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ON DEGENERATE ELLIPTIC EQUATIONS

IN MORREY SPACES

FRANCESCO BORRELLO

1. Introduction.

Regularity of generalized solutions to degenerate elliptic PDE’s has
received a very strong impulse in the direction of finding the minimal
assumptions under which regularity results hold true. Definitely, the point
of view is that Lebesgue classes are not the right ones where to put lower
order terms to ensure regularity. It is now clear that the right classes are
Morrey spaces and some potential spaces (see [5]). The aim of this note is
to show that regularity is possible for equations of the following kind

(1) Lu − X ∗
j (bju) = X ∗

j ( f j)

where the lower order terms are assumed to belong to the degenerate
Morrey class L2,λ(�,X), with 2 < λ < Q. The paper is a continuation
of [1] where the case of operator in leading part has been studied. We prove
extra integrability and local hölder continuity results. The proof is based
on the study of a non convolution integral operator obtained from the
representation formula for generalized solution by means of the generalized
gradient of the Green function Gx(y) of L. We study the boundedness
properties of this operator in Theorem 5.3 using an idea of Hedberg. Despite
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of the lack of pointwise estimates for XG, we find regularity of generalized
solutions handling the case of discontinuous coefficients. Our results extend
properly those in [3].

2. Preliminaries

In this section we recall some basic definitions.

2.1. Let X = (X1, X2, . . . , Xm) a system of C∞ vector fields in R
n .

We say that X1, X2, . . . , Xm satisfy Hörmander’s condition in a bounded
domain � if

rank Lie{X1, X2, . . . , Xm} = n

at every point of �.
A piecewise C1 curve γ : [0, T ] → R

n is called X–sub-unit, if

(2) �γ �(t), ξ �2 ≤

m�

j=1

�X j(γ (t)), ξ �2 ∀ ξ ∈ R
n, a.e. t ∈ [0, T ].

The X–sub-unit length of γ is by definition l S(γ ) = T . Given x, y ∈ R
n ,

we denote by �(x, y) the collection of all X–sub-unit curves connecting
x to y. As it is well known, �(x, y) is not empty by Chow theorem ([2]).
Setting

(3) ρ(x, y) = inf {lS(γ ) : γ ∈ �(x, y)}

we define a distance, usually called the Carnot–Caratheodory distance
generated by the system X.

We denote by B(x, r) = {y ∈ R
n : ρ(x, y) < r} the metric ball

centered at x of radius r and whenever x is not relevant we write Br . The C-
C balls satisfy the doubling property with respect to the Lebesgue measure.
We set Q = log2 C for the homogenous dimension of �.

Now we list the function spaces we will need in the sequel.
Let 1 ≤ p < ∞. We say that u ∈ L p(�) if

�u�p
p ≡

�

�

|u|pdx < ∞

and u ∈ L∞(�) if u is a bounded measurable function in �.

Definition 2.1. (Sobolev spaces). Let 1 ≤ p < +∞. We say that u belongs
to W1,p(�,X) if u and X ju, belong to L p(�), j = 1, 2, . . . ,m and we
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set

(4) �u�W1,p(�,X) ≡ �u�L p(�) +

m�

j=1

�X ju�L p(�).

We denote by W
1,p
0 (�,X) the completion of C∞

0 (�) with respect to the
above norm. As usual, when p = 2 we set H1(�,X) and H1

0 (�,X) the

spaces W1,2(�,X) and W1,2
0 (�,X) respectively.

We would like to point out that X ju denotes the distributional derivative
of u defined by

< X ju, φ >=

�

�

uX ∗
j φdx, ∀ φ ∈ C∞

0 (�)

where X ∗
j = −

n�

i=1

∂i(ci j ·) is the formal adjoint of X j =
n�

i=1

ci j∂i .

Now we define some classes of potential that are very useful for us in
the sequel. We state also some related embedding properties.

Definition 2.2. (Stummel-Kato classes). Let u : � ⊆ R
N → R and r > 0.

