PROJECTIVE NORMALIY OF ARTIN-SCHREIER CURVES

EDOARDO BALLICO - ALBERTO RAVAGNANI

In this paper we study the projective normality of the Artin-Schreier curves, Y_{f}, defined over a field \mathbb{F} of characteristic p by the equations

$$
y^{q}+y=f(x),
$$

q being a power of p and $f \in \mathbb{F}[x]$ being a polynomial in x of degree m, with $(m, p)=1$. Many Y_{f} curves are singular and so, to be precise, here we study the projective normality of appropriate projective models of their normalizations.

1. Introduction

Let \mathbb{P}^{2} denote the projective plane over an arbitrary field \mathbb{F} of characteristic p, and let $q:=p^{k}$ be a power of $p(k>0)$. Denote by $Y_{f} \subseteq \mathbb{P}^{2}$ the curve defined over \mathbb{F} by the equation $y^{q}+y=f(x)$, where $f(x) \in \mathbb{F}[x]$ is a polynomial of degree $m>0$. Assume $(m, p)=1$. The function field $\mathbb{F}(x, y)$ is deeply studied in [6], Proposition 6.4.1. In particular, the function x is known to have only one pole P_{∞}. Denote by $\pi: C_{f} \rightarrow Y_{f}$ the normalization of Y_{f} (which is known to be a bijection) and set $Q_{\infty}:=\pi^{-1}\left(P_{\infty}\right)$. For each $s \geq 0$ the (pull-backs of the) monomials $x^{i} y^{j}$ such that

$$
i \geq 0, \quad 0 \leq j \leq q-1, \quad q i+m j \leq s
$$

form a basis of the vector space $L\left(s Q_{\infty}\right)$ (see [6], Proposition 6.4.1 again). The genus, g, of the curve Y_{f} (which is by definition the genus of the normalization C_{f}) is known to be $g=(m-1)(q-1) / 2$. In this paper we study the projective normality of certain embeddings, say X_{f}, of C_{f} curves into suitable projective spaces. Let us briefly discuss the outline of the paper.

- Section 2 contains some preliminary results on the projective normality of curves.
- In Section 3 we take an arbitrary integer $m \geq 2$ which divides $q-1$ and consider the curve C_{f} embedded by $L\left(q Q_{\infty}\right)$ into the projective space \mathbb{P}^{r}, $r:=(q-1) / m+1$. We show that this curve is in any case projectively normal and we compute the dimension of the space of quadric hypersurfaces containing it.
- In Section 4 we pick out an arbitrary integer $m \geq 2$ which divides $t q+1$ (t being any positive integer) and consider the curve C_{f} embedded by $L\left((t q+1) Q_{\infty}\right)$. We show that if $(t q-1) / m \leq q-1$ and $f(x)=x^{m}$ then the cited curve is in any case projectively normal.

Notice that the curve C_{f} and the line bundles $\mathcal{L}\left(q Q_{\infty}\right), \mathcal{L}\left((t q+1) Q_{\infty}\right)$ are defined over any field $\mathbb{F} \supseteq \mathbb{F}_{p}$ containing the coefficients of the polynomial $f(x)$. Hence when $f(x)=x^{m}$ any field of characteristic p may be used.

2. Preliminaries

In this section we recall a basic definition and prove a general lemma. The result provides in fact sufficient conditions for the projective normality of a C_{f} curve as defined in the Introduction.

Definition 2.1. A smooth curve $X \subseteq \mathbb{P}^{r}$ defined over a field \mathbb{F} is said to be projectively normal if for any integer $d \geq 2$ the restriction map

$$
\rho_{d, X}: S^{d}\left(H^{0}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}(1)\right)\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}(d)\right)
$$

is surjective, S^{d} denoting the symmetric d-power of the tensor product.
Lemma 2.2. Consider a C_{f} curve as in Section $1(q, m$ and f being as in the definitions). Set $C:=C_{f}$. Fix integers a, b, e such that $a \geq 0, b \geq 0, a+b>0$ and $e \geq a q+b m+(m-1)(q-1)-1$. The multiplication map

$$
\mu: L\left((a q+b m) Q_{\infty}\right) \otimes L\left(e Q_{\infty}\right) \rightarrow L\left((e+a q+b m) Q_{\infty}\right)
$$

is surjective.

