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PROJECTIVE NORMALIY OF ARTIN-SCHREIER CURVES

EDOARDO BALLICO - ALBERTO RAVAGNANI

In this paper we study the projective normality of the Artin-Schreier
curves, Yf , defined over a field F of characteristic p by the equations

yq + y = f (x),

q being a power of p and f ∈ F[x] being a polynomial in x of degree
m, with (m, p) = 1. Many Yf curves are singular and so, to be precise,
here we study the projective normality of appropriate projective models
of their normalizations.

1. Introduction

Let P2 denote the projective plane over an arbitrary field F of characteristic p,
and let q := pk be a power of p (k > 0). Denote by Yf ⊆ P2 the curve defined
over F by the equation yq + y = f (x), where f (x) ∈ F[x] is a polynomial of
degree m > 0. Assume (m, p) = 1. The function field F(x,y) is deeply studied
in [6], Proposition 6.4.1. In particular, the function x is known to have only one
pole P∞. Denote by π : C f → Yf the normalization of Yf (which is known to
be a bijection) and set Q∞ := π−1(P∞). For each s ≥ 0 the (pull-backs of the)
monomials xiy j such that

i≥ 0, 0≤ j ≤ q−1, qi+m j ≤ s
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form a basis of the vector space L(sQ∞) (see [6], Proposition 6.4.1 again). The
genus, g, of the curve Yf (which is by definition the genus of the normalization
C f ) is known to be g = (m−1)(q−1)/2. In this paper we study the projective
normality of certain embeddings, say X f , of C f curves into suitable projective
spaces. Let us briefly discuss the outline of the paper.

• Section 2 contains some preliminary results on the projective normality
of curves.

• In Section 3 we take an arbitrary integer m ≥ 2 which divides q− 1 and
consider the curve C f embedded by L(qQ∞) into the projective space Pr,
r := (q− 1)/m+ 1. We show that this curve is in any case projectively
normal and we compute the dimension of the space of quadric hypersur-
faces containing it.

• In Section 4 we pick out an arbitrary integer m ≥ 2 which divides tq+1
(t being any positive integer) and consider the curve C f embedded by
L((tq+ 1)Q∞). We show that if (tq− 1)/m ≤ q− 1 and f (x) = xm then
the cited curve is in any case projectively normal.

Notice that the curve C f and the line bundles L(qQ∞), L((tq+ 1)Q∞) are
defined over any field F⊇Fp containing the coefficients of the polynomial f (x).
Hence when f (x) = xm any field of characteristic p may be used.

2. Preliminaries

In this section we recall a basic definition and prove a general lemma. The result
provides in fact sufficient conditions for the projective normality of a C f curve
as defined in the Introduction.

Definition 2.1. A smooth curve X ⊆ Pr defined over a field F is said to be
projectively normal if for any integer d ≥ 2 the restriction map

ρd,X : Sd(H0(Pr,OPr(1)))→ H0(X ,OX(d))

is surjective, Sd denoting the symmetric d-power of the tensor product.

Lemma 2.2. Consider a C f curve as in Section 1 (q, m and f being as in the
definitions). Set C := C f . Fix integers a,b,e such that a ≥ 0, b ≥ 0, a+ b > 0
and e≥ aq+bm+(m−1)(q−1)−1. The multiplication map

µ : L((aq+bm)Q∞)⊗L(eQ∞)→ L((e+aq+bm)Q∞)

is surjective.
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Proof. As we will explain below, this is just a particular case of the base-point
free pencil trick ([1], p. 126). Since the Weierstrass semigroup of non-gaps of
Q∞ contains m and q, the line bundleOC((aq+bm)Q∞) is spanned by its global
sections. Since (aq+ bm) > 0, we have h0(C,OC((aq+ bm)Q∞)) ≥ 2. Hence
there exists a two-dimensional linear subspace V ⊆ H0(C,OC((aq+ bm)Q∞))
(defined over F) spanning OC((aq+ bm)Q∞). Taking a basis, say {w1,w2}, of
V , we get an exact sequence of line bundles on C (over F):