If

η(r) ≡ sup
x∈�

�

{y∈�|ρ(x,y)<r}

|u(y)|
ρ2(x, y)

|B(x, ρ(x, y))|
dy < ∞, ∀ r > 0

we say that u ∈ S̃(�,X).
If, in addition, η(r) → 0 we say that u ∈ S(�,X).

In the case X j = ∂j , j = 1, . . . , n we get the usual Stummel-Kato
classes.

In the sequel we will use some properties of the above defined classes.

Lemma 2.3. ([4]) Let V ∈ S(�,X) and u ∈ C∞
0 (�). Then there exists C

independent on u, such that
�

BR

|V (x)||u(x)|2dx ≤ Cη(2R)

�

BR

|Xu(x)|2dx .

Moreover,
�

�

|V (x)||u(x)|2dx ≤ ε

�

�

|Xu(x)|2dx + k(ε)

�

�

|u(x)|2dx,
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when ε > 0 and k(ε) ∼
ε

(η−1
V (ε))Q+2

An immediate consequence of the previous Lemma, is the following

Proposition 2.4. Let � ⊂ R
n and X = (X1, . . . , Xm) a system of C∞

vector fields, satisfying Hörmander’s condition. We have

S̃(�,X) ⊂ (H1
0 (�,X))∗.

Proof. Let f ∈ S̃(�,X) and ϕ ∈ C∞
0 (�). Let Br be a metric ball

containing the support of ϕ . By the previous Lemma, we immediately get

| < f, ϕ > | ≤

��

Br

| f |ϕ2dx

� 1
2
��

Br

| f |dx

� 1
2

≤ Cη(2r)

��

Br

|Xϕ|2dx

� 1
2

� f �L1(�) ≤ C�ϕ�H1
0
(�,X).

�

Definition 2.5. (Morrey classes). Let � be a bounded domain in R
n ,

1 ≤ p < ∞ and λ > 0. We say that f ∈ L
p
loc(�) belongs to the Morrey

class L p,λ(�,X) if

� f �p,λ ≡ sup
B

�
rλ

|B|

�

B

| f (y)|pdy

� 1
p

< ∞

where B ≡ B(x, r), the supremum is taken with class of balls centered at
x ∈ � of radius r . f is understood to be zero outside �.

Remark 2.6. If λ = Q then L p,λ(�,X) ≡ L
p
loc(�) and if λ > Q then

L p,λ(�,X) ≡ {0}.

It is worth to compare the Morrey and the Lebesgue classes (see e.g.
[7]).

Proposition 2.7. Let q ≥ p and µ

q
≤ λ

p
. Then

Lq,µ(�,X) ⊆ L p,λ(�,X).

The following weak Morrey classes will be also useful in the sequel.
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Definition 2.8. We say that f ∈ L p,λ
w (�,X) if there exists C > 0,

independent on r and x0, such that

sup
t>0

t p|{x ∈ � ∩ Br(x0) : | f (x)| > t}| ≤ C
|Br(x0)|

rλ
.

The relation between Morrey and weak Morrey classes is as expected

Proposition 2.9. Let 1 ≤ q < p < ∞ and 0 < λ < Q, then

L p,λ
w (�,X) ⊆ Lq,µ(�,X)

where µ =
λ

p
q.

Finally we recall the Hardy-Littlewood maximal function.

Definition 2.10. Let f a locally integrable function. The function

M f (x) = sup
B

1

|B|

�

B

| f (y)|dy,

is called the Hardy-Littlewood maximal function of f . The supremum is
taken over all metric balls B centered at x .

2.2. Let � ⊂ R
n and X = (X1, X2, . . . , Xm) a system of C∞ vector

fields in R
n satisfying Hörmander’s condition in �.

Let ai j ∈ L∞(�), ai j = aji for i, j = 1, 2, . . . ,m. Assume that there
exist �, λ > 0 such that

λ|ξ |2 ≤

m�

i, j=1

ai jξiξj ≤ �|ξ |2

∀ξ ∈ R
m, a.e.x ∈ �.