Proof. As we will explain below, this is just a particular case of the base-point free pencil trick ([1], p. 126). Since the Weierstrass semigroup of non-gaps of Q_{∞} contains m and q, the line bundle $\mathcal{O}_{C}\left((a q+b m) Q_{\infty}\right)$ is spanned by its global sections. Since $(a q+b m)>0$, we have $h^{0}\left(C, \mathcal{O}_{C}\left((a q+b m) Q_{\infty}\right)\right) \geq 2$. Hence there exists a two-dimensional linear subspace $V \subseteq H^{0}\left(C, \mathcal{O}_{C}\left((a q+b m) Q_{\infty}\right)\right)$ (defined over $\overline{\mathbb{F}}$) spanning $\mathcal{O}_{C}\left((a q+b m) Q_{\infty}\right)$. Taking a basis, say $\left\{w_{1}, w_{2}\right\}$, of V, we get an exact sequence of line bundles on C (over $\overline{\mathbb{F}}$):

$$
0 \rightarrow \mathcal{O}_{C}\left((e-a q-b m) Q_{\infty}\right) \rightarrow \mathcal{O}_{C}\left(e Q_{\infty}\right)^{\oplus 2} \xrightarrow{\phi} \mathcal{O}_{C}\left((e+a q+b m) Q_{\infty}\right) \rightarrow 0
$$

in which ϕ is induced by the multiplication by the column vector $\left(w_{1}, w_{2}\right)$. By assumption $e-a q-b m>2 g-2$. Hence $h^{1}\left(C, \mathcal{O}_{C}\left((e-a q-b m) Q_{\infty}\right)\right)=0$. It follows that the map

$$
\psi: H^{0}\left(C, \mathcal{O}_{C}\left(e Q_{\infty}\right)\right)^{\oplus 2} \rightarrow H^{0}\left(C, \mathcal{O}_{C}\left((e+a q+b m) Q_{\infty}\right)\right)
$$

induced in cohomology by the map ϕ of the previous exact sequence is surjective. Since $V \subseteq H^{0}\left(C, \mathcal{O}_{C}\left((a q+b m) Q_{\infty}\right)\right), \mu$ is surjective.

In the following sections the previous result will be applied to appropriate embeddings of C_{f} curves.

3. The case $m \mid q-1$

Assume that $m \geq 2$ is an integer which divides $q-1$ and set $c:=(q-1) / m$. If $c=1$ then Y_{f} is a smooth plane curve and it is of course projectively normal. Hence we can focus on the case $c \geq 2$. Notice that the point $P_{\infty} \in Y_{f}(\mathbb{F})$ defined in the Introduction is the only singular point of Y_{f}, for any choice of $f(x)$ as in the definitions. We have also an identity of vector spaces $H^{0}\left(C_{f}, \pi^{*}\left(\mathcal{O}_{Y_{f}}(1)\right)\right)=$ $L\left(q Q_{\infty}\right)$ and by the results stated in the Introduction it can be easily seen that a basis of them is $\left\{1, x, y, \ldots, y^{c}\right\}(c \leq q-1$ here $)$. Since the linear system spanned by $\{1, x, y\}$ is base-point free (it is also the linear system inducing the composition of π with the inclusion of Y_{f} in the plane) then also the complete linear system $L\left(q Q_{\infty}\right)$ is base-point free. Hence it defines a morphism $\varphi: C_{f} \rightarrow$ $\mathbb{P}^{r}, r:=c+1$.

Remark 3.1. Since π is injective and has invertible differential at any point of $C_{f} \backslash\left\{Q_{\infty}\right\}$, then also φ is injective with non-zero differential at any point of $C_{f} \backslash\left\{Q_{\infty}\right\}$. Moreover, the differential of φ is non-zero even in Q_{∞}. Indeed, since $L\left(q Q_{\infty}\right)$ has no base-points, in order to prove that φ has non-zero differential at Q_{∞} it is enough to prove that

$$
h^{0}\left(C_{f},(q-2) Q_{\infty}\right)=h^{0}\left(C_{f}, q Q_{\infty}\right)-2
$$

(see [4], Chapter IV, proof of Proposition 3.1). To do this, we may notice that a basis of $L\left(q Q_{\infty}\right)$ is given by a basis of $L\left((q-2) Q_{\infty}\right)$ and the monomials x and y^{c} (see the Introduction again). The result follows.