0→OC((e−aq−bm)Q∞)→OC(eQ∞)
⊕2 φ→OC((e+aq+bm)Q∞)→ 0

in which φ is induced by the multiplication by the column vector (w1,w2). By
assumption e−aq−bm > 2g−2. Hence h1(C,OC((e− aq−bm)Q∞)) = 0. It
follows that the map

ψ : H0(C,OC(eQ∞))
⊕2→ H0(C,OC((e+aq+bm)Q∞))

induced in cohomology by the map φ of the previous exact sequence is surjec-
tive. Since V ⊆ H0(C,OC((aq+bm)Q∞)), µ is surjective.

In the following sections the previous result will be applied to appropriate
embeddings of C f curves.

3. The case m|q−1

Assume that m≥ 2 is an integer which divides q−1 and set c := (q−1)/m. If
c = 1 then Yf is a smooth plane curve and it is of course projectively normal.
Hence we can focus on the case c≥ 2. Notice that the point P∞ ∈Yf (F) defined
in the Introduction is the only singular point of Yf , for any choice of f (x) as in
the definitions. We have also an identity of vector spaces H0(C f ,π

∗(OYf (1))) =
L(qQ∞) and by the results stated in the Introduction it can be easily seen that
a basis of them is {1,x,y, . . . ,yc} (c ≤ q− 1 here). Since the linear system
spanned by {1,x,y} is base-point free (it is also the linear system inducing the
composition of π with the inclusion of Yf in the plane) then also the complete
linear system L(qQ∞) is base-point free. Hence it defines a morphism ϕ : C f →
Pr, r := c+1.

Remark 3.1. Since π is injective and has invertible differential at any point
of C f \{Q∞}, then also ϕ is injective with non-zero differential at any point of
C f \{Q∞}. Moreover, the differential of ϕ is non-zero even in Q∞. Indeed, since
L(qQ∞) has no base-points, in order to prove that ϕ has non-zero differential at
Q∞ it is enough to prove that

h0(C f ,(q−2)Q∞) = h0(C f ,qQ∞)−2
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(see [4], Chapter IV, proof of Proposition 3.1). To do this, we may notice that a
basis of L(qQ∞) is given by a basis of L((q− 2)Q∞) and the monomials x and
yc (see the Introduction again). The result follows.

By the previous remark, ϕ is in fact an embedding of C f into Pr. Set X f :=
ϕ(C f ) and, for any integer s≥ 1, denote by

µs : L(qQ∞)⊗L(sqQ∞)→ L(q(s+1)Q∞)

the multiplication map.

Lemma 3.2. If µs is surjective for any s≥ 1, then X f is projectively normal.

Proof. Fix an integer t ≥ 2 and assume that µs is surjective for any integer
s ∈ {1, . . . , t − 1}. We need to prove the surjectivity of the linear map ρt :
St(L(qQ∞)) → L(tqQ∞). Notice that, in arbitrary characteristic, St(L(qQ∞))
is defined as a suitable quotient of L(qQ∞)

⊗t (see [2], §A2.3), i.e., τt = ρt ◦ηt ,
where τt : L(qQ∞)

⊗t → L(tqQ∞) is the tensor power map and ηt : L(qQ∞)
⊗t →

St(L(qQ∞)) is a surjection. Hence ρt is surjective if and only if τt is surjective.
Since τ2 = µ1, τ2 is surjective. So assume t > 2 and that τt−1 is surjective. Since
τt−1 and µt−2 are surjective, τt is surjective.

Proposition 3.3. If s≥ m then µs is surjective.

Proof. If s≥ m then sq≥ q+(m−1)(q−1)−1. Apply Lemma 2.2 by setting
e := sq, a := 1 and b := 0.

Theorem 3.4. The curve X f is projectively normal.