In the sequel we set

Lu =

m�

i, j=1

X ∗
i (ai j X ju)

and consider u as a generalized solution to the equation Lu = f ,
for suitable f .

Definition 2.11. (Weak solution). Let f ∈ (H1
0 (�,X))∗. We say that

u ∈ H1(�,X) is a weak solution of Lu = f if
�

�

ai j(x)Xju(x)Xiϕ(x)dx =

�

�

f (x)ϕ(x)dx, ∀ ϕ ∈ C∞
0 (�).
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A more general kind of solution, is the following (compare [6])

Definition 2.12. (Very weak solution) For a measure µ of bounded vari-
ation on �, we say that u ∈ L1(�) is a very weak solution of Lu = µ

vanishing on ∂�, if

(5) < L∗v, u >=

�

�

vdµ, ∀ v ∈ H1
0 (�,X) ∩ C0

b(�)|L∗v ∈ C0
b(�),

where C0
b(�) is the set of all bounded continuous functions in �.

Remark 2.13. The very weak solution is a solution vanishing at the
boundary. This means that it is not just a solution of the equation but it
is a solution of the Dirichlet problem.

So when we say ” u is a very weak solution of Lu = µ” we omit the
words ”vanishing at the boundary”.

The Dirichlet problem is well posed for any bounded variation mea-
sure. Namely we have (see [1])

Theorem 2.14. Let � be a bounded domain in R
n . Then there exists the

very weak solution of Lu = µ and it is unique. Moreover if 1 < p <
Q

Q − 1
then u ∈ W

1,p
0 (�,X) and there exists C = C(�, λ, Q) such that:

�u�
W

1,p
0

≤ C�µ�.

In general, if µ is not in (H1
0 (�,X))∗ then weak solutions do not

exist. The concept of very weak solutions properly extends the previous
one. Indeed (see [1])

Proposition 2.15. Let µ ∈ (H1
0 (�,X))∗ a bounded variation measure on

� and u ∈ H1
0 (�, X ) be the weak solution. Let w be the very weak solution

of Lw = µ. Then u = w.

3. An integral operator.

In this section we introduce an integral operator that we use to represent
the very weak solution to the problem (6).
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We stress that the operator we are going to study is a not convolution
operator.

Let � be a bounded domain of

R
n, � = {(x, y) ∈ � × �|x = y}

and K (x, y) a measurable real function locally integrable on �×�\� such
that (X jK (x, y))(y) ∈ L2

loc(� \ �). Let us suppose that for a.e. x, y ∈ �,
there exists C ≡ CK > 0, such that. For f ≡ ( f1, . . . , fm) we define

T f (x) =

�

�

(X j K (x, y))(y) f j(y)dy.

It is clear that we need some assumptions on K and f in order that the
integral is finite and T f to be bounded as linear operator. What we need
(and prove) in the sequel is that the operator T is bounded between some
Morrey classes.

Lemma 3.1. Let � be a bounded domain of R
n , � = {(x, y) ∈ �×�|x =

y} and K (x, y) a measurable real function locally integrable on �×�\�

such that (X j K (x, y))(y) ∈ L2
loc(� \ �). Let us suppose that for a.e.

x, y ∈ �, there exists C ≡ CK > 0, such that

i)

�

{y∈�|R<ρ(x,y)<2R}

|(X j K (x, y))(y)|2dy ≤
C

R2

�

{y∈�|R/2<ρ(x,y)<4R}

|K (x, y)|2dy,

∀ R > 0 j = 1, . . . ,m;

i i) |K (x, y)| ≤ CK
ρ(x, y)2

|B(x, ρ(x, y))|
, ∀ (x, y) ∈ � × � \ �.

Let f ≡ ( f1, . . . , fm) with f j ∈ L2,λ(�,X) where 2 < λ < Q.
Then the integral operator

T f (x) =

�

�

(X j K (x, y))(y) f j(y)dy, ∀ f j ∈ L2,λ(�,X)

is bounded from L2,λ(�,X) to L pλ,λ
w (�,X), where

1

pλ

=
1

2
−

1

λ
.

