in X . We show that z is a unique common fixed point of the self mappings
A,B,R,S,H and T . Putting x = Rz and y = z in inequality (4), we have

g(FA(Rz),Bz(t))≤ φ

max


g(FSR(Rz),T Hz(t)),g(FSR(Rz),A(Rz)(t)),

g(FT Hz,Bz(t)),
1
2

(
g(FSR(Rz),Bz(t))+g(FT Hz,A(Rz)(t))

)



g(FRz,z(t))≤ φ

(
max

{
g(FRz,z(t)),g(FRz,Rz(t)),g(Fz,z(t)),

1
2 (g(FRz,z(t))+g(Fz,Rz(t)))

})
= φ

(
max

{
g(FRz,z(t)),g(1),g(1),

1
2 (g(FRz,z(t))+g(Fz,Rz(t)))

})
= φ (g(FRz,z(t))) .

On using Lemma 2.9, we have z = Rz. Hence S(z) = S(Rz) = z. Therefore
we have z = Az = Sz = Rz. Now we assert that z is a common fixed point of B,T
and H. To accomplish this, we use inequality (4) with x = z, y = Hz, we get

g(FAz,B(Hz)(t))≤ φ

max


g(FSRz,T H(Hz)(t)),g(FSRz,Az(t)),

g(FT H(Hz),B(Hz)(t)),
1
2

(
g(FSRz,B(Hz)(t))+g(FT H(Hz),Az(t))

)



g(Fz,Hz(t))≤ φ

(
max

{
g(Fz,Hz(t)),g(Fz,z(t)),g(FHz,Hz(t)),

1
2 (g(Fz,Hz(t))+g(FHz,z(t)))

})
= φ

(
max

{
g(Fz,Hz(t)),g(1),g(1),

1
2 (g(Fz,Hz(t))+g(FHz,z(t)))

})
= φ (g(Fz,Hz(t))) .

Thus, by Lemma 2.9, we have z = Hz. Hence T (z) = T (Hz) = z. Therefore
z is a common fixed point of self mappings A,B,R,S,H and T . Uniqueness of
common fixed point is an easy consequence of inequality (4).
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In view of Theorem 3.7, we can drive a fixed point theorem for four finite
families of self mappings.

Corollary 3.8. Let {Ai}m
i=1, {Br}n

r=1, {Sk}p
k=1 and {Th}q

h=1 be four finite fami-
lies of self mappings of a N.A. Menger PM-space (X ,F ,T ), where T is a con-
tinuous with A = A1A2 . . .Am,B = B1B2 . . .Bn,S = S1S2 . . .Sp and T = T1T2 . . .Tq

satisfying inequality (1) of Lemma 3.1 such that the pairs (A,S) and (B,T )
share the (CLRST ) property. Then {Ai}m

i=1, {Br}n
r=1, {Sk}p

k=1 and {Th}q
h=1 have

a unique common fixed point provided the pairs of families ({Ai},{Sk}) and
({Br},{Th}) commute pairwise, where i ∈ {1,2, . . . ,m},k ∈ {1,2, . . . , p},r ∈
{1,2, . . . ,n} and h ∈ {1,2, . . . ,q}.

By setting A1 =A2 = . . .=Am =A, B1 =B2 = . . .=Bp =B, S1 = S2 = . . .=
Sn = S and T1 = T2 = . . .= Tq = T in Corollary 3.8, we deduce the following:

Corollary 3.9. Let A,B,S and T be self mappings of a N.A. Menger PM-space
(X ,F ,T ), where T is a continuous. Suppose that

1. the pairs (Am,Sp) and (Bn,T q) satisfy the (CLRSp,T q) property, where
m,n, p,q are fixed positive integers,

2. g(FAmx,Bny(t))≤ φ

max


g(FSpx,T qy(t)),g(FSpx,Amx(t)),

g(FT qy,Bny(t)),
1
2 (g(FSpx,Bny(t))+g(FT qy,Amx(t)))


, (5)

for all x,y ∈ X, t > 0, g ∈ Ω where φ satisfies the condition (Φ). Then A,B,S
and T have a unique common fixed point provided AS = SA and BT = T B.

Remark 3.10. The conclusions of Theorems 3.2 remains true if we replace the
inequality (1) by one of the following (for all x,y ∈ X , t > 0, where g ∈ Ω and
φ satisfies the condition (Φ).):

g(FAx,By(t))≤ φ (maxg(FSx,Ty(t)),g(FSx,Ax(t)),g(FTy,By(t)),g(FSx,By(t))) , (6)

g(FAx,By(t))≤ φ (maxg(FSx,Ty(t)),g(FSx,Ax(t)),g(FTy,By(t))) . (7)

Remark 3.11. The results similar to Theorem 3.2, Theorem 3.5, Theorem 3.7,
Corollary 3.8 and Corollary 3.9 can also be outlined in view of inequalities (6)-
(7).

Remark 3.12. In view of Remark 3.10, the results improve the results of Khan
and Sumitra [16, Theorem 2, Corollary 1].
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