LE MATEMATICHE Vol. LXVII (2012) – Fasc. II, pp. 15–25 doi: 10.4418/2012.67.2.2

SKEW HURWITZ SERIES OVER QUASI BAER AND *PS*-RINGS

REFAAT MOHAMED SALEM

In this paper, we consider some properties of rings which are shared by the ring *R* and the ring $T = (HR, \sigma)$ of skew Hurwitz series. In particular we show that:

- 1) If *R* is a ring with char(R) = 0 and σ is an *R* -automorphism such that $\sigma(e) = e$ and the left annihilator of every left ideal is σ -invariant, then the following are equivalent:
 - i) T is a quasi Baer ring.
 - ii) *R* is a quasi Baer ring.
- 2) If *R* is a right *PS*-ring with char(R) = 0, then *T* is a right *PS*-ring.

1. Introduction

Throughout this paper *R* denotes an associative ring with identity and char(R) = 0 which means that nx = 0 if and only if x = 0 which is a stronger condition than the usual definition that no positive multiple of the identity vanishes. Recall from [5] that *R* is a Baer ring if the right annihilator of every nonempty subset of *R* is generated as a right ideal by an idempotent, this definition is left-right symmetric see [5], and it was proved in [1] that Baer rings are ubiquitous which forms a very wide class.

AMS 2010 Subject Classification: 13F25, 13C10, 16W60. Keywords: Hurwitz series, Baer ring, Quasi Baer ring, PS-ring.

Entrato in redazione: 29 settembre 2011

The concept of Baer rings was generalized by Clark [3] in 1967 to that of quasi Baer rings. A ring R is called quasi Baer if the right annihilator of every ideal is generated as a right ideal by an idempotent. Moreover, Clark [3] showed the left-right symmetric of this condition by proving that a ring R is quasi Baer if and only if the right annihilator of every right ideal of R is generated as a right ideal by an idempotent.

A natural question for a given class of rings is, how does the given class behaves with respect to ring extensions?

Birkenmeier et al proved in [2] that a ring R is quasi Baer if and only if R[[X]] is quasi Baer, where X is an arbitrary non empty set of not necessarily commuting indeterminate. In a series of papers [6–8] Keigher introduced the notion of the ring HR of Hurwitz series over a commutative ring with identity and demonstrated that it has many interesting application in differential algebra. The ring HR has been named the ring of Hurwitz series over R to credit the contribution of Hurwitz to its definition.

The motivation of this paper is two folded:

- 1) To extend the notion of the ring of Hurwitz series *HR* to the ring of skew Hurwitz series $T = (HR, \sigma)$.
- 2) To study when the property of being right quasi Baer (*PS*) ring is shared between the ring *T* of Skew Hurwitz series over the ring *R* and *R* itself.

For any ring *R* with identity and *R*-automorphism σ , we denote by

$$T = (HR, \sigma) = \{f : N \to R\},\$$

where *N* is the set of natural numbers. Let the operation of addition in *T* be component wise and the operation of multiplication for each $f, g \in T$ be defined by

$$(fg)(n) = \sum_{k=0}^{n} \binom{n}{k} f(k) \sigma^{k} g(n-k),$$

for all $n \in N$, where $\binom{n}{k}$ is the binomial coefficient.

It can be easily shown that *T* is a ring with identity h_1 , defined by $h_1(0) = 1$ and $h_1(n) = 0$ for all $n \ge 1$. It is called the ring of skew Hurwitz series over *R*.

We denote by supp(f) the support of f, i.e.,

$$supp(f) = \{n \in N | f(n) \neq 0\},\$$

and by $\pi(f)$ the smallest element in supp(f). It is clear that R is canonically embedded as a subring of T via $r \in R \mapsto h_r \in T$, where $h_r(0) = r, h_r(n) = 0$ for every $n \ge 1$, hence $supp(h_r) = \{0\}$.