Proof. By Lemma 3.2 it is enough to prove that µs is surjective for all s ≥ 1.
The case s≥ m is covered by Proposition 3.3. So let us assume 1≤ s < m. Let
i, j be integers such that i≥ 0, 0≤ j ≤ q−1 and qi+m j ≤ (s+1)q.

• If qi+m j ≤ sq then xiy j is in the image of µs because 1 ∈ L(qQ∞).

• If sq < qi+m j ≤ (s+ 1)q and i > 0 then xi−1y j ∈ L(sqQ∞). Since x ∈
L(qQ∞), the monomial xiy j is in the image of µs.

• If i = 0 and sq < m j < (s+1)q then j > sq/m = s(c+1/m)> c and m j≤
(s+1)q−1. By the latter inequality we get m( j−c)≤ (s+1)q−1−mc.
Observe that (s+ 1)q− 1−mc = sq and so m( j− c) ≤ sq. This proves
that y j−c ∈ L(sqQ∞). Finally, µs(yc⊗ y j−c) = y j.

• If i = 0 and m j = (s+ 1)q then j = (s+ 1)q/m = (s+ 1)(c+ 1/m) =
(s+ 1)c+(s+ 1)/m. Since 0 ≤ j ≤ q− 1 is a nonnegative integer, we
must have (s+ 1)/m ∈ N. Since 1 ≤ s < m we get s = m− 1. It follows
m j = mq and j = q, a contradiction.
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This proves the theorem.

Corollary 3.5. Assume m ≥ 3. The curve X f ⊆ Pr is contained into
(c+3

2

)
−

3c−3 linearly independent quadric hypersurfaces.

Proof. In the notations of Definition 2.1 set X := X f and d := 2. Define r :=
c+1. By Theorem 3.4, the restriction map

ρ2,X f : S2(H0(Pr,OPr(1)))→ H0(X f ,OX f (2))

is surjective. Hence, in particular, the restriction map

ρ : H0(Pr,OPr(2))→ H0(X f ,OX f (2))

is surjective. Since m ≥ 3 (by assumption) we can easily check that a basis of
the vector space L(2qQ∞) consists of the following monomials:

{1,y, . . . ,y2c,x,xy, . . . ,xyc,x2}.

Hence h0(X f ,OX f (2)) = dimF L(2(q− 1)Q∞) = 3c + 3. The kernel of ρ is
exactly the space of the quadrics in Pr vanishing on X f . By the surjectivity of ρ

we easily deduce its dimension:

dimF H0(Pr,IX f (d)) =
(

r+2
2

)
− (3c+3) =

(
c+3

2

)
−3c−3.

The result follows.

4. The case m|tq+1

Pick out any integer t ≥ 1 and assume that m ≥ 2 is an integer dividing tq+ 1.
Set c := (tq+ 1)/m. As in Remark 3.1, it can be checked that L((tq+ 1)Q∞)
defines an embedding, say ϕ , of C f into Pr, r := dimL((tq+1)Q∞)−1. Define
X f := ϕ(C f ). For any integer s≥ 1 denote by

µs : L((tq+1)Q∞)⊗L(s(tq+1)Q∞)→ L((s+1)(tq+1)Q∞)

the multiplication map. As in Section 3, the projective normality of X f is con-
trolled by the µs maps.

Lemma 4.1. If µs is surjective for all s≥ 1 then X f is projectively normal.

Proof. Take the proof of Lemma 3.2.

Proposition 4.2. If s≥ m, then µs is surjective.
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Proof. Apply Lemma 2.2 by setting a := 0, b := c and e := s(tq+1).

In the following part of the section we focus on the case f (x) = xm. In
particular, we are going to show that X f curves obtained with this choice of f
are projectively normal for any choice of t ≥ 1, provided that c≤ q−1.

Remark 4.3. The assumption c ≤ q− 1 is not so restrictive from a geometric
point of view. In fact, for any fixed q, the genus of X f is g = (q−1)(m−1)/2.
Even if c is small, here we study many curves of interesting genus.

