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ON A CLASS OF GENERALIZED
ANALYTIC FUNCTIONS

S. L. KALLA - N. VIRCHENKO - I. ALEXSANDROVICH

This paper deals with a new generalization of analytical functions.
The p-wave functions are introduced and studied. We consider their the-
oretical aspect and applications. Some integral representations of xkyl-
wave functions (k, l− const. > 0 ), and their inversion formulas are de-
rived. As an application of the theory, a singular Cauchy problem is for-
mulated and solved in terms of the Bessel function of the first kind and
Gauss hypergeometric function.

1. Introduction

The generalized analytical functions of complex variables appear as a natural
and rational generalization of analytical functions.
Picard in 1891 [11] noticed the connection between the theory of analytical
functions and elliptic system of equations in partial derivatives,{

a1ux +b1uy +a2υx +b2υy = A1u+A2υ ,
c1ux +d1uy + c2υx +d2υy = B1u+B2υ ,

(1)

where ai,bi,ci,di,Ai,Bi (i = 1,2) are the given functions of x and y. In this
connection, it is worth mentioning the work of Beltrami [1].
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For many decades, the idea of Picard remained dormant, but during the middle
of last century, researchers started to work on it. Bers and Gelbart [2, 3, 4]
investigated the functions f (z) = u+ iυ of z = x+ iy satisfying the following
elliptic system of equations{

σ1(x)ux = τ1(y)υy,
σ2(x)uy =−τ2(y)υx,

(2)

where σ1,σ2,τ1,τ2 are given positive functions of their arguments.
Let

Σ =

[
σ1τ1
σ2τ2

]
, Σ

′ =

[
1

σ1
τ1

1
σ2

τ2

]
.

Then, the function f (z) = u+ iv is the Σ-monogenic as the system (2) is valid.
They introduced the Σ-integral:

Ω =
∫

σ2udx− τ2υdy+ i
∫

υ

υ1
dx+

u
τ1

dy, (3)

and the Σ-derivative:

f (z) = σ1ux + i
υx

σ2
= τ1υy− i

uy

τ2
. (4)

Let us notice that the case σ1 = σ2 = 1, τ1 = τ2 = y−n (n = const.) was studied
by Weinstein [15, 16].

Vekua [13, 14], Polozij [12], Jahanshahi and Aliev [6] , Manjavidze and
Manjavidze [7] and others , have obtained important results in the generaliza-
tion of the theory of analytical functions of elliptic type and their applications.
Polozij [12] introduced the (p, q)–analytical functions, using the system:{

pux−quy−υy = 0,
qux + puy +υx = 0,

(5)

where p and q are the given real functions of x and y.
Later on the p–analytical and (p, q)–analytical functions found number of appli-
cations in different branches of the mathematics, mechanics etc.., for example,
axial symmetric theory of elasticity, solution of the boundary value problems of
the theory of rotating covers, in the theory of the filtration [9, 10].
In this paper, we introduce and study a new generalization of analytic functions.
We consider some theoretical aspects of the p-wave functions f (z) = u+ iυ as
the solutions of the following system of the hyperbolic type:{

pux = υy,
puy = υx,

(6)
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where p = xkyl (k and l are positive constants). Some integral representations
of p-wave functions and their inversion formulas are constructed.
The p-wave functions describe the processes of mechanics, hydromechanics,
the theory of plastication, the supersonic stream of gas and they are useful for
solving of the boundary-value problems of mathematical physics. The p-wave
functions with the characteristic p = xkyl are connected with Euler - Poisson -
Darboux equation with two degenerate lines.

2. Integral representations of the p-wave functions

Let us introduce the following differential operators

dφ

dz̄
=

1
2

(
∂φ(z)

∂x
− i

∂ φ̄(z)
∂y

)
=

ux−υy

2
+ i

υx−υy

2
, (7)

dpφ(z)
dz̄

=
pux−υy

2
+ i

υx− puy

2
.

Remark 2.1. Observe that the system (6) is equivalent to the following equa-
tion:

dpφ(z)
dz̄

= 0. (8)

For, p≡ 1, p-wave function is the simple wave function and is a solution of
the following equation:

dφ0(z)
dz̄

= 0. (9)

The general solution of the equation (9) has the form:

φ0(z) = f1(x− y)+ f2(x+ y)+ i( f2(x+ y)− f1(x− y)), (10)

where f1(z), f2(z) are arbitrary continuously differentiable functions.

Definition 2.2. The simply connected domain D in the complex plane z will be
called the axis – convex if for any point z = x+ iy ∈ D y > 0;

1. the boundary of the domain D contains the segment [a,b] of the real axis;

2. the segment connecting the points z1 = x1 + iy1, z2 = x2 + iy2 (∈ D) be-
longs to the domain D.