A right (left, two-sided) ideal *I* of a ring *R* is called σ -invariant if $\sigma(I) \subseteq I$. If *R* is a ring and σ is an *R*-endomorphism, *R* is called σ -compatible if ab = 0 if and only if $a\sigma(b) = 0$.

From now on let σ be an *R*-automorphism.

2. Quasi-Baer Rings of Skew Hurwitz Series

Theorem 2.1. Suppose that R is a ring and char(R) = 0. If R is a quasi-Baer ring, then the skew Hurwitz series ring $T = (HR, \sigma)$ is a quasi-Baer ring.

Proof. Let *M* be a left ideal of *T*. We claim that $\ell_T(M) = Th_e$, for some idempotent $h_e \in T$. Set $I_n = \{g(n) \in R \mid g \in M, n = \pi(g)\} \subset R$, and $I = \bigcup_{n \in \mathbb{N}} I_n$. Let *J* be the left ideal of *R* generated by *I*. Then there exists an idempotent *e* of *R* such that $\ell_R(J) = Re$.

First, to show that $Th_e \subseteq \ell_T(M)$, take $f \in M$, then $h_e f \in M$. If $h_e f \neq 0$, then $supp(h_e f)$ is a nonempty subset of \mathbb{N} . Let $t = \pi(h_e f)$. Then

$$0 \neq (h_e f)(t) = \sum_{k=0}^t \binom{t}{k} h_e(k) \sigma^k(f(t-k)) = ef(t) \in I_t \subseteq J,$$

but ef(t) = e(ef(t)) = 0, which is a contradiction. So, we inductively obtain that $(h_e f)(t) = 0$ for each $t \in supp(f)$. Hence $h_e f = 0$, which means that $Th_e \subseteq \ell_T(M)$.

Now we will show that $\ell_T(M) \subseteq Th_e$. Let $0 \neq g \in \ell_T(M)$ and let $s = \pi(g)$. For any $a \in J$, there exist

$$s_1, s_2, \cdots, s_n \in \mathbb{N}, f_1, f_2, \cdots, f_n \in M,$$

and $r_1, r_2, ..., r_n \in R$, such that

$$a = r_1 f_1(s_1) + r_2 f_2(s_2) + \dots + r_n f_n(s_n).$$

Let $s_j = \pi(f_j)$, then $f_j(s_j) \in I_{s_j}$, $j = 1, 2, \dots, n$. Since $h_{r_j}f_j \in M$, we have $g(h_{r_j}f_j) = 0$. Clearly, $\pi(h_{r_j}f_j) = s_j$, thus

$$0 = g(h_{r_j}f_j)(s_j+s) = \sum_{k=0}^{s_j+s} {s_j+s \choose k} g(k)\sigma^k((h_{r_j}f_j)(s_j+s-k))$$
$$= {s_j+s \choose s_j} g(s)\sigma^s((h_{r_j}f_j)(s_j)).$$

Since char(R) = 0, then $(g(s)\sigma^s((r_jf_j(s_j)) = 0, \text{ for any } j = 1, 2, \dots, n.$ Thus $g(s)\sigma^s(a) = 0$. Since σ is an automorphism, there exists $d_1 \in R$ such that $\sigma^s(d_1) = g(s)$. Then $\sigma^s(d_1a) = g(s)\sigma^s(a) = 0$. Consequently, $d_1 \in \ell_R(J) = Re$. Thus $d_1 = d_1e$, and it follows that $g(s) = g(s)\sigma^s(e)$.

Suppose that $u \in supp(g)$ and $g(v) = g(v)\sigma^{u}(e)$ for any $v \in supp(g)$ with v < u. We will show that $g(u) = g(u)\sigma^{u}(e)$ for any $u \in supp(g)$. Denote

$$(g_u)(x) = g(x)$$
 when $x < uand$ $(g_u)(x) = 0$ when $x \ge u$.