Lemma 4.4. Set f (x) := xm and assume c ≤ q− 1. Pick out an integer b ≥ 0
such that b≤ (s+1)c. Then yb is in the image of µs.

Proof. Since c ≤ q− 1 we get yc ∈ L((tq+ 1)Q∞). In particular, if b ≤ c then
we are done. Assume b > c. Let us prove the lemma by induction on s. If
s = 1, then b ≤ 2c and b− c ≤ c ≤ q− 1. Hence yb−c ∈ L((tq+ 1)Q∞) and so
yb = µ1(yc⊗yb−c) is of course in the image of µ1. If s> 1, then write b= hc+ρ

with h ≤ s and 0 ≤ ρ ≤ c. Since b−ρ = hc ≤ sc we have that yb−ρ is in the
image of µs−1. In particular, it is in L(s(tq+1)Q∞). Since yρ ∈ L((tq+1)Q∞),
we get yb = µs(yρ ⊗ yb−ρ). It follows that yb is in the image of µs.

Theorem 4.5. Set f (x) = xm and assume c ≤ q− 1. Then X f is projectively
normal.

Proof. By Lemma 4.1, it is enough to show that µs is surjective for any s ≥ 1.
By Proposition 4.2, we need only to prove that µs is surjective for any 1≤ s<m.
Let i, j be integers such that i≥ 0, 0≤ j ≤ q−1 and qi+m j ≤ (s+1)(tq+1).
We will examine separately the case 2≤ s < m and the case s = 1.

To begin with, assume 2≤ s < m.

• If j≥ c, then xiy j−c ∈ L(s(tq+1)Q∞). Since yc ∈ L((tq+1)Q∞), we have
xiy j = µs(yc⊗ xiy j−c).

• If 0 ≤ j < c and qi +m j ≤ s(tq + 1), then xiy j is in the image of µs,
because 1 ∈ L((tq+1)Q∞).

• Assume 0 ≤ j < c and s(tq+ 1) < qi+m j ≤ (s+ 1)(tq+ 1). We have
i≥ t. Indeed, assume by contradiction that i < t. Then

qi+m j < tq+m j

< tq+mc

= tq+ tq+1

≤ stq+1

< s(tq+1),
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a contradiction (here we used s≥ 2).

(A) If qi+m j < (s+1)(tq+1) then xi−ty j ∈ L(s(tq+1)Q∞) and xiy j =
µs(xt ⊗ xi−ty j).

(B) Assume qi+m j = (s+1)(tq+1). Since (m, p) = 1 we have i = am
for an integer a > 0 and j = (s + 1)c− aq. Observe that xiy j =
xamy(s+1)c−aq = (yq + y)ay(s+1)c−aq, which is a sum of monomials
of the form yb with b≤ (s+1)c. Apply Lemma 4.4 and the fact that
µs is linear to get that xiy j is in its image.

Now assume s = 1.

• Assume j ≥ c. Since qi+m j ≤ 2(tq+1) we get qi+m( j− c) ≤ 2(tq+
1)− (tq+ 1) = tq+ 1. Hence xiy j−c ∈ L((tq+ 1)Q∞). Finally, µ1(yc⊗
xiy j−c) = xiy j.

• Assume j < c and i≥ t. Since qi+m j≤ 2(tq+1) we get q(i− t)+m j≤
2(tq+1)− tq = tq+2.

(C) If q(i− t)+m j ≤ tq+1 then xiy j = µ1(xt ⊗ xi−ty j).

(D) Assume q(i− t)+m j = tq+ 2, i.e. qi+m j = 2tq+ 2. Repeat the
proof of case (B) with s := 1.

• Assume j < c and i < t. Then xi,y j ∈ L((tq+ 1)Q∞) and we easily get
xiy j = µ1(xi⊗ y j).

This concludes the proof.

Remark 4.6. If t = 1 then the assumption c≤ q−1 is trivially satisfied (we as-
sumed m 6= q+1). In this case the curve yq+y = xm is covered by the Hermitian
curve.
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