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SKEW HURWITZ SERIES OVER
QUASI BAER AND PS-RINGS

REFAAT MOHAMED SALEM

In this paper, we consider some properties of rings which are shared
by the ring R and the ring T = (HR,σ) of skew Hurwitz series. In partic-
ular we show that:

1) If R is a ring with char(R) = 0 and σ is an R -automorphism such
that σ(e) = e and the left annihilator of every left ideal is σ -invar-
iant, then the following are equivalent:

i) T is a quasi Baer ring.
ii) R is a quasi Baer ring.

2) If R is a right PS-ring with char(R) = 0, then T is a right PS-ring.

1. Introduction

Throughout this paper R denotes an associative ring with identity and char(R) =
0 which means that nx = 0 if and only if x = 0 which is a stronger condition than
the usual definition that no positive multiple of the identity vanishes. Recall
from [5] that R is a Baer ring if the right annihilator of every nonempty subset
of R is generated as a right ideal by an idempotent, this definition is left-right
symmetric see [5], and it was proved in [1] that Baer rings are ubiquitous which
forms a very wide class.
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The concept of Baer rings was generalized by Clark [3] in 1967 to that of
quasi Baer rings. A ring R is called quasi Baer if the right annihilator of every
ideal is generated as a right ideal by an idempotent. Moreover, Clark [3] showed
the left-right symmetric of this condition by proving that a ring R is quasi Baer
if and only if the right annihilator of every right ideal of R is generated as a right
ideal by an idempotent.

A natural question for a given class of rings is, how does the given class
behaves with respect to ring extensions?

Birkenmeier et al proved in [2] that a ring R is quasi Baer if and only if
R[[X ]] is quasi Baer, where X is an arbitrary non empty set of not necessarily
commuting indeterminate. In a series of papers [6–8] Keigher introduced the
notion of the ring HR of Hurwitz series over a commutative ring with identity
and demonstrated that it has many interesting application in differential algebra.
The ring HR has been named the ring of Hurwitz series over R to credit the
contribution of Hurwitz to its definition.

The motivation of this paper is two folded:

1) To extend the notion of the ring of Hurwitz series HR to the ring of skew
Hurwitz series T = (HR,σ).

2) To study when the property of being right quasi Baer (PS) ring is shared
between the ring T of Skew Hurwitz series over the ring R and R itself.

For any ring R with identity and R-automorphism σ , we denote by

T = (HR,σ) = { f : N→ R},

where N is the set of natural numbers. Let the operation of addition in T be
component wise and the operation of multiplication for each f ,g∈ T be defined
by

( f g)(n) =
n

∑
k=0

(
n
k

)
f (k)σ kg(n− k),

for all n ∈ N, where
(n

k

)
is the binomial coefficient.

It can be easily shown that T is a ring with identity h1, defined by h1(0) = 1
and h1(n) = 0 for all n≥ 1. It is called the ring of skew Hurwitz series over R.

We denote by supp( f ) the support of f , i.e.,

supp( f ) = {n ∈ N| f (n) 6= 0},

and by π( f ) the smallest element in supp( f ). It is clear that R is canonically
embedded as a subring of T via r ∈ R 7→ hr ∈ T, where hr(0) = r,hr(n) = 0 for
every n≥ 1, hence supp(hr) = {0}.
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A right (left, two-sided) ideal I of a ring R is called σ -invariant if σ(I)⊆ I.
If R is a ring and σ is an R-endomorphism, R is called σ -compatible if ab = 0
if and only if aσ(b) = 0.

From now on let σ be an R-automorphism.

2. Quasi-Baer Rings of Skew Hurwitz Series

Theorem 2.1. Suppose that R is a ring and char(R) = 0. If R is a quasi-Baer
ring, then the skew Hurwitz series ring T = (HR,σ) is a quasi-Baer ring.

Proof. Let M be a left ideal of T . We claim that `T (M) = T he, for some idem-
potent he ∈ T . Set In = {g(n) ∈ R | g ∈M, n = π(g)} ⊂ R, and I =

⋃
n∈N In. Let

J be the left ideal of R generated by I. Then there exists an idempotent e of R
such that `R(J) = Re.