Thus $\pi(g - g_u) = u$. By hypothesis $g_u = g_u h_e \in Th_e \subseteq \ell_T(M)$. Now $g - g_u \in \ell_T(M)$. Using the same procedure above, it follows that

$$(g-g_u)(u) = (g-g_u)(u)\sigma^u(e),$$

which implies that $g(u) = g(u)\sigma^u(e)$ and our claim holds.

Now from

$$(gh_e)(t) = \sum_{k=0}^{t} {t \choose k} g(k) \sigma^k (h_e(t-k)) = g(t) \sigma^t (h_e(0)) = g(t),$$

it follows that $g = gh_e \in Th_e$. Therefore, $Th_e = \ell_T(M)$, and we have that T is quasi-Baer.

Recall from [2] that an idempotent $e \in R$ is called left (resp. right) semicentral in *R* if, ere = re (ere = er), for all $r \in R$. Equivalently, $e^2 = e \in R$ is left (resp. right) semicentral in *R* if eR (Re) is an ideal of *R*. Since the left annihilator of a left ideal is an ideal, we see that the left annihilator of a left ideal is generated by a right semicentral idempotent in a quasi-Baer ring.

Proposition 2.2. Suppose that $f \in T$ is a right semicentral idempotent, then:

- 1) f(0) = e is a right semicentral idempotent of R.
- 2) If f(0) = e is σ -invariant, then $Tf = Th_e$.

Proof. 1) Let f(0) = e, since $f \in T$ is a right semicentral idempotent, then $fh_r = fh_r f$ for any $r \in R$. Thus

$$er = f(0)r = (fh_r)(0) = (fh_rf)(0) = f(0)rf(0) = ere$$

which implies that e = f(0) is a right semicentral idempotent of R. 2) If f(0) = 0, then f = 0. Otherwise, suppose that $f \neq 0$, then $supp(f) \neq \phi$. Let $t = \pi(f)$. Then

$$0 \neq f(t) = f^{2}(t) = \sum_{k=0}^{t} {t \choose k} f(k) \sigma^{k}(f(t-k)) = 0,$$

which is a contradiction. This shows us that f = 0 and e = f(0) = 0. Thus, $h_e = 0$ and we get that $Tf = Th_e$.

Now suppose that $f(0) \neq 0$. If $supp(f) = \{0\}$, then clearly $f = h_e$. So assume $supp(f) \neq \{0\}$. Denote the minimal element in $supp(f) \setminus \{0\}$ by t. Since $\sigma(e) = e$ and f(s) = 0 for any $s \in \mathbb{N}$ with 0 < s < t, then

$$f(t)\sigma^{t}(r) = (fh_{r})(t) = (fh_{r}f)(t) = \sum_{k=0}^{t} {t \choose k} f(k)\sigma^{k}(rf(t-k))$$

= $f(0)rf(t) + f(t)\sigma^{t}(r)\sigma^{t}(f(0)) = erf(t) + f(t)\sigma^{t}(r)e^{t}$

Multiply the left-hand side by e = f(0), we get

$$ef(t)\sigma^{t}(r) = erf(t) + ef(t)\sigma^{t}(r)e.$$

But $ef(t)\sigma^t(r) = ef(t)\sigma^t(r)e$. Hence

$$erf(t) = 0$$
, and $f(t)\sigma^{t}(r) = f(t)\sigma^{t}(r)e$.

Suppose now that $w \in supp(f)$ is such that for any $u \in supp(f)$ with 0 < u < w,

$$f(u)\sigma^u(r) = f(u)\sigma^u(r)e, \quad erf(u) = 0, \quad \forall r \in \mathbb{R}.$$

Then

$$f(w)\sigma^{w}(r) = (fh_{r})(w) = (fh_{r}f)(w) = \sum_{k=0}^{w} {\binom{w}{k}} f(k)\sigma^{k}(rf(w-k))$$
$$= f(0)rf(w) + \sum_{k=1}^{w-1} {\binom{w}{k}} f(k)\sigma^{k}(rf(w-k)) + f(w)\sigma^{w}(rf(0)).$$

