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PROJECTIVE NORMALIY OF ARTIN-SCHREIER CURVES

EDOARDO BALLICO - ALBERTO RAVAGNANI

In this paper we study the projective normality of the Artin-Schreier
curves, Yy, defined over a field IF of characteristic p by the equations

Yi+y=f(x),

q being a power of p and f € F[x] being a polynomial in x of degree
m, with (m,p) = 1. Many Yr curves are singular and so, to be precise,
here we study the projective normality of appropriate projective models
of their normalizations.

1. Introduction

Let P> denote the projective plane over an arbitrary field IF of characteristic p,
and let g := p* be a power of p (k > 0). Denote by Yy C IP? the curve defined
over F by the equation y? +y = f(x), where f(x) € F[x] is a polynomial of
degree m > 0. Assume (m, p) = 1. The function field F(x,y) is deeply studied
in [6], Proposition 6.4.1. In particular, the function x is known to have only one
pole P.. Denote by 7 : Cy — Y the normalization of Yy (which is known to
be a bijection) and set Q.. := 7~ !(P.). For each s > 0 the (pull-backs of the)
monomials x'y/ such that

i>0, 0<j<q—1, gitmj<s
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form a basis of the vector space L(sQ) (see [6], Proposition 6.4.1 again). The
genus, g, of the curve Yy (which is by definition the genus of the normalization
Cy) is known to be g = (m — 1)(g — 1)/2. In this paper we study the projective
normality of certain embeddings, say Xy, of C; curves into suitable projective
spaces. Let us briefly discuss the outline of the paper.

e Section 2 contains some preliminary results on the projective normality
of curves.

e In Section 3 we take an arbitrary integer m > 2 which divides g — 1 and
consider the curve Cy embedded by L(¢Q-..) into the projective space P,
r:=(q—1)/m+ 1. We show that this curve is in any case projectively
normal and we compute the dimension of the space of quadric hypersur-
faces containing it.

e In Section 4 we pick out an arbitrary integer m > 2 which divides tg + 1
(t being any positive integer) and consider the curve Cy embedded by
L((tg+1)Q). We show that if (rg—1)/m < g—1 and f(x) = x™ then
the cited curve is in any case projectively normal.

Notice that the curve C; and the line bundles £(¢Q..), L((tg+1)Q..) are
defined over any field F O I, containing the coefficients of the polynomial f(x).
Hence when f(x) = x™ any field of characteristic p may be used.

2. Preliminaries

In this section we recall a basic definition and prove a general lemma. The result
provides in fact sufficient conditions for the projective normality of a Cy curve
as defined in the Introduction.

Definition 2.1. A smooth curve X C P defined over a field F is said to be
projectively normal if for any integer d > 2 the restriction map

Pax : SUHOE, Op:(1))) > HO(X, Ox(d))
is surjective, $¢ denoting the symmetric d-power of the tensor product.

Lemma 2.2. Consider a Cy curve as in Section 1 (q, m and f being as in the
definitions). Set C := Cy. Fix integers a,b,e such thata >0, b >0, a+b >0
and e > ag+bm+ (m—1)(q— 1) — 1. The multiplication map

U L((ag+bm)Qw) ® L(eQw) — L((e+ aq + bm) Q)

is surjective.
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Proof. As we will explain below, this is just a particular case of the base-point
free pencil trick ([1], p. 126). Since the Weierstrass semigroup of non-gaps of
Q.. contains m and g, the line bundle O¢((ag + bm)Q..) is spanned by its global
sections. Since (ag+ bm) > 0, we have h°(C,O¢((aq+bm)Q..)) > 2. Hence
there exists a two-dimensional linear subspace V C H%(C,Oc¢((aq + bm)Q..))
(defined over F) spanning O¢((aq + bm)Q..). Taking a basis, say {wy,w;}, of
V, we get an exact sequence of line bundles on C (over F):

0= Oc((e—aq—bm)0.) — Oc(e0w)* % Oc((e+ag+bm)0w) — 0

in which ¢ is induced by the multiplication by the column vector (w;,w;). By
assumption e — aq — bm > 2g — 2. Hence h'(C,O¢((e —ag — bm)Q..)) = 0. It
follows that the map

¥ :H(C,0c(eQ-.))"* — H(C,Oc((e+aq+bm) Q)

induced in cohomology by the map ¢ of the previous exact sequence is surjec-
tive. Since V C H(C,O¢((aq +bm)Qx)), 1 is surjective. O

In the following sections the previous result will be applied to appropriate
embeddings of Cy curves.