By the previous remark, φ is in fact an embedding of C_{f} into \mathbb{P}^{r}. Set $X_{f}:=$ $\varphi\left(C_{f}\right)$ and, for any integer $s \geq 1$, denote by

$$
\mu_{s}: L\left(q Q_{\infty}\right) \otimes L\left(s q Q_{\infty}\right) \rightarrow L\left(q(s+1) Q_{\infty}\right)
$$

the multiplication map.
Lemma 3.2. If μ_{s} is surjective for any $s \geq 1$, then X_{f} is projectively normal.
Proof. Fix an integer $t \geq 2$ and assume that μ_{s} is surjective for any integer $s \in\{1, \ldots, t-1\}$. We need to prove the surjectivity of the linear map ρ_{t} : $S^{t}\left(L\left(q Q_{\infty}\right)\right) \rightarrow L\left(t q Q_{\infty}\right)$. Notice that, in arbitrary characteristic, $S^{t}\left(L\left(q Q_{\infty}\right)\right)$ is defined as a suitable quotient of $L\left(q Q_{\infty}\right)^{\otimes t}$ (see [2], §A2.3), i.e., $\tau_{t}=\rho_{t} \circ \eta_{t}$, where $\tau_{t}: L\left(q Q_{\infty}\right)^{\otimes t} \rightarrow L\left(t q Q_{\infty}\right)$ is the tensor power map and $\eta_{t}: L\left(q Q_{\infty}\right)^{\otimes t} \rightarrow$ $S^{t}\left(L\left(q Q_{\infty}\right)\right)$ is a surjection. Hence ρ_{t} is surjective if and only if τ_{t} is surjective. Since $\tau_{2}=\mu_{1}, \tau_{2}$ is surjective. So assume $t>2$ and that τ_{t-1} is surjective. Since τ_{t-1} and μ_{t-2} are surjective, τ_{t} is surjective.

Proposition 3.3. If $s \geq m$ then μ_{s} is surjective.
Proof. If $s \geq m$ then $s q \geq q+(m-1)(q-1)-1$. Apply Lemma 2.2 by setting $e:=s q, a:=1$ and $b:=0$.

Theorem 3.4. The curve X_{f} is projectively normal.
Proof. By Lemma 3.2 it is enough to prove that μ_{s} is surjective for all $s \geq 1$. The case $s \geq m$ is covered by Proposition 3.3. So let us assume $1 \leq s<m$. Let i, j be integers such that $i \geq 0,0 \leq j \leq q-1$ and $q i+m j \leq(s+1) q$.

- If $q i+m j \leq s q$ then $x^{i} y^{j}$ is in the image of μ_{s} because $1 \in L\left(q Q_{\infty}\right)$.
- If $s q<q i+m j \leq(s+1) q$ and $i>0$ then $x^{i-1} y^{j} \in L\left(s q Q_{\infty}\right)$. Since $x \in$ $L\left(q Q_{\infty}\right)$, the monomial $x^{i} y^{j}$ is in the image of μ_{s}.
- If $i=0$ and $s q<m j<(s+1) q$ then $j>s q / m=s(c+1 / m)>c$ and $m j \leq$ $(s+1) q-1$. By the latter inequality we get $m(j-c) \leq(s+1) q-1-m c$. Observe that $(s+1) q-1-m c=s q$ and so $m(j-c) \leq s q$. This proves that $y^{j-c} \in L\left(s q Q_{\infty}\right)$. Finally, $\mu_{s}\left(y^{c} \otimes y^{j-c}\right)=y^{j}$.
- If $i=0$ and $m j=(s+1) q$ then $j=(s+1) q / m=(s+1)(c+1 / m)=$ $(s+1) c+(s+1) / m$. Since $0 \leq j \leq q-1$ is a nonnegative integer, we must have $(s+1) / m \in \mathbb{N}$. Since $1 \leq s<m$ we get $s=m-1$. It follows $m j=m q$ and $j=q$, a contradiction.

This proves the theorem.
Corollary 3.5. Assume $m \geq 3$. The curve $X_{f} \subseteq \mathbb{P}^{r}$ is contained into $\binom{c+3}{2}-$ $3 c-3$ linearly independent quadric hypersurfaces.