Multiply the left-hand side by f(0) = e, we get

$$ef(w)\sigma^{w}(r) = erf(w) + \sum_{k=1}^{w-1} {w \choose k} ef(k)\sigma^{k}(rf(w-k)) + ef(w)\sigma^{w}(re).$$

But $ef(w)\sigma^w(r)e = ef(w)\sigma^w(r)$ and $\sum_{k=1}^{w-1} {\binom{w}{k}} ef(k)\sigma^k(rf(w-k)) = 0$. Thus erf(w) = 0 and it follows that

$$f(w)\sigma^{w}(r) = \sum_{k=1}^{w-1} {\binom{w}{k}} f(k)\sigma^{k}(rf(w-k)) + f(w)\sigma^{w}(r)e.$$

Multiply the right-hand side by f(0) = e, we get

$$f(w)\sigma^{w}(r)e = \sum_{k=1}^{w-1} {\binom{w}{k}} f(k)\sigma^{k}(rf(w-k))e + f(w)\sigma^{w}(r)e$$
$$= \sum_{k=1}^{w-1} {\binom{w}{k}} f(k)\sigma^{k}(rf(w-k)) + f(w)\sigma^{w}(r)e.$$

Thus

$$\sum_{k=1}^{w-1} \binom{w}{k} f(k) \sigma^k (rf(w-k)) = 0$$

and it follows that

$$f(w)\sigma^{w}(r)e=f(w)\sigma^{w}(r).$$

Therefore, we get for any $w \in supp(f)$,

$$f(w)\sigma^w(r)e = f(w)\sigma^w(r), \quad erf(w) = 0, \quad \forall r \in \mathbb{R}.$$

Hence, we can conclude that $h_e = h_e f$ and $f = f h_e$, which imply that $Tf = Th_e$.

The following example shows us that there exists skew Hurwitz series $T = (HR, \sigma)$ which is quasi-Baer, but *R* isn't quasi-Baer.

Example 2.3. Consider the ring $R = \{(a, b) \in \mathbb{Z} \oplus \mathbb{Z} \mid a \equiv b \pmod{2}\}$, with the usual operations of componentwise addition and multiplication R is clearly a commutative reduced ring and the only idempotent of R are (0,0) and (1,1). Let $\sigma : R \to R$ be defined by $\sigma(a,b) = (b,a)$, then σ is an automorphism of R. Now we claim that $T = (HR, \sigma)$ is quasi-Baer. Let I be a nonzero ideal of T and $0 \neq g \in I$, let $i = \pi(g)$ and $g(i) = (a_i, b_i)$. Let $f, h \in T$ be such that

f(2k-i) = (1,1) and f(j) = 0 otherwise,

$$h(2k-i+1) = (1,1)$$
 and $h(j) = 0$ otherwise,

Hence, $gf \in I$ and $gh \in I$ are such that $\pi(gf) = 2k$ and $(gf)(2k) = \binom{2k}{i}g(i)$ and $\pi(gh) = 2k + 1$ and $(gh)(2k) = \binom{2k+1}{i}g(i)$. Suppose that $0 \neq q \in r_T(I)$, $j = \pi(q)$ and $q(j) = (u_j, v_j) \neq (0, 0)$.

Hence

$$0 = (gfq)(2k+j) = {\binom{2k+j}{2k}} {\binom{2k}{i}} g(i)\sigma^{2k}(q(j))$$
$$= {\binom{2k+j}{2k}} {\binom{2k}{i}} (a_i, b_i)(u_j, v_j).$$

Also,

$$0 = (ghq)(2k+j+1) = {\binom{2k+j+1}{2k+1}} {\binom{2k+1}{i}} (g)(i)\sigma^{2k+i}(q(i))$$
$$= {\binom{2k+j+1}{2k+1}} {\binom{2k+1}{i}} (a_i, b_i)(v_j, u_j).$$

Since char(R) = 0, then $(a_i, b_i)(u_j, v_j) = (a_i u_j, b_i v_j) = (0, 0)$ and $(a_i, b_i)(v_j, u_j) = (a_i v_j, b_i u_j) = (0, 0)$. Since $(a_i, b_i) \neq (0, 0)$ this means that a_i or b_i are nonzero. Consequently, $(u_j, v_j) = (0, 0)$ which is a contradiction.