First, to show that T he ⊆ `T (M), take f ∈M, then he f ∈M. If he f 6= 0, then
supp(he f ) is a nonempty subset of N. Let t = π(he f ). Then

0 6= (he f )(t) =
t

∑
k=0

(
t
k

)
he(k)σ k( f (t− k)) = e f (t) ∈ It ⊆ J,

but e f (t) = e(e f (t)) = 0, which is a contradiction. So, we inductively obtain
that (he f )(t) = 0 for each t ∈ supp( f ). Hence he f = 0, which means that
T he ⊆ `T (M).

Now we will show that `T (M)⊆ T he. Let 0 6= g ∈ `T (M) and let s = π(g).
For any a ∈ J, there exist

s1,s2, · · · ,sn ∈ N, f1, f2, · · · , fn ∈M,

and r1,r2, ..,rn ∈ R, such that

a = r1 f1(s1)+ r2 f2(s2)+ · · ·+ rn fn(sn).

Let s j = π( f j), then f j(s j) ∈ Is j , j = 1,2, · · · ,n. Since hr j f j ∈ M, we have
g(hr j f j) = 0. Clearly, π(hr j f j) = s j, thus

0 = g(hr j f j)(s j + s) =
s j+s

∑
k=0

(
s j + s

k

)
g(k)σ k((hr j f j)(s j + s− k))

=

(
s j + s

s j

)
g(s)σ s((hr j f j)(s j)).

Since char(R) = 0, then (g(s)σ s((r j f j(s j)) = 0, for any j = 1,2, · · · ,n.
Thus g(s)σ s(a) = 0. Since σ is an automorphism, there exists d1 ∈ R such that
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σ s(d1) = g(s). Then σ s(d1a) = g(s)σ s(a) = 0. Consequently, d1 ∈ `R(J) = Re.
Thus d1 = d1e, and it follows that g(s) = g(s)σ s(e).

Suppose that u ∈ supp(g) and g(v) = g(v)σu(e) for any v ∈ supp(g) with
v < u. We will show that g(u) = g(u)σu(e) for any u ∈ supp(g). Denote

(gu)(x) = g(x) when x < uand (gu)(x) = 0 when x≥ u.

Thus π(g−gu) = u. By hypothesis gu = guhe ∈ T he ⊆ `T (M).
Now g−gu ∈ `T (M). Using the same procedure above, it follows that

(g−gu)(u) = (g−gu)(u)σu(e),

which implies that g(u) = g(u)σu(e) and our claim holds.
Now from

(ghe)(t) =
t

∑
k=0

(
t
k

)
g(k)σ k(he(t− k)) = g(t)σ t(he(0)) = g(t),

it follows that g = ghe ∈ T he. Therefore, T he = `T (M), and we have that T is
quasi-Baer.

Recall from [2] that an idempotent e ∈ R is called left (resp. right) semicen-
tral in R if, ere= re (ere= er), for all r ∈R. Equivalently, e2 = e∈R is left (resp.
right) semicentral in R if eR (Re) is an ideal of R. Since the left annihilator of a
left ideal is an ideal, we see that the left annihilator of a left ideal is generated
by a right semicentral idempotent in a quasi-Baer ring.

Proposition 2.2. Suppose that f ∈ T is a right semicentral idempotent, then:

1) f (0) = e is a right semicentral idempotent of R.

2) If f (0) = e is σ -invariant, then T f = T he.

Proof. 1) Let f (0) = e, since f ∈ T is a right semicentral idempotent, then
f hr = f hr f for any r ∈ R. Thus

er = f (0)r = ( f hr)(0) = ( f hr f )(0) = f (0)r f (0) = ere

which implies that e = f (0) is a right semicentral idempotent of R.
2) If f (0) = 0, then f = 0. Otherwise, suppose that f 6= 0, then supp( f ) 6= φ .
Let t = π( f ). Then

0 6= f (t) = f 2(t) =
t

∑
k=0

(
t
k

)
f (k)σ k( f (t− k)) = 0,
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which is a contradiction. This shows us that f = 0 and e = f (0) = 0. Thus,
he = 0 and we get that T f = T he.