Proof. In the notations of Definition 2.1 set $X:=X_{f}$ and $d:=2$. Define $r:=$ $c+1$. By Theorem 3.4, the restriction map

$$
\rho_{2, X_{f}}: S^{2}\left(H^{0}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}(1)\right)\right) \rightarrow H^{0}\left(X_{f}, \mathcal{O}_{X_{f}}(2)\right)
$$

is surjective. Hence, in particular, the restriction map

$$
\rho: H^{0}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}(2)\right) \rightarrow H^{0}\left(X_{f}, \mathcal{O}_{X_{f}}(2)\right)
$$

is surjective. Since $m \geq 3$ (by assumption) we can easily check that a basis of the vector space $L\left(2 q Q_{\infty}\right)$ consists of the following monomials:

$$
\left\{1, y, \ldots, y^{2 c}, x, x y, \ldots, x y^{c}, x^{2}\right\}
$$

Hence $h^{0}\left(X_{f}, \mathcal{O}_{X_{f}}(2)\right)=\operatorname{dim}_{\mathbb{F}} L\left(2(q-1) Q_{\infty}\right)=3 c+3$. The kernel of ρ is exactly the space of the quadrics in \mathbb{P}^{r} vanishing on X_{f}. By the surjectivity of ρ we easily deduce its dimension:

$$
\operatorname{dim}_{\mathbb{F}} H^{0}\left(\mathbb{P}^{r}, \mathcal{I}_{X_{f}}(d)\right)=\binom{r+2}{2}-(3 c+3)=\binom{c+3}{2}-3 c-3
$$

The result follows.

4. The case $m \mid t q+1$

Pick out any integer $t \geq 1$ and assume that $m \geq 2$ is an integer dividing $t q+1$. Set $c:=(t q+1) / m$. As in Remark 3.1, it can be checked that $L\left((t q+1) Q_{\infty}\right)$ defines an embedding, say φ, of C_{f} into $\mathbb{P}^{r}, r:=\operatorname{dim} L\left((t q+1) Q_{\infty}\right)-1$. Define $X_{f}:=\varphi\left(C_{f}\right)$. For any integer $s \geq 1$ denote by

$$
\mu_{s}: L\left((t q+1) Q_{\infty}\right) \otimes L\left(s(t q+1) Q_{\infty}\right) \rightarrow L\left((s+1)(t q+1) Q_{\infty}\right)
$$

the multiplication map. As in Section 3, the projective normality of X_{f} is controlled by the μ_{s} maps.

Lemma 4.1. If μ_{s} is surjective for all $s \geq 1$ then X_{f} is projectively normal.
Proof. Take the proof of Lemma 3.2.
Proposition 4.2. If $s \geq m$, then μ_{s} is surjective.

Proof. Apply Lemma 2.2 by setting $a:=0, b:=c$ and $e:=s(t q+1)$.
In the following part of the section we focus on the case $f(x)=x^{m}$. In particular, we are going to show that X_{f} curves obtained with this choice of f are projectively normal for any choice of $t \geq 1$, provided that $c \leq q-1$.
Remark 4.3. The assumption $c \leq q-1$ is not so restrictive from a geometric point of view. In fact, for any fixed q, the genus of X_{f} is $g=(q-1)(m-1) / 2$. Even if c is small, here we study many curves of interesting genus.

Lemma 4.4. Set $f(x):=x^{m}$ and assume $c \leq q-1$. Pick out an integer $b \geq 0$ such that $b \leq(s+1) c$. Then y^{b} is in the image of μ_{s}.
Proof. Since $c \leq q-1$ we get $y^{c} \in L\left((t q+1) Q_{\infty}\right)$. In particular, if $b \leq c$ then we are done. Assume $b>c$. Let us prove the lemma by induction on s. If $s=1$, then $b \leq 2 c$ and $b-c \leq c \leq q-1$. Hence $y^{b-c} \in L\left((t q+1) Q_{\infty}\right)$ and so $y^{b}=\mu_{1}\left(y^{c} \otimes y^{b-c}\right)$ is of course in the image of μ_{1}. If $s>1$, then write $b=h c+\rho$ with $h \leq s$ and $0 \leq \rho \leq c$. Since $b-\rho=h c \leq s c$ we have that $y^{b-\rho}$ is in the image of μ_{s-1}. In particular, it is in $L\left(s(t q+1) Q_{\infty}\right)$. Since $y^{\rho} \in L\left((t q+1) Q_{\infty}\right)$, we get $y^{b}=\mu_{s}\left(y^{\rho} \otimes y^{b-\rho}\right)$. It follows that y^{b} is in the image of μ_{s}.

Theorem 4.5. Set $f(x)=x^{m}$ and assume $c \leq q-1$. Then X_{f} is projectively normal.

Proof. By Lemma 4.1, it is enough to show that μ_{s} is surjective for any $s \geq 1$. By Proposition 4.2, we need only to prove that μ_{s} is surjective for any $1 \leq s<m$. Let i, j be integers such that $i \geq 0,0 \leq j \leq q-1$ and $q i+m j \leq(s+1)(t q+1)$. We will examine separately the case $2 \leq s<m$ and the case $s=1$.