Therefore, $r_T(I) = \{(0,0)\}$ and T is quasi-Baer.

In the contrary, *R* isn't quasi-Baer. For $(2,0) \in R$ we get

$$r_R((2,0)) = \{(0,2n) | n \in \mathbb{Z}\}.$$

Consequently, $r_R((2,0))$ doesn't contain any nonzero idempotent.

Hence *R* isn't quasi-Baer.

Theorem 2.4. Suppose that *R* is a ring such that every semicentral idempotent is σ -invariant and $\sigma(l_R(I)) = l_R(I)$ for each left ideal *I* of *R*. If $T = (HR, \sigma)$ is quasi-Baer, then *R* is quasi-Baer.

Proof. Let *I* be a left ideal of a ring *R* and M = TI be the left ideal of *T* generated by *I*. Since, *T* is a quasi-Baer ring, then there exists a semicentral idempotent $f \in T$ such that $l_T(M) = Tf$. Using Proposition 2.2 it follows that $l_T(M) = Tf = Th_e$ for some semicentral idempotent $e \in R$. Hence, $h_eg = 0$ for each $g \in M$ and we have that $0 = (h_e h_x)(0) = ex$ for each $x \in I$. Therefore $Re \subseteq l_R(I)$. Now, suppose that $y \in l_R(I)$, $g \in T$ and $x \in I$, then $gh_x \in M$ and $h_ygh_x = 0$. Hence, $0 = (h_ygh_x)(n) = yg(n)\sigma^n(x)$. Since, σ is an *R*-automorphism and $\sigma(l_R(I)) = l_R(I)$, then $(h_ygh_x)(n) = \sigma^n(trx)$ where $t = \sigma^{-n}y$, $r = \sigma^n(g(n))$.

So, $t \in l_R I$ and it follows that $(h_y g h_x)(n) = \sigma^n(trx) = \sigma^n(0) = 0$ for each $n \in N$. Therefore $h_y \in l_T(M) = Th_e$. Hence, $h_y = kh_e = h_y h_e$ for some $k \in T$ and it follows that $y = ye \in R$ which means that $Re = l_R(I)$ and R is a quasi-Baer ring.

Combining Theorem 2.1 and Theorem 2.4 we get the main Theorem of this section.

Theorem 2.5. Suppose that *R* is a ring with char(R) = 0 and σ is an *R*-automorphism such that every left semicentral idempotent $e \in R$ is σ -invariant and $\sigma(l_R(I)) = l_R(I)$ for each left ideal *I* of *R*. Then *R* is a quasi-Baer ring if and only if $T = (HR, \sigma)$ is quasi-Baer.

The following Theorem shows us that the prime property can be shared between T and R under certain condition.

Theorem 2.6. Suppose that R is a ring and σ is an R-automorphism, then

- *i)* If *R* is prime and char(*R*) = 0, then $T = (HR, \sigma)$ is prime.
- ii) If the left annihilator of every left ideal of R is σ -invariant and T is prime, then R is prime.