Now suppose that f (0) 6= 0. If supp( f ) = {0}, then clearly f = he. So
assume supp( f ) 6= {0}. Denote the minimal element in supp( f )\{0} by t.
Since σ(e) = e and f (s) = 0 for any s ∈ N with 0 < s < t, then

f (t)σ t(r) = ( f hr)(t) = ( f hr f )(t) =
t

∑
k=0

(
t
k

)
f (k)σ k(r f (t− k))

= f (0)r f (t)+ f (t)σ t(r)σ t( f (0)) = er f (t)+ f (t)σ t(r)e.

Multiply the left-hand side by e = f (0), we get

e f (t)σ t(r) = er f (t)+ e f (t)σ t(r)e.

But e f (t)σ t(r) = e f (t)σ t(r)e. Hence

er f (t) = 0, and f (t)σ t(r) = f (t)σ t(r)e.

Suppose now that w ∈ supp( f ) is such that for any u ∈ supp( f ) with
0 < u < w,

f (u)σu(r) = f (u)σu(r)e, er f (u) = 0, ∀r ∈ R.

Then

f (w)σw(r) = ( f hr)(w) = ( f hr f )(w) =
w

∑
k=0

(
w
k

)
f (k)σ k(r f (w− k))

= f (0)r f (w)+
w−1

∑
k=1

(
w
k

)
f (k)σ k(r f (w− k))+ f (w)σw(r f (0)).

Multiply the left-hand side by f (0) = e, we get

e f (w)σw(r) = er f (w)+
w−1

∑
k=1

(
w
k

)
e f (k)σ k(r f (w− k))+ e f (w)σw(re).

But e f (w)σw(r)e = e f (w)σw(r) and ∑
w−1
k=1

(w
k

)
e f (k)σ k(r f (w− k)) = 0. Thus

er f (w) = 0 and it follows that

f (w)σw(r) =
w−1

∑
k=1

(
w
k

)
f (k)σ k(r f (w− k))+ f (w)σw(r)e.
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Multiply the right-hand side by f (0) = e, we get

f (w)σw(r)e =
w−1

∑
k=1

(
w
k

)
f (k)σ k(r f (w− k))e+ f (w)σw(r)e

=
w−1

∑
k=1

(
w
k

)
f (k)σ k(r f (w− k))+ f (w)σw(r)e.

Thus
w−1

∑
k=1

(
w
k

)
f (k)σ k(r f (w− k)) = 0

and it follows that
f (w)σw(r)e = f (w)σw(r).

Therefore, we get for any w ∈ supp( f ),

f (w)σw(r)e = f (w)σw(r), er f (w) = 0, ∀r ∈ R.

Hence, we can conclude that he = he f and f = f he, which imply that
T f = T he.

The following example shows us that there exists skew Hurwitz series
T = (HR,σ) which is quasi-Baer, but R isn’t quasi-Baer.

Example 2.3. Consider the ring R = {(a,b) ∈ Z⊕Z | a≡ b (mod 2)}, with the
usual operations of componentwise addition and multiplication R is clearly a
commutative reduced ring and the only idempotent of R are (0,0) and (1,1).
Let σ : R→ R be defined by σ(a,b) = (b,a), then σ is an automorphism of R.
Now we claim that T = (HR,σ) is quasi-Baer. Let I be a nonzero ideal of T
and 0 6= g ∈ I, let i = π(g) and g(i) = (ai,bi). Let f ,h ∈ T be such that

f (2k− i) = (1,1) and f ( j) = 0 otherwise,

h(2k− i+1) = (1,1) and h( j) = 0 otherwise,

Hence, g f ∈ I and gh ∈ I are such that π(g f ) = 2k and (g f )(2k) =
(2k

i

)
g(i)

and π(gh) = 2k + 1 and (gh)(2k) =
(2k+1

i

)
g(i). Suppose that 0 6= q ∈ rT (I),

j = π(q) and q( j) = (u j,v j) 6= (0,0).
Hence

0 = (g f q)(2k+ j) =
(

2k+ j
2k

)(
2k
i

)
g(i)σ2k(q( j))

=

(
2k+ j

2k

)(
2k
i

)
(ai,bi)(u j,v j).
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Also,

0 = (ghq)(2k+ j+1) =
(

2k+ j+1
2k+1

)(
2k+1

i

)
(g)(i)σ2k+i(q(i))

=

(
2k+ j+1

2k+1

)(
2k+1

i

)
(ai,bi)(v j,u j).