To begin with, assume $2 \leq s<m$.

- If $j \geq c$, then $x^{i} y^{j-c} \in L\left(s(t q+1) Q_{\infty}\right)$. Since $y^{c} \in L\left((t q+1) Q_{\infty}\right)$, we have $x^{i} y^{j}=\mu_{s}\left(y^{c} \otimes x^{i} y^{j-c}\right)$.
- If $0 \leq j<c$ and $q i+m j \leq s(t q+1)$, then $x^{i} y^{j}$ is in the image of μ_{s}, because $1 \in L\left((t q+1) Q_{\infty}\right)$.
- Assume $0 \leq j<c$ and $s(t q+1)<q i+m j \leq(s+1)(t q+1)$. We have $i \geq t$. Indeed, assume by contradiction that $i<t$. Then

$$
\begin{aligned}
q i+m j & <t q+m j \\
& <t q+m c \\
& =t q+t q+1 \\
& \leq s t q+1 \\
& <s(t q+1)
\end{aligned}
$$

a contradiction (here we used $s \geq 2$).
(A) If $q i+m j<(s+1)(t q+1)$ then $x^{i-t} y^{j} \in L\left(s(t q+1) Q_{\infty}\right)$ and $x^{i} y^{j}=$ $\mu_{s}\left(x^{t} \otimes x^{i-t} y^{j}\right)$.
(B) Assume $q i+m j=(s+1)(t q+1)$. Since $(m, p)=1$ we have $i=a m$ for an integer $a>0$ and $j=(s+1) c-a q$. Observe that $x^{i} y^{j}=$ $x^{a m} y^{(s+1) c-a q}=\left(y^{q}+y\right)^{a} y^{(s+1) c-a q}$, which is a sum of monomials of the form y^{b} with $b \leq(s+1) c$. Apply Lemma 4.4 and the fact that μ_{s} is linear to get that $x^{i} y^{j}$ is in its image.

Now assume $s=1$.

- Assume $j \geq c$. Since $q i+m j \leq 2(t q+1)$ we get $q i+m(j-c) \leq 2(t q+$ 1) $-(t q+1)=t q+1$. Hence $x^{i} y^{j-c} \in L\left((t q+1) Q_{\infty}\right)$. Finally, $\mu_{1}\left(y^{c} \otimes\right.$ $\left.x^{i} y^{j-c}\right)=x^{i} y^{j}$.
- Assume $j<c$ and $i \geq t$. Since $q i+m j \leq 2(t q+1)$ we get $q(i-t)+m j \leq$ $2(t q+1)-t q=t q+2$.
(C) If $q(i-t)+m j \leq t q+1$ then $x^{i} y^{j}=\mu_{1}\left(x^{t} \otimes x^{i-t} y^{j}\right)$.
(D) Assume $q(i-t)+m j=t q+2$, i.e. $q i+m j=2 t q+2$. Repeat the proof of case (B) with $s:=1$.
- Assume $j<c$ and $i<t$. Then $x^{i}, y^{j} \in L\left((t q+1) Q_{\infty}\right)$ and we easily get $x^{i} y^{j}=\mu_{1}\left(x^{i} \otimes y^{j}\right)$.

This concludes the proof.
Remark 4.6. If $t=1$ then the assumption $c \leq q-1$ is trivially satisfied (we assumed $m \neq q+1$). In this case the curve $y^{q}+y=x^{m}$ is covered by the Hermitian curve.

Acknowledgment

The authors would like to thank the Referee for suggestions and remarks which improved the presentation of the present work.

REFERENCES

[1] E. Arbarello - M. Cornalba - P. Griffiths - J. Harris, Geometry of Algebraic Curves, I, Springer, 1985.
[2] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer, 1995.
[3] A. Garcia - P. Viana, Weierstrass points on certain non-classical curves, Arch. Math. 46 (1986), 315-322.
[4] R. Hartshorne, Algebraic Geometry, Springer, 1977.
[5] J. W. P. Hirschfeld - G. Korchmáros - F. Torres, Algebraic Curves over a Finite Field, Princeton University Press, 2008.
[6] H. Stichtenoth, Algebraic Function Fields and Codes, Second Edition. Springer, 2009.

EDOARDO BALLICO
Department of Mathematics
University of Trento
e-mail: edoardo.ballico@unitn.it
ALBERTO RAVAGNANI
Institut de Mathématiques
Université de Neuchâtel
e-mail: alberto.ravagnani@unine.ch