Proof. i) Suppose that *R* is a prime ring and $T = (HR, \sigma)$ is not prime, then there exists nonzero elements $f, g \in T$ such that fTg = 0. Hence, fkg = 0 for each $k \in T$ in particular $fh_rg = 0$ for each $r \in R$. Suppose that $\pi(f) = n_1$ and $\pi(g) = n_2$, then

$$0 = (fh_rg)(n_1 + n_2) = \sum_{i=0}^{n_1+n_2} f(i)\sigma^i(h_rg)(n_1 + n_2 - i)$$

= $f(n_1)\sigma^{n_1}(h_rg)(n_2) = f(n)\sigma^{n_1}((r)g(n_2)).$

Since, σ is an *R*-automorphism, then $0 = f(n)R\sigma^{n_1}(g(n_2))$ for nonzero elements f(n) and $\sigma^{n_1}g(n_2)$ which contradicts the fact that *R* is a prime ring.

ii) Suppose that *R* isn't prime, then there exists a nonzero elements $a, b \in R$ such that aRb = 0. Therefore, $b \in R_R(a)$ and by hypothesis $\sigma^n(b) \in R_R(a)$. So $aR\sigma^n(b) = 0$ for all $n \in N$.

Hence, $0 = ar\sigma^n(b) = (h_agh_b)(n)$ for each $g \in T$ and $n \in N$. So, $h_aTh_b = 0$ which contradicts the fact that *T* is a prime ring.

3. PS-Rings Of Skew Hurwitz Series

A ring *R* (not necessarily commutative) is called a *PS*-ring if the socle, $Soc(_R(R))$ is projective. These rings were studied by Gordon in [4] and Nicholson and Watter in [9]. In [9] Nicholson and Watter proved that if *R* is a left *PS*-ring, then so are *R*[*X*] and *R*[[*X*]]. The following result is due to Nicholson and Watter [9] which gives an equivalent condition for the ring R to be *PS* and we need it in the sequel.

Lemma 3.1. The following conditions on a ring R are equivalent:

- 1) R is a left PS-ring.
- 2) If *M* is a maximal left ideal of *R*, then $r_R(M) = eR$, where $e^2 = e \in R$ and $r_R(M)$ is the right annihilator of *M* in the ring *R*.

The following Theorem is due to L. Zhongkui [10] which shows us that the ring HR of hurwitz series inherits the PS property from the ring R.

Theorem 3.2. Suppose that *R* is a commutative ring and char(R) = 0. If *R* is a *PS*-ring then so, is *HR*.

The following Theorem is the main result of this section which extends the above theorem to the noncommutative case.

Theorem 3.3. Suppose that R is a right PS-rings with char(R) = 0, then the skew Hurwitz series ring $T = (HR, \sigma)$ is a right PS-ring.

Proof. Let *M* be a maximal right ideal of *T* and

$$I_n = \{g(n) \in R | g \in M, n = \pi(g)\} \subset R.$$

Hence I_n is a right ideal of R. Let $I = \bigcup_{n \in N} I_n$ and J be the ideal of R generated by I. It can be easily shown that J is a maximal right ideal of R. For if J = R, then there exists nonzero elements f_1, f_2, \dots, f_m in M and r_1, r_2, \dots, r_m in Rsuch that $1 = f_1(n_1)r_1 + \dots + f_m(n_m)r_m$ with $n_i = \pi(f_i)$ and $f(n_i) \in I_{n_i} \subset J$ for each $i = 1, \dots, m$. Suppose that $0 \neq g \in l_T(M)$ and $k = \pi(g)$. If

$$\binom{m+n_i}{k}g(k)\sigma^k(f_i(n_i))\neq 0,$$

then $\pi(gf_i) = k + n_i$ and it follows that $(gf_i)(k + n_i) \neq 0$ which contradicts the fact that $g \in l_T(M)$. Hence

$$\binom{k+n_i}{k}g(k)\boldsymbol{\sigma}^k(f_i(n_i))=0$$

Since char(R) = 0, then $g(k)\sigma^k(f_i(n_i)) = 0$ for each $i = 1, \dots, m$.

Now,

$$1 = \boldsymbol{\sigma}^{k}(1) = \boldsymbol{\sigma}^{k}(f_1(n_1)r_1 + \dots + f_m(n_m)r_m).$$

Therefore,

$$g(k) = g(k)\sigma^k(f_1(n_1)r_1 + \cdots + f_m(n_m)r_m) = 0$$

which contradicts the fact that $\pi(g) = k$. Hence g = 0 and $l_T(M) = 0$.