Since char(R) = 0, then (ai,bi)(u j,v j) = (aiu j,biv j) = (0,0) and
(ai,bi)(v j,u j) = (aiv j,biu j) = (0,0). Since (ai,bi) 6= (0,0) this means that ai or
bi are nonzero. Consequently, (u j,v j) = (0,0) which is a contradiction.

Therefore, rT (I) = {(0,0)} and T is quasi-Baer.
In the contrary, R isn’t quasi-Baer. For (2,0) ∈ R we get

rR((2,0)) = {(0,2n)|n ∈ Z}.

Consequently, rR((2,0)) doesn’t contain any nonzero idempotent.
Hence R isn’t quasi-Baer.

Theorem 2.4. Suppose that R is a ring such that every semicentral idempotent
is σ -invariant and σ(lR(I)) = lR(I) for each left ideal I of R. If T = (HR,σ) is
quasi-Baer, then R is quasi-Baer.

Proof. Let I be a left ideal of a ring R and M = T I be the left ideal of T
generated by I. Since, T is a quasi-Baer ring, then there exists a semicentral
idempotent f ∈ T such that lT (M) = T f . Using Proposition 2.2 it follows that
lT (M) = T f = T he for some semicentral idempotent e ∈ R. Hence, heg = 0
for each g ∈M and we have that 0 = (hehx)(0) = ex for each x ∈ I. Therefore
Re ⊆ lR(I). Now, suppose that y ∈ lR(I), g ∈ T and x ∈ I, then ghx ∈ M and
hyghx = 0. Hence, 0 = (hyghx)(n) = yg(n)σn(x). Since, σ is an R-automor-
phism and σ(lR(I)) = lR(I), then (hyghx)(n) = σn(trx) where t = σ−ny,
r = σn(g(n)).

So, t ∈ lRI and it follows that (hyghx)(n) = σn(trx) = σn(0) = 0 for each
n ∈ N. Therefore hy ∈ lT (M) = T he. Hence, hy = khe = hyhe for some k ∈ T
and it follows that y = ye∈ R which means that Re = lR(I) and R is a quasi-Baer
ring.

Combining Theorem 2.1 and Theorem 2.4 we get the main Theorem of this
section.

Theorem 2.5. Suppose that R is a ring with char(R)= 0 and σ is an R-automor-
phism such that every left semicentral idempotent e ∈ R is σ -invariant and
σ(lR(I)) = lR(I) for each left ideal I of R. Then R is a quasi-Baer ring if and
only if T = (HR,σ) is quasi-Baer.
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The following Theorem shows us that the prime property can be shared
between T and R under certain condition.

Theorem 2.6. Suppose that R is a ring and σ is an R-automorphism, then

i) If R is prime and char(R) = 0, then T = (HR,σ) is prime.

ii) If the left annihilator of every left ideal of R is σ -invariant and T is prime,
then R is prime.

Proof. i) Suppose that R is a prime ring and T = (HR,σ) is not prime, then
there exists nonzero elements f ,g ∈ T such that f T g = 0. Hence, f kg = 0 for
each k ∈ T in particular f hrg = 0 for each r ∈ R. Suppose that π( f ) = n1 and
π(g) = n2, then

0 = ( f hrg)(n1 +n2) =
n1+n2

∑
i=0

f (i)σ i(hrg)(n1 +n2− i)

= f (n1)σ
n1(hrg)(n2) = f (n)σn1((r)g(n2)).

Since, σ is an R-automorphism, then 0= f (n)Rσn1(g(n2)) for nonzero elements
f (n) and σn1g(n2) which contradicts the fact that R is a prime ring.
ii) Suppose that R isn’t prime, then there exists a nonzero elements a,b ∈ R
such that aRb = 0. Therefore, b ∈ RR(a) and by hypothesis σn(b) ∈ RR(a). So
aRσn(b) = 0 for all n ∈ N.

Hence, 0 = arσn(b) = (haghb)(n) for each g ∈ T and n ∈ N. So, haT hb = 0
which contradicts the fact that T is a prime ring.

