TURÁN TYPE INEQUALITIES FOR p-POLYGAMMA FUNCTIONS

FATON MEROVCI

The aim of this paper is to establish new Turán-type inequalities involving the p-polygamma functions.

1. Introduction

The inequalities of the type

$$
f_{n}(x) f_{n+2}(x)-f_{n+1}^{2}(x) \leq 0
$$

have many applications in pure mathematics as in other branches of science. They are named by Karlin and Szegő [5], Turán-type inequalities because the first of these type of inequalities was introduced by Turán [14]. More precisely, he used some results of Szegő [13] to prove the previous inequality for $x \in$ $(-1,1)$, where f_{n} is the Legendre polynomial of degree n. This classical result has been extended in many directions, as ultraspherical polynomials, Laguerre and Hermite polynomials, or Bessel functions, and so forth.Many results of Turán-type have been established on the zeros of special functions.
Recently, W. T. Sulaiman [12] proved some Turán-type inequalities for some q-special functions as well as the polygamma functions, by using the following inequality:

[^0]Keywords: p-Gamma function, p-psi function.

Lemma 1.1. Let $a \in R_{+} \cup\{\infty\}$ and let f and g be two nonnegative functions. Then

$$
\begin{equation*}
\left(\int_{0}^{a} g(x) f^{\frac{m+n}{2}} d_{q} x\right)^{2} \leq\left(\int_{0}^{a} g(x) f^{m} d_{q} x\right)\left(\int_{0}^{a} g(x) f^{n} d_{q} x\right) \tag{1}
\end{equation*}
$$

Lets give some definitions for gamma and polygamma function.
The Euler gamma function $\Gamma(x)$ is defined for $x>0$ by

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

The digamma (or psi) function is defined for positive real numbers x as the logarithmic derivative of Euler's gamma function, that is $\psi(x)=\frac{d}{d x} \ln \Gamma(x)=$ $\frac{\Gamma^{\prime}(x)}{\Gamma(x)}$. The following integral and series representations are valid (see [2]):

$$
\begin{equation*}
\psi(x)=-\gamma+\int_{0}^{\infty} \frac{e^{-t}-e^{-x t}}{1-e^{-t}} d t=-\gamma-\frac{1}{x}+\sum_{n \geq 1} \frac{x}{n(n+x)} \tag{2}
\end{equation*}
$$

where $\gamma=0.57721 \cdots$ denotes Euler's constant.
Euler gave another equivalent definition for the $\Gamma(x)$ (see [9],[10])

$$
\begin{equation*}
\Gamma_{p}(x)=\frac{p!p^{x}}{x(x+1) \cdot \ldots \cdot(x+p)}=\frac{p^{x}}{x\left(1+\frac{x}{1}\right) \cdot \ldots \cdot\left(1+\frac{x}{p}\right)}, \quad x>0 \tag{3}
\end{equation*}
$$

where p is positive integer, and

$$
\begin{equation*}
\Gamma(x)=\lim _{p \rightarrow \infty} \Gamma_{p}(x) \tag{4}
\end{equation*}
$$

The p-analogue of the psi function, as the logarithmic derivative of the Γ_{p} function (see [9]), is

$$
\begin{equation*}
\psi_{p}(x)=\frac{d}{d x} \ln \Gamma_{p}(x)=\frac{\Gamma_{p}^{\prime}(x)}{\Gamma_{p}(x)} \tag{5}
\end{equation*}
$$

The following representations are valid:

$$
\begin{gather*}
\Gamma_{p}(x)=\int_{0}^{p}\left(1-\frac{t}{p}\right)^{p} t^{x-1} d t \tag{6}\\
\psi_{p}(x)=\ln p-\int_{0}^{\infty} \frac{e^{-x t}\left(1-e^{-(p+1) t}\right)}{1-e^{-t}} d t \tag{7}
\end{gather*}
$$

and

$$
\begin{equation*}
\psi_{p}^{(m)}(x)=(-1)^{m+1} \cdot \int_{0}^{\infty} \frac{t^{m} \cdot e^{-x t}}{1-e^{-t}}\left(1-e^{-(p+1) t}\right) d t \tag{8}
\end{equation*}
$$