Moreover, there exists C ≥ 0 such that

�T f �q,λ ≤ C� f �2,λ, ∀ 1 ≤ q < pλ.
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Proof. Let ε > 0 to choose later. We have

T f (x) =

�

{y∈�|ρ(x,y)<ε}

(X j K (x, y))(y) f j(y)dy

+

�

{y∈�|ρ(x,y)≥ε}

(X j K (x, y))(y) f j(y)dy ≡ I + I I.

Let us estimate I .

|I | ≤

∞�

k=0

�

{y∈�| ε

2k+1
≤ρ(x,y)< ε

2k
}

|(X j K (x, y))(y)|| f j(y)|dy

≤

∞�

k=0

��

{y∈�| ε

2k+1
≤ρ(x,y)< ε

2k
}

|(X j K (x, y))(y)|2dy

� 1
2
��

{y∈�| ε

2k+1
≤ρ(x,y)< ε

2k
}

| f j(y)|
2dy

� 1
2

.

Applying i) and ii), we get

|I | ≤ C
�

k

2k

ε

� �

{y∈�| ε

2k+2
≤ρ(x,y)< ε

2k−1
}

|K (x, y)|2dy

� 1
2

·

� �

{y∈�| ε

2k+1
≤ρ(x,y)< ε

2k
}

| f j(y)|
2dy

� 1
2

≤ C
�

k

2k

ε

� �

{y∈�| ε

2k+2
≤ρ(x,y)< ε

2k−1
}

ρ4(x, y)

|B(x, ρ(x, y))|2
dy

� 1
2

· |B(x,
ε

2k
)|(M| f j |

2(x))
1
2 ≤ C(M| f j |

2(x))
1
2 ε.

Let us estimate now II.

|I I | ≤

�

{y∈�|2kε≤ρ(x,y)<2k+1ε}

|(X j K (x, y))(y)|| f j(y)|dy

≤ C
�

k

ε
2−Q
2 2k

2−Q
2

|B(x, 2kε)|
1
2

(2kε)
λ
2

� f j�2,λ

≤ Cε
2−λ
2 � f j�2,λ

�

k

2k
2−λ
2 ≤ Cε

2−λ
2 � f j�2,λ,

because λ > 2 and fj ∈ L2,λ(�,X).
Merging the two inequalities, we have

|T f (x)| ≤ C((M| f j |
2)

1
2 ε + � f j�2,λε

2−λ
2 )
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and minimizing with respect to ε,

|T f (x)| ≤ C(M| f j |
2)

1
pλ � f j�

1− 2
pλ

2,λ , a.e. x ∈ �,

where
1

pλ

=
1

2
−

1

λ
.

Since M is a weak operator of type (1,1), for a.e. x ∈ � and r > 0, we
get

|{y ∈ � ∩ B(x, r)||T f (y)| > t}| ≤ C
� f j�

pλ−2
2,λ

t pλ

|B(x, r)|

rλ
� f j�

2
2,λ

and the result follows. �

4. A representation formula.

In this section we apply the result of the previous one to obtain a
representation formula for the very weak solution to the Dirichlet problem

(6)
�
Lu = X ∗

j f j , in �,

u = 0, on ∂�,

assuming fj ∈ L2,λ(�,X) and 2 < λ < Q.

Theorem 4.1. Let Gy(x) the Green function for L and � with pole at
y ∈ �. Then the function u(x) =

�
�
X jG

y(x) f j(y)dy is the unique
solution of (6).

Proof. We have to prove that the problem has a very weak solution. Thanks
to Lemma 3.1, u ∈ L1(�). Now let φ be a function in H1

0 (�,X) ∩ C0
b(�)

such that L∗φ ∈ C0
b(�). We have

�

�

�

�

|L∗φ(x)(XjG
y(x))(y) f j(y)|dxdy ≤ �L∗φ�L∞�u�L1 < ∞.