3. The case m|qg—1

Assume that m > 2 is an integer which divides ¢ — 1 and set ¢ := (¢ — 1) /m. If
c =1 then Yy is a smooth plane curve and it is of course projectively normal.
Hence we can focus on the case ¢ > 2. Notice that the point P., € Y/(IF') defined
in the Introduction is the only singular point of Yy, for any choice of f(x) as in
the definitions. We have also an identity of vector spaces H’(Cy, * (Oy,(1))) =
L(gQ-) and by the results stated in the Introduction it can be easily seen that
a basis of them is {1,x,y,...,y} (c < g—1 here). Since the linear system
spanned by {1,x,y} is base-point free (it is also the linear system inducing the
composition of 77 with the inclusion of Yy in the plane) then also the complete
linear system L(gQ..) is base-point free. Hence it defines a morphism ¢ : Cy —
P ri=c+1.

Remark 3.1. Since 7 is injective and has invertible differential at any point
of Cr \ {Q}, then also ¢ is injective with non-zero differential at any point of
Cs\ {QOw}. Moreover, the differential of ¢ is non-zero even in Q... Indeed, since
L(gQ-.) has no base-points, in order to prove that ¢ has non-zero differential at
O it is enough to prove that

h(Cr,(q—2)0w) = h’(Cr,qQ.) —2
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(see [4], Chapter 1V, proof of Proposition 3.1). To do this, we may notice that a
basis of L(¢Q.) is given by a basis of L((¢ —2)Qw) and the monomials x and
¥¢ (see the Introduction again). The result follows.

By the previous remark, ¢ is in fact an embedding of Cy into P". Set X :=
¢(Cy) and, for any integer s > 1, denote by

Uy 2 L(qQw) @ L(59Qw) — L(q(s +1)0x)
the multiplication map.
Lemma 3.2. If yi is surjective for any s > 1, then Xy is projectively normal.

Proof. Fix an integer t > 2 and assume that u; is surjective for any integer
s € {l,...,t —1}. We need to prove the surjectivity of the linear map p; :
S"(L(¢0«)) — L(tqQ). Notice that, in arbitrary characteristic, S'(L(¢Q))
is defined as a suitable quotient of L(gQ.)*" (see [2], §A2.3), i.e., T, = p,o N,
where 7 : L(gQ0w)®" — L(tqQ<) is the tensor power map and 7, : L(gQx)*" —
S"(L(gQ)) is a surjection. Hence p; is surjective if and only if 7, is surjective.
Since 7, = U, T is surjective. So assume ¢ > 2 and that 7, is surjective. Since
T,_1 and U,_, are surjective, T; is surjective. OJ

Proposition 3.3. If's > m then U is surjective.

Proof. If s > mthen sq > g+ (m—1)(q¢—1) — 1. Apply Lemma 2.2 by setting
e:=sq,a:=1and b:=0. O

Theorem 3.4. The curve Xy is projectively normal.

Proof. By Lemma 3.2 it is enough to prove that y is surjective for all s > 1.
The case s > m is covered by Proposition 3.3. So let us assume 1 < s < m. Let
i, j be integers such that i > 0,0 < j<g—1and gi+mj < (s+1)q.

o If gi+mj < sq then x'y/ is in the image of ; because 1 € L(gQw).

o If sg < gi+mj<(s+1)gandi>0 then x~'y/ € L(sqQ..). Since x €
L(gQ..), the monomial x'y/ is in the image of .

o Ifi=0and sq <mj < (s+1)gthen j>sq/m=s(c+1/m)>candmj <
(s+1)g — 1. By the latter inequality we get m(j—c) < (s+1)g—1—mc.
Observe that (s+ 1)g — 1 —mc = sq and so m(j — c¢) < sq. This proves
that y/~¢ € L(5qQ-). Finally, u(y¢ ® y/=¢) = y/.

eIfi=0and mj=(s+1)gthen j=(s+1)g/m=(s+1)(c+1/m) =
(s+1)c+(s+1)/m. Since 0 < j < g—1 is a nonnegative integer, we
must have (s+1)/m € N. Since 1 <s < m we get s =m— 1. It follows
mj = mgq and j = g, a contradiction.
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This proves the theorem. OJ

Corollary 3.5. Assume m > 3. The curve Xy C P is contained into ("42“3) -
3¢ — 3 linearly independent quadric hypersurfaces.

Proof. In the notations of Definition 2.1 set X := Xy and d := 2. Define r :=
¢+ 1. By Theorem 3.4, the restriction map

P2x; - S2 (HO(Pra OP"(l))) — HO(Xfa OXf (2))
is surjective. Hence, in particular, the restriction map

p : H(P",0p:(2)) — H'(X;, O, (2))

is surjective. Since m > 3 (by assumption) we can easily check that a basis of
the vector space L(2gQ.) consists of the following monomials:

{lvya s ’yZC’x,xy’ cee ,xyc’XZ}.

Hence h°(Xy,0x,(2)) = dimg L(2(q —1)Qw) = 3¢+ 3. The kernel of p is
exactly the space of the quadrics in P" vanishing on X;. By the surjectivity of p
we easily deduce its dimension:

dimg HO(P", Ty, (d)) = (’";2> —(Bc+3) = (";3) ~3c—3.