The p-zeta function is defined as (see [10])

$$
\zeta_{p}(s)=\frac{1}{\Gamma_{p}(s)} \int_{0}^{p} \frac{t^{s-1}}{\left(1+\frac{t}{p}\right)^{p}-1} d t
$$

2. Main Result

Theorem 2.1. For $n=1,2,3, \ldots$, let $\psi_{p, n}=\psi_{p}^{(n)}$ the n-th derivative of the function ψ_{p}. Then

$$
\begin{equation*}
\psi_{p, \frac{m}{s}+\frac{n}{l}}\left(\frac{x}{s}+\frac{y}{t}\right) \leq \psi_{p, m}^{\frac{1}{s}}(x) \psi_{p, n}^{\frac{1}{l}}(y) \tag{9}
\end{equation*}
$$

where $\frac{m+n}{2}$ is an integer, $s>1, \frac{1}{s}+\frac{1}{l}=1$.
Proof. Let m and n be two integers of the same parity. From (8), it follows that:

$$
\begin{aligned}
& \psi_{p, \frac{m}{s}+\frac{n}{l}}\left(\frac{x}{s}+\frac{y}{l}\right) \\
& =(-1)^{\frac{m}{s}+\frac{n}{l}+1} \int_{0}^{\infty} \frac{t^{\frac{m}{s}+\frac{n}{l}} e^{-\left(\frac{x}{s}+\frac{y}{l}\right) t}}{1-e^{-t}}\left(1-e^{-(p+1) t}\right) d t \\
& =(-1)^{\frac{m+1}{s}}(-1)^{\frac{n+1}{l}} \int_{0}^{\infty} \frac{t^{\frac{m}{s}} e^{-\left(\frac{x}{s}\right) t}}{\left(1-e^{-t}\right)^{\frac{1}{s}}}\left(1-e^{-(p+1) t}\right)^{\frac{1}{s}} \frac{t^{\frac{n}{l}} e^{-\left(\frac{y}{l}\right) t}}{\left(1-e^{-t}\right)^{\frac{1}{l}}}\left(1-e^{-(p+1) t}\right)^{\frac{1}{l}} d t \\
& \leq\left((-1)^{m+1} \int_{0}^{\infty} \frac{t^{m} e^{-x t}}{\left(1-e^{-t}\right)}\left(1-e^{-(p+1) t}\right) d t\right)^{\frac{1}{s}} \\
& \quad \times\left((-1)^{n+1} \int_{0}^{\infty} \frac{t^{n} e^{-y t}}{\left(1-e^{-t}\right)}\left(1-e^{-(p+1) t}\right) d t\right)^{\frac{1}{l}} \\
& =\psi_{p, m}^{\frac{1}{s}}(x) \psi_{p, n}^{\frac{1}{l}}(y)
\end{aligned}
$$

Remark 2.2. Let p tend to ∞, then we have

$$
\begin{equation*}
\psi_{\frac{m}{s}}+\frac{n}{l}\left(\frac{x}{s}+\frac{y}{t}\right) \leq \psi_{m}^{\frac{1}{s}}(x) \psi_{n}^{\frac{1}{l}}(y) \tag{10}
\end{equation*}
$$

On putting $y=x$ then we obtain

$$
\begin{equation*}
\psi_{\frac{m}{s}+\frac{n}{l}}(x) \leq \psi_{m}^{\frac{1}{s}}(x) \psi_{n}^{\frac{1}{l}}(y) \tag{11}
\end{equation*}
$$

Another type via Minkowski's inequality is the following.