Note that the domain D can coincide with the upper half plane.
Now we state and prove the following theorems related to integral represen-

tations of the p-wave functions.
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Theorem 2.3. If φ0(z) = u0(x,y)+ iυ0(x,y) is an arbitrary wave function in D
and

υ0(x,y)|[a,b] = 0, (0≤ y < ∞), (11)

then the function

φ(z) = u(x,y)+ iυ(x,y) =
∫ x

0

[
u0(ξ ,y)x1−k + iυ0(ξ ,y)ξ

](
x2−ξ

2) k
2−1

dξ

(12)
will be xk-wave function (k > 0 is a const.) in D and satisfies the condition

Imφ(z)|[a,b] = υ(0,y) = 0. (13)

Proof. This theorem can be proved easily by the statement. Observe that the
functions u(x,y) and υ(x,y) satisfy the system (6) as p = xk.

Integral representation (12) establishes the one – to – one correspondence
between xk- wave functions and the wave functions in D as the imaginary parts
of functions at the real axis are zero.

Theorem 2.4. If φ(z) = u(x,y)+ iυ(x,y) is the xk-wave function, continuous in
the axis-convex region D∪ [a,b] and

υ |[a,b] = 0, (14)

then the function

φ̃(z) = ũ(x,y)+ iυ̃(x,y) =
∫ y

0

(
y1−lu(x,τ)+ iτυ(x,τ)

)(
y2− τ

2) l
2−1

dτ (15)

will be xkyl (k, l− const. > 0) wave function and continuous in D∪ [a,b] and

υ̃(x,y)|[a,b] = 0 (16)

Proof. By using the conditions for u(x,y) and υ(x,y)

xkux = υy,
xkuy = υx,

(17)

we directly verify the validity of the conditions:

xkyl ũx = υ̃y,
xkyl ũy = υ̃x

and (16).
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Let D be the domain in the first quadrant of the plane z = x+ iy, restricted
by segments [a,b] ∈ Ox, [c,d] ∈ Oy and some curves, which are monotone with
respect to x and y and such that any rectilinear segments retiring from any its
point and orthogonal to Ox and Oy, belong to D.

Theorem 2.5. If the function φ0(z) = u0(x,y)+ iυ0(x,y) is the wave function in
D and

υ0|[a,b] = 0, υ0|[c,d] = 0,

then the function

φ̃(z) = ũ(x,y)+ iυ̃(x,y) =
∫ y

0

(
y2−η

2) l
2−1

dη

∫ x

0

[
x1−ky1−lu0(ξ ,η) +

+ iξ ηυ0(ξ ,η)]
(
x2−ξ

2) k
2−1

dξ (18)

will be xkyl - wave function in D and at [a,b], [c,d] has continuous partial
derivatives with respect to y,x respectively, and

υ̃ |[a,b] = 0, υ̃ |[c,d] = 0. (19)

Proof. We have

xkyl−1
[

∂ ũ
∂x
− 1

xkyl
∂ υ̃

∂y

]
=
∫ x

0

∫ y

0

[
∂u0(ξ ,η)

∂ξ
− ∂υ0(ξ ,η)

∂η

]
×

×
(
x2−ξ

2) k
2−1 (

y2−η
2) l

2−1
ξ dξ dη ;

xk−1yl
[

∂ ũ
∂y
− 1

xkyl
∂ υ̃

∂x

]
=
∫ x

0

∫ y

0

[
∂u0(ξ ,η)

∂η
− ∂υ0(ξ ,η)

∂ξ

]
×

×
(
x2−ξ

2) k
2−1 (

y2−η
2) l

2−1
ηdξ dη .

Using the fact that φ0(z) is the wave function, we get that φ̃(z) is xkyl - wave
function.
Let ξ = xλ , η = yt in (18), then we obtain,

ũ(x,y) =
∫ 1

0

∫ 1

0
u0(xλ ,yt)

(
1−λ

2) k
2−1 (

1− t2) l
2−1

dλdt,
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υ̃(x,y) =
∫ 1

0

∫ 1

0
xkyl

λ tυ0(xλ ,yt)
(
1−λ

2) k
2−1 (

1− t2) l
2−1

dλdt,

taking into account the conditions of the theorem, we get (19) and that φ̃(z) has
continuous partial derivatives.

3. Inversion formulas for the representations of p-wave functions

Here, we derive some inversion formulas for the representations of p-wave func-
tions.

Theorem 3.1. Let φ(z) = u(x,y) + iυ(x,y) is xk-wave function in D and the
condition that υ(x,y)|[a,b] = 0, then function φ0(z) = u0(x,y) + iυ0(x,y) (see
(9)) is the wave function defined by equality:

u0(x,y)+ iυ0(x,y)=


µ

d
dx

∫ x
0

dm[u(ξ ,y)ξ k−1+iυ(ξ ,y)]
(dξ 2)

m
ξ dξ

(x2−ξ 2)
k
2−m

, k 6= 2m,

µx
dm[u(x,y)xk−1+iυ(x,y)]

(dx2)
m , k = 2m,

(20)

and υ(x,y)|[a,b] = 0. Here m =
[ k

2

]
, µ = 2

Γ(m− k
2+1)Γ( k

2)
.