3. PS-Rings Of Skew Hurwitz Series

A ring R (not necessarily commutative) is called a PS-ring if the socle,
Soc(R(R)) is projective. These rings were studied by Gordon in [4] and Nichol-
son and Watter in [9]. In [9] Nicholson and Watter proved that if R is a left
PS-ring, then so are R[X ] and R[[X ]]. The following result is due to Nicholson
and Watter [9] which gives an equivalent condition for the ring R to be PS and
we need it in the sequel.

Lemma 3.1. The following conditions on a ring R are equivalent:

1) R is a left PS-ring.

2) If M is a maximal left ideal of R, then rR(M) = eR, where e2 = e ∈ R and
rR(M) is the right annihilator of M in the ring R.
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The following Theorem is due to L. Zhongkui [10] which shows us that the
ring HR of hurwitz series inherits the PS property from the ring R.

Theorem 3.2. Suppose that R is a commutative ring and char(R) = 0. If R is a
PS-ring then so, is HR.

The following Theorem is the main result of this section which extends the
above theorem to the noncommutative case.

Theorem 3.3. Suppose that R is a right PS-rings with char(R) = 0, then the
skew Hurwitz series ring T = (HR,σ) is a right PS-ring.

Proof. Let M be a maximal right ideal of T and

In = {g(n) ∈ R|g ∈M,n = π(g)} ⊂ R.

Hence In is a right ideal of R. Let I = ∪n∈NIn and J be the ideal of R generated
by I. It can be easily shown that J is a maximal right ideal of R. For if J = R,
then there exists nonzero elements f1, f2, · · · , fm in M and r1,r2, · · · ,rm in R
such that 1 = f1(n1)r1 + · · ·+ fm(nm)rm with ni = π( fi) and f (ni) ∈ Ini ⊂ J
for each i = 1, · · · ,m. Suppose that 0 6= g ∈ lT (M) and k = π(g). If(

m+ni

k

)
g(k)σ k( fi(ni)) 6= 0,

then π(g fi) = k+ni and it follows that (g fi)(k+ni) 6= 0 which contradicts the
fact that g ∈ lT (M). Hence(

k+ni

k

)
g(k)σ k( fi(ni)) = 0.

Since char(R) = 0, then g(k)σ k( fi(ni)) = 0 for each i = 1, · · · ,m.
Now,

1 = σ
k(1) = σ

k( f1(n1)r1 + · · ·+ fm(nm)rm).

Therefore,
g(k) = g(k)σ k( f1(n1)r1 + · · ·+ fm(nm)rm) = 0

which contradicts the fact that π(g) = k. Hence g = 0 and lT (M) = 0.
Now, suppose that J 6= R, we will show that J is a maximal right ideal of

R. Let r ∈ R \ J. If hr ∈ M, then r = hr(0) ∈ I0 ⊂ J which is a contradiction.
Hence hr 6∈M and by maximality of M, T = M + hrT . Therefore, there exists
f ∈M and g ∈ T such that h1 = g+ hr f . Thus 1 = g(0)+ r f (0). If f (0) = 0,
then 1 ∈ rR and R = J + rR. If f (0) 6= 0, then R = J + rR. Consequently J is a
maximal right ideal of R.
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Since R is a right PS-ring, then there exists an idempotent e ∈ R such that
lR(J) = Re, we will show that lT (M) = T he. Suppose that heM 6⊆ M by max-
imality of M, T = M + heM. Hence h1 = f + heg for some f ,g ∈ M. There-
fore, 1 = f (0)+ eg(0), if g(0) 6= 0, then π(g) = 0 and it follows that g(0) ∈
I0 ⊂ J. Hence 0 = eeg(0) = eg(0). Therefore, 1 = f (0) ∈ I0 ⊂ J which is
a contradiction. Hence, heM ⊆ M. Suppose that g ∈ M, hence heg ∈ M. If
heg 6= 0, let k = π(heg), then (heg)(k) = he(0)g(k) = eg(k) ∈ Ik ⊂ J. Hence,
0 = eeg(k) = eg(k) = (heg)(k) which is a contradiction. Consequently, heg = 0
and T he ⊆ lT (M). Conversely, let 0 6= g ∈ lT (M)− T he, then using the same
argument used in Theorem 2.1 it can be easily shown that g ∈ T hee which is a
contradiction. Hence, lT (M) ⊆ T he. Therefore, lT (M) = T he and T is a right
PS-ring.
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