Theorem 2.3. For $n=1,2,3, \ldots$, let $\psi_{(p, q), n}=\psi_{p}^{(n)}$ the n-th derivative of the function ψ_{p}. Then

$$
\begin{equation*}
\left(\psi_{p, m}(x)+\psi_{p, n}(y)\right)^{\frac{1}{p}} \leq \psi_{p, m}^{\frac{1}{p}}(x)+\psi_{p, n}^{\frac{1}{p}}(y) \tag{12}
\end{equation*}
$$

where $\frac{m+n}{2}$ is an integer, $p \geq 1$.

Proof. Since,

$$
(a+b)^{p} \geq a^{p}+b^{p}, \quad a, b \geq 0, \quad p \geq 1
$$

$$
\begin{aligned}
\left(\psi_{p, m}(x)+\psi_{p, n}(y)\right)^{\frac{1}{p}} & = \\
& =\left[\int _ { 0 } ^ { \infty } \left[(-1)^{m+1} \frac{t^{m} e^{-x t}}{1-e^{-t}}\left(1-e^{-(p+1) t}\right) d t\right.\right. \\
& \left.+(-1)^{n+1} \frac{t^{n} e^{-x t}}{1-e^{-t}}\left(1-e^{-(p+1) t}\right) d t\right]^{\frac{1}{p}} \\
& =\left[\int _ { 0 } ^ { \infty } \left[\left[(-1)^{\frac{m+1}{p}} \frac{t^{\frac{m}{p}} e^{-\frac{x t}{p}}}{\left(1-e^{-t}\right)^{\frac{1}{p}}}\left(1-e^{-(p+1) t}\right)^{\frac{1}{p}}\right]^{p}+\right.\right. \\
& \left.\left.+\left[(-1)^{\frac{n+1}{p}} \frac{t^{\frac{n}{p}} e^{-\frac{x t}{p}}}{\left(1-e^{-t}\right)^{\frac{1}{p}}}\left(1-e^{-(p+1) t}\right)^{\frac{1}{p}}\right]^{p}\right] d t\right]^{\frac{1}{p}} \\
& \leq\left[\int _ { 0 } ^ { \infty } \left[(-1)^{\frac{m+1}{p}} \frac{t^{\frac{m}{p}} e^{-\frac{x t}{p}}}{\left(1-e^{-t}\right)^{\frac{1}{p}}}\left(1-e^{-(p+1) t}\right)^{\frac{1}{p}}+\right.\right. \\
& \left.\left.+(-1)^{\frac{n+1}{p}} \frac{t^{\frac{n}{p}} e^{-\frac{x t}{p}}}{\left(1-e^{-t}\right)^{\frac{1}{p}}}\left(1-e^{-(p+1) t}\right)^{\frac{1}{p}}\right]^{p} d t\right]^{\frac{1}{p}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq(-1)^{\frac{m+1}{p}}\left[\int_{0}^{\infty}\left[\frac{t^{\frac{m}{p}} e^{-\frac{t t}{p}}}{\left(1-e^{-t}\right)^{\frac{1}{p}}}\left(1-e^{-(p+1) t}\right)^{\frac{1}{p}}\right]^{p} d t\right]^{\frac{1}{p}} \\
& +(-1)^{\frac{n+1}{p}}\left[\int_{0}^{\infty}\left[\frac{t^{\frac{n}{p}} e^{-\frac{t}{p}}}{\left(1-e^{-t}\right)^{\frac{1}{p}}}\left(1-e^{-(p+1) t}\right)^{\frac{1}{p}}\right]^{p} d t\right]^{\frac{1}{p}} \\
& =(-1)^{\frac{m+1}{p}}\left[\int_{0}^{\infty} \frac{t^{m} e^{-x t}}{1-e^{-t}}\left(1-e^{-(p+1) t}\right) d t\right]^{\frac{1}{p}} \\
& +(-1)^{\frac{n+1}{p}}\left[\int_{0}^{\infty} \frac{t^{n} e^{-x t}}{1-e^{-t}}\left(1-e^{-(p+1) t}\right) d t\right]^{\frac{1}{p}} \\
& =\psi_{p, m}^{\frac{1}{p}}(x)+\psi_{p, n}^{\frac{p}{p}}(y)
\end{aligned}
$$