Hence, we have
�

�

L∗φ(x)
��

�

X jG
y(x) f j(y)dy

�
dx =

�

�

f j(y)
��

�

L∗φX jG
y(x)dx

�
dy

=

�

�

f j(y)Xj

� �

�

L∗φ(x)Gy(x)dx
�
dy

=

�

�

f j(y)Xjφdy.
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In order to differentiate under the integral sign, let ψ ∈ C∞
0 (�) ;

since

�

�

L∗φ(x)Gy(x)dx ∈ L1(�)

< X j

�

�

L∗φ(x)Gy(x)dx,ψ >=<

�

�

L∗φ(x)Gy(x)dx, X∗
j ψ >

=

�

�

� �

�

L∗φ(x)Gy(x)dx
�
X ∗

j ψ(y)dy

=

�

�

�

�

L∗φ(x)Gy(x)X∗
j ψdxdy

=

�

�

�

�

L∗φ(x)(XjG
y(x))(y)ψ(y)dxdy

=

�

�

ψ(y)
��

�

L∗φ(x)(XjG
y(x))(y)ψ(y)dx

�
dy

=<

�

�

L∗φ(x)(XjG
y(x))(y)ψ(y)dx,ψ > .

�

As a consequence of our previous result and Lemma 3.1 we get

Theorem 4.2. A weak solution u to (6) belongs to the space L pλ,λ
w (�,X)

and

�u�
L
pλ,λ
w (�,X)

≤ C� f �L2,λ(�,X),

where C is independent on u and f .

5. Regularity.

Let fj ∈ L2(�) for j = 1, . . . ,m. A function u ∈ L1(�) is
the very weak solution of the equation Lu = X ∗

j f j if ∀ ϕ ∈ C0
b(�) ∩

H1
0 (�,X)|L∗ϕ ∈ C0

b(�), results

< L∗ϕ, u >=

�

�

f j X jϕdx .

We treat an operator with lower order terms. Namely, if bj ∈ L2,λ(�,X)
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we consider the Dirichlet problem

(7)
�
Lu − X ∗

j (bju) = X ∗
j f j

u = 0, on �

A function u ∈ H1
0 (�,X) is a weak solution of (7) if ,

�

�

ai j XiuX jϕdx −

�

�

bjuX jϕdx =

�

�

f j X jϕdx, ∀ ϕ ∈ C∞
0 (�)

Thanks to Proposition 2.15 a weak solution of (7) is a very weak one.

Lemma 5.1. Let 0 < µ < 2, f ∈ L2,µ(�,X) and u ∈ L2,ν(�,X) such
that |Xu| ∈ L2,ν+2(�,X), with 0 < ν ≤ Q − 2. Then f u ∈ L2,µ+ν(�,X)

and

� f u�2,ν+µ ≤ C� f �2,µ(�Xu�2,ν+2 + �u�2,ν).

Proof. Let x ∈ �, ε > 0, Bε ≡ Bε(x) and uε ≡
1

|Bε|

�

Bε∩�

u(y)dy. We

have
�

Bε

f 2u2dy ≤

�

Bε

(| f u|)(|u − uε|| f |)dy + |uε|

�

Bε

f 2|u|dy

≡ I + I I

Let us separately estimate I and I I .

I ≤
� �

Bε

| f |2u2dy
�1/2� �

Bε

| f |2|u − uε|
2dy

�1/2

≤
� �

Bε

| f |2u2dy
�1/2

�

η
1/2

f 2
(2ε)

��

Bε

|Xu|2dy
�1/2

�

≤ C
��

Bε

| f |2u2dy
�1/2

ε−
µ+ν

2 |Bε|
1/2�Xu�2,ν+2.