The result follows. O

4. The case m|tg+ 1

Pick out any integer + > 1 and assume that m > 2 is an integer dividing tg + 1.
Set ¢ := (tg+1)/m. As in Remark 3.1, it can be checked that L((tg + 1)Q)
defines an embedding, say ¢, of Cy into P, r := dimL((tq¢+ 1)Q..) — 1. Define
X := @(Cy). For any integer s > 1 denote by

Hs s L((tq +1)Qe) ® L(s(tq + 1) Q) — L((s + 1) (1 + 1) O

the multiplication map. As in Section 3, the projective normality of Xy is con-
trolled by the L, maps.

Lemma 4.1. If L is surjective for all s > 1 then Xy is projectively normal.
Proof. Take the proof of Lemma 3.2. O

Proposition 4.2. If s > m, then L is surjective.
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Proof. Apply Lemma 2.2 by setting a := 0, b:=c and e := s(tg+1). O

In the following part of the section we focus on the case f(x) = x". In
particular, we are going to show that X curves obtained with this choice of f
are projectively normal for any choice of t > 1, provided that c < g — 1.

Remark 4.3. The assumption ¢ < g — 1 is not so restrictive from a geometric
point of view. In fact, for any fixed g, the genus of Xy is g = (¢—1)(m—1)/2.
Even if ¢ is small, here we study many curves of interesting genus.

Lemma 4.4. Set f(x) := x™ and assume ¢ < q— 1. Pick out an integer b > 0
such that b < (s+ 1)c. Then y” is in the image of ;.

Proof. Since ¢ < g—1 we get y € L((tqg+ 1)Q). In particular, if b < ¢ then
we are done. Assume b > c¢. Let us prove the lemma by induction on s. If
s=1,thenb<2cand b—c <c<g—1. Hence y*~° € L((tq+1)Q..) and so
¥’ = w1 (y° @yP =) is of course in the image of u;. If s > 1, then write b = hc+p
with 7 < s and 0 < p < ¢. Since b — p = he < sc we have that y*~P is in the
image of 1, ;. In particular, it is in L(s(tg+ 1) Q). Since y? € L((tg+1)0w),
we get y¥ = (P ®y?~P). It follows that y” is in the image of ;. O

Theorem 4.5. Set f(x) = x" and assume ¢ < q— 1. Then Xy is projectively
normal.

Proof. By Lemma 4.1, it is enough to show that i is surjective for any s > 1.
By Proposition 4.2, we need only to prove that U is surjective for any 1 <s < m.
Let i, j be integers such that i > 0,0 < j<g—1landgi+mj < (s+1)(tg+1).
We will examine separately the case 2 < s < m and the case s = 1.

To begin with, assume 2 < s < m.

o If j > c, then x'y/ ¢ € L(s(tqg+1)Q.). Since y¢ € L((tq+1)Q-.), we have
xlyl = (¢ @x'y 7).

e If 0 < j<cand gi+mj <s(tg+1), then x'y/ is in the image of u,
because 1 € L((1g+1)Q).

o Assume 0 < j < cand s(tg+1) <gi+mj < (s+1)(tg+1). We have
i > t. Indeed, assume by contradiction that i < ¢. Then

qgi+mj<tq+mj
<tq+mc
=tq+tq+1
<stg+1
<s(tg+1),
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a contradiction (here we used s > 2).

(A) If gi+mj < (s+1)(tq+1) thenx~'y/ € L(s(tq+1)Q) and x'y/ =
s (¢ @x1y).

(B) Assume gi+mj=(s+1)(tq+1). Since (m,p) =1 we have i = am
for an integer a > 0 and j = (s+ 1)c —aq. Observe that x'y/ =
xamy(sthe=ag — (ya 4 y)@y(t1)e=aq which is a sum of monomials
of the form y? with b < (s+41)c. Apply Lemma 4.4 and the fact that
U is linear to get that x'y/ is in its image.

Now assume s = 1.

e Assume j > c. Since gi+mj <2(tqg+1) we get gi+m(j—c) <2(tqg+
1) — (tg+1) =tg+1. Hence x'y/~¢ € L((tqg+ 1)0Qw). Finally, u;()* ®
xiyjfc) :xiyj'

e Assume j < candi>t. Since gi+mj<2(tqg+1) wegetqg(i—t)+mj <
2(tq+1)—tg=1tq+2.

(C) If g(i —t) +mj <tq+1 then x'y/ = py (¥ @x"y/).
(D) Assume g(i—1t)+mj=tq+2,ie. gi+mj=2tqg+2. Repeat the
proof of case (B) with s := 1.
e Assume j < cand i <t. Then x',y/ € L((tq+ 1)Q..) and we easily get
Xyl = (x @y).
This concludes the proof. O
Remark 4.6. If t = 1 then the assumption ¢ < g — 1 is trivially satisfied (we as-

sumed m # g+ 1). In this case the curve y? +y = x" is covered by the Hermitian
curve.
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