Remark 2.4. Let p tend to ∞, then we have

$$
\begin{equation*}
\left(\psi_{m}(x)+\psi_{n}(y)\right)^{\frac{1}{p}} \leq \psi_{m}^{\frac{1}{p}}(x)+\psi_{n}^{\frac{1}{p}}(y) \tag{13}
\end{equation*}
$$

Theorem 2.5. For every $x>0$ and integers $N \geq 1$, we have:

1. If n is odd, then $\left(\exp \psi_{P}^{(n)}(x)\right)^{2} \geq \exp \psi_{P}^{(n+1)}(x) \cdot \exp \psi_{p}^{(n-1)}(x)$
2. If n is even, then $\left(\exp \psi_{p}^{(n)}(x)\right)^{2} \leq \exp \psi_{p}^{(n+1)}(x) \cdot \exp \psi_{p}^{(n-1)}(x)$

Proof. We use (8) to estimate the expression

$$
\begin{aligned}
\psi_{p}^{(n)}(x)- & \frac{\psi_{p}^{(n+1)}(x)+\psi_{p}^{(n-1)}(x)}{2}= \\
& =(-1)^{n+1}\left(\int_{0}^{\infty} \frac{t^{n} e^{-x t}}{1-e^{-t}}\left(1-e^{-(p+1) t}\right) d t\right.
\end{aligned}
$$

$$
\begin{array}{r}
+\frac{1}{2} \int_{0}^{\infty} \frac{t^{n+1} e^{-x t}}{1-e^{-t}}\left(1-e^{-(p+1) t}\right) d t \\
\left.+\frac{1}{2} \int_{0}^{\infty} \frac{t^{n-1} e^{-x t}}{1-e^{-t}}\left(1-e^{-(p+1) t}\right) d t\right) \\
=(-1)^{n+1}\left(\int_{0}^{\infty} \frac{t^{n-1} e^{-x t}}{1-e^{-t}}(t+1)^{2}\left(1-e^{-(p+1) t}\right) d t\right)
\end{array}
$$

Now, the conclusion follows by exponentiating the inequality

$$
\psi_{p}^{(n)}(x) \geq(\leq) \frac{\psi_{p}^{(n+1)}(x)+\psi_{p}^{(n-1)}(x)}{2}
$$

as n is odd, respective even.
Remark 2.6. Let p tend to ∞, then we obtain generalization of Theorem 3.3 from [11]

Theorem 2.7. For $x, y>1$, we have

$$
\begin{equation*}
\zeta_{p}\left(\frac{x-1}{s}+\frac{y+1}{t}\right) \leq \frac{\left.\left(\Gamma_{p}(x)\right)^{\frac{1}{s}} \Gamma_{p}(y+1)\right)^{\frac{1}{t}}}{\Gamma_{p}\left(\frac{x-1}{s}+\frac{y+1}{t}\right)} \zeta_{p}(x-1) \zeta_{p}(y+1) \tag{14}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& \zeta_{p}\left(\frac{x-1}{s}+\frac{y+1}{t}\right)=\frac{1}{\Gamma_{p}\left(\frac{x-1}{s}+\frac{y+1}{t}\right)} \int_{0}^{p} \frac{t^{\frac{x-1}{s}+\frac{y+1}{t}-1}}{\left(1+\frac{t}{p}\right)^{p}-1} d t \\
&=\frac{1}{\Gamma_{p}\left(\frac{x-1}{s}+\frac{y+1}{t}\right)} \int_{0}^{p} \frac{1}{\left(\left(1+\frac{t}{p}\right)^{p}-1\right)^{\frac{1}{p}}\left(\left(1+\frac{t}{p}\right)^{p}-1\right)^{\frac{1}{s}}} d t \\
& \leq \frac{1}{\Gamma_{p}\left(\frac{x-1}{s}+\frac{y+1}{t}\right)}\left(\int_{0}^{p} \frac{t^{x-2}}{\left(\left(1+\frac{t}{p}\right)^{p}-1\right)^{\frac{y}{t}}} d t\right)^{\frac{1}{s}} \\
& \times\left(\int_{0}^{p} \frac{t^{y}}{\left(\left(1+\frac{t}{p}\right)^{p}-1\right)^{\frac{1}{p}}} d t\right)^{\frac{1}{t}} \\
&=\frac{\left.\left(\Gamma_{p}(x)\right)^{\frac{1}{s}} \Gamma_{p}(y+1)\right)^{\frac{1}{t}}}{\Gamma_{p}\left(\frac{x-1}{s}+\frac{y+1}{t}\right)} \zeta_{p}(x-1) \zeta_{p}(y+1)
\end{aligned}
$$