For the second integral, we have

I I =
�

−

�

Bε

udy
�� �

Bε

| f |2|u|dy
�

≤
� 1

|Bε|1/2

�

Bε

|u|2dy
�1/2� �

Bε

| f |2dy
�1/2� �

Bε

| f |2|u|2dy
�1/2

≤ �u�2,ν� f �2,µ
� �

Bε

| f |2|u|2dy
�1/2

ε−
ν+µ

2 |Bε|
1/2.
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Finally we get
� �

Bε

| f |2|u|2dy
�1/2

≤ C� f �2,µ
�
�u�2,ν + �Xu�2,ν+2

��
ε−(ν+µ)|Bε|

�1/2

that means that f u ∈ L2,ν+µ and

� f u�2,ν+µ ≤ C� f �2,µ(�Xu�2,ν+2 + �u�2,ν).

�

To prove regularity we need a Caccioppoli type inequality. Namely

Lemma 5.2. Let u ∈ H1
0 (�,X) a weak solution of
�
Lu − X ∗

j (bju) = X ∗
j f j

u = 0, ∂�.

where bj ∈ L2,µ(�,X), f j ∈ L2,λ, with 0 < µ < 2 < λ < Q.
Then for all ε > 0 there exists a positive constant C (independent on ε

and the ball) such that
�

Bε

|Xu|2dx ≤
C

ε2

�

B2ε

u2dx +

�

B2ε

f 2dx +

�

B2ε

|b|2u2dx .

The proof uses standard techniques and so we omit it. Now we prove
our regularity result.

Theorem 5.3. Let u ∈ H1
0 (�,X) the solution of (7) with 2 < λ < Q and

fj ∈ L2,λ(�,X). Then u ∈ L pλ,λ
w (�,X), where

1

pλ

=
1

2
−

1

λ
.

Proof. We have u ∈ L2,Q−2(�,X), in fact
�

Bε

|u|2dx ≤ C
��

Bε

|u|2
∗

dx
� 2

2∗

|Bε|ε
Q
�

−2
2∗

�

≤ C�u�22∗|Bε|ε
2−Q

where 2∗ is the Sobolev exponent 1/2∗ = 1/2 − 1/Q. We also have
Xu ∈ L2,Q(�, X ) so, applying Lemma 5.1 we get bju ∈ L2,Q−2+µ(�,X).
If µ0 ≡ Q + µ − 2 ≤ λ we get the assert by Theorem 4.2.

Let us suppose that µ0 > λ so bju, f j ∈ L2,µ0(�,X) and by Theorem

4.2 we have that u ∈ L
pµ0

,µ0
w (�,X) where

1

pµ0

=
1

2
−

1

µ0
.

Applying Proposition 2.9 we get u ∈ L 2,µ0(�,X), where µ0 =
2µ0

pµ0

=

µ0 − 2.
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Thanks to Lemma 5.2, observing that f ∈ L2,µ0(�,X), we get, for
every ball

�

Bε

|Xu|2dx ≤ C
|Bε|

εµ0
(�u�2,µ0−2 + � f �2,µ0 + �|b|u�2,µ0).

Hence we have

u ∈ L2,µ0−2(�,X), bj ∈ L2,µ(�,X) and |Xu| ∈ L2,µ0(�,X)

and it is possible to apply Lemma 5.1 that gives bju ∈ L2,µ1(�,X) where
µ1 ≡ µ0 − 2+ µ.

Let us compare λ and µ1; if λ ≥ µ1 we apply Theorem 4.2 to
get the assertion. If λ < µ1 then bju, f ∈ L2,µ1(�,X) and hence

u ∈ L
pµ1

,µ1
w (�,X), where

1

pµ1

=
1

2
−

1

µ1
. Applying Proposition 2.9 we

get u ∈ L2,µ1(�,X), where µ1 ≡ 2
µ1

pµ1

= µ1 − 2.

Applying Lemma 5.2 we get |Xu| ∈ L2,µ1(�,X) and thanks to Lemma
5.1, we finally have bju ∈ L2,µ1+µ−2(�,X) and we compare µ1 + µ − 2
with λ.

Since at every step we decrease the index µi of a quantity dependent
only on µ, the iteration is finite and so assertion is proved. �
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