Now, suppose that $J \neq R$, we will show that J is a maximal right ideal of R. Let $r \in R \setminus J$. If $h_r \in M$, then $r = h_r(0) \in I_0 \subset J$ which is a contradiction. Hence $h_r \notin M$ and by maximality of M, $T = M + h_r T$. Therefore, there exists $f \in M$ and $g \in T$ such that $h_1 = g + h_r f$. Thus 1 = g(0) + rf(0). If f(0) = 0, then $1 \in rR$ and R = J + rR. If $f(0) \neq 0$, then R = J + rR. Consequently J is a maximal right ideal of R. Since *R* is a right *PS*-ring, then there exists an idempotent $e \in R$ such that $l_R(J) = Re$, we will show that $l_T(M) = Th_e$. Suppose that $h_eM \not\subseteq M$ by maximality of M, $T = M + h_eM$. Hence $h_1 = f + h_eg$ for some $f, g \in M$. Therefore, 1 = f(0) + eg(0), if $g(0) \neq 0$, then $\pi(g) = 0$ and it follows that $g(0) \in I_0 \subset J$. Hence 0 = eeg(0) = eg(0). Therefore, $1 = f(0) \in I_0 \subset J$ which is a contradiction. Hence, $h_eM \subseteq M$. Suppose that $g \in M$, hence $h_eg \in M$. If $h_eg \neq 0$, let $k = \pi(h_eg)$, then $(h_eg)(k) = h_e(0)g(k) = eg(k) \in I_k \subset J$. Hence, $0 = eeg(k) = eg(k) = (h_eg)(k)$ which is a contradiction. Consequently, $h_eg = 0$ and $Th_e \subseteq I_T(M)$. Conversely, let $0 \neq g \in I_T(M) - Th_e$, then using the same argument used in Theorem 2.1 it can be easily shown that $g \in The_e$ which is a right *PS*-ring.

Acknowledgement

The author would like to express his deep gratitude to the referee for drawing his attention to Hashemi and Maussavi's paper also for his/her valuable remarks which improve the exposition of this paper. At last I would like to thank Prof. Fahmy and Dr. Hassanein for their helpful comments during the preparation of this paper.

REFERENCES

- G. F. Birkenmeier J. Y. Kim J. K. Park, *Quasi-Baer Ring Extensions And Bireg*ular Rings, Bull. Austral. Math. Soc. 61 (2000), 39–52.
- [2] G. F. Birkenmeier J. Y. Kim J. K. Park, *Polynomial extensions of Baer and quasi-Baer rings*, J. Pure Appl. Algebra 159 (2001), 25–42.
- [3] W. E. Clark, *Twisted matrix units Semigroup algebras*, Duke Math. J. 33 (1967), 417–423.
- [4] R. Gordon, *Ring in which minimal left ideal are projective*, Pacific. J. Math. 31 (1969), 679–692.
- [5] I. Kaplansky, Rings of Operators, Benjamin, New York, 1968.
- [6] W. F. Keigher, Adjunctions and comonads in differential algebra, Pacific. J. Math. 248 (1975), 99–112.
- [7] W. F. Keigher, On the ring of Hurwitz Series, Comm. Algebra 25 (6) (1997), 1845– 1859.
- [8] W. F. Keigher F. L. Pritchard, *Hurwitz Series as formal functions*, J. Pure Appl. Algebra 146 (2000), 291–304.

- [9] K. Nicholson J. F. Watters, *Rings with projective socle*, Proc. Amer. Math. Soc. 102 (3) (1988), 443–450.
- [10] L. Zhongkui, *Hermite and PS-rings of Hurwitz Series*, Comm. Algebra 28 (1) (2000), 299–305.

REFAAT MOHAMED SALEM Department of Mathematics Faculty of Science Al-Azhar University, Nasr City 11884 Cairo, Egypt e-mail: refaat_salem@cic-cairo.com