Remark 2.8. Let p tend to ∞, then we have

$$
\begin{equation*}
\zeta\left(\frac{x-1}{s}+\frac{y+1}{t}\right) \leq \frac{\left.(\Gamma(x))^{\frac{1}{s}} \Gamma(y+1)\right)^{\frac{1}{t}}}{\Gamma\left(\frac{x-1}{s}+\frac{y+1}{t}\right)} \zeta(x-1) \zeta(y+1) \tag{15}
\end{equation*}
$$

REFERENCES

[1] H. Alzer, On some inequalities for the gamma and psi function, Math. Comp. 66 (1997), 373-389.
[2] M. Abramowitz - I. A. Stegun, Handbook of Mathematical Functions with Formulas and Mathematical Tables, Dover, NewYork, 1965.
[3] A. Laforgia - P. Natalini, Turán type inequalites for some special functions, Journal of Inequalities in Pure and Applied Mathematics 7 (1) (2006), art. 22, 3 pp.
[4] A. Laforgia - P. Natalini, On some Turán-type inequalities, Journal of Inequalities and Applications 2006 (2006), Article ID 29828.
[5] S. Karlin - G. Szegő, On certain determinants whose elements are orthogonal polynomials, J. Anal. Math. 8 (1961), 1-157.
[6] T. Kim - S. H. Rim, A note on the q-integral and q-series, Advanced Stud. Contemp. Math. 2 (2000), 37-45.
[7] V. Krasniqi - F. Merovci, Logarithmically completely monotonic functions involving the generalized Gamma Function, Le Matematiche 65 (2) (2010), 15-23.
[8] V. Krasniqi - F. Merovci, Some Completely Monotonic Properties for the (p, q)Gamma Function, Mathematica Balcanica New Series 26 (1-2) (2012).
[9] V. Krasniqi - A. Shabani, Convexity properties and inequalities for a generalized gamma functions, Appl. Math. E-Notes 10 (2010), 27-35.
[10] V. Krasniqi - T. Mansour, A. Sh. Shabani, Some monotonicity properties and inequalities for the Gamma and Riemann Zeta functions, Math. Commun. 15 (2) (2010), 365-376.
[11] C. Mortici, Turán-type inequalities for the Gamma and Polygamma functions, Acta Universitatis Apulensis 23 (2010), 117-121.
[12] W. T. Sulaiman, Turán type inequalities for some special functions, The Australian Journal of Mathematical Analysis and Applications 9 (1) (2012), 1-7.
[13] G. Szegő, Orthogonal Polynomials 4th ed., Colloquium Publications 23, A. M. S., Rhode Island, 1975.
[14] P. Turán, On the zeros of the polynomials of Legendre, Casopis pro Pestovani Mat. a Fys 75 (1950), 113-122.

FATON MEROVCI
Department of Mathematics
University of Prishtina,
Prishtinë 10 000, Republic of Kosova e-mail: fmerovci@yahoo.com

[^0]: Entrato in redazione: 24 settembre 2012