Proof. The real and imaginary parts of the integral representation (12) are inte-
gral equations of Abel’ type. The solutions of these equations give (20).

Remark 3.2. Note that integral representation of xk-wave function (12) as
υ0(0,y) = 0 can be written in the following form:

φ(z) = u(x,y)+ iυ(x,y) =
∫ y+x

y−x
f2(t)

(
x1−k + i(t− y)

[
x2− (t− y)2] k

2−1
)

dt,

provided that u0(x,y) and y0(x,y) have the form (10).

Theorem 3.3. Let be ϕ̃(z) = ũ(x,y)+ iυ̃ (x,y) is xkyl-wave function in D and
the condition

υ̃(x,y)|[a,b] = 0,

then ϕ(z) = u(x,y)+ iυ(x,y) is the xk-wave function defined by equality:
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ϕ(z) = u(x,y)+ iυ(x,y)

=


2

Γ( l
2)Γ(m− l

2+1)

{
d
dy

∫ y
0

dm

(dτ2)
m

(
τ l−1ũ(x,τ) τdτ

(y2−τ2)
l
2−m

)
+i 1

y
d
dy

∫ y
0

dmυ̃(x,τ)
(dτ2)m

τdτ

(y2−τ2)
l
2−m

}
, l 6= 2n,m =

[ l
2

]
;

2
(n−1)!

{
y dn

(dy2)n

[
yl−1ũ(x,y)

]
+ i dnυ̃(x,y)

(dy2)n

}
, l = 2n,

(21)

and υ(x,y)|[a,b] = 0.

Proof. By virtue of (15), we have

ũ(x,y) = y1−l
∫ y

0
u(x,τ)(y2− τ

2)
l
2−1dτ, (22)

υ̃(x,y) =
∫ y

0
υ(x,τ)τ(y2− τ

2)
l
2−1dτ. (23)

Introducing notations,

L(x,y) = xkux−υy; L̃(x,y) = xkyl ũx− υ̃y,
M(x,y) = xkuy−υx, M̃(x,y) = xkyl ũy− υ̃x,

we can rewrite (17) in the following form:

L̃(x,y) = y
∫ y

0
L(x,τ)(y2− τ

2)
l
2−1dτ, (24)

M̃(x,y) =
∫ y

0
M(x,τ)τ(y2− τ

2)
l
2−1dτ. (25)

The equations (24) and (25) are Abel type integral equations. But L̃(x,y)=0,
M̃(x,y)=0, then L(x,y)=0, M(x,y)=0. Therefore ϕ(z) is xk-wave function.
The condition υ(x,y)|[a,b] = 0 can be verified directly.

Theorem 3.4. The solution of the integral equation (18) has the form:

1) u0(x,y)+ iυ0(x,y) =
4xy
m!n!

∂ m+n+2
(
xk−1yl−1ũ(x,y)

)
(∂x2)m+1 (∂y2)n+1 +

+i
4

m!n!
∂ m+n+2υ̃(x,y)

(∂x2)m+1 (∂y2)n+1 , (26)

for k
2 −1 = m, l

2 −1 = n.
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2) u0(x,y)+ iυ0(x,y) =
4

Γ
( k

2

)
Γ
( l

2

)
Γ
(
m+1− k

2

)
Γ
(
n+1− l

2

)×

×
{

∂ 2

∂x∂y

∫ x

0

∫ y

0

∂ m+n
(
ξ k−1η l−1ũ(ξ ,η

)
)

(∂ξ 2)m(∂η2)

ξ ηdξ dη

(x2ξ 2)
k
2−m(y2−η2)

l
2−n

+ (27)

+
i

xy
∂ 2

∂x∂y

∫ x

0

∫ y

0

∂ m+nυ̃(ξ ,η)

(∂ξ 2)m (∂η2)n
ξ ηdξ dη

(x2−ξ 2)
k
2−m (y2−η2)

l
2−n

}
,

for k
2 −1 6= m, l

2 −1 6= n.

Proof. It is sufficient to consider the integral equation:

∫ x

x0

∫ y

y0

ϕ(ξ ,η) [ω(x)−ω(ξ )]α [γ(y)− γ(η)]β dξ dη = ψ(x,y), (28)

where x0,y0 ∈ R ; x,y are independent variables; α,β > −1 are constants;
ω(x), γ(y) are given functions with the following properties:
for x0 < x ω(x)> ω(ξ ), ξ ∈ (x0,x);
for x0 > x ω(ξ )> ω(x), ξ ∈ (x,x0);
for y0 < y γ(y)> γ(η), η ∈ (y0,y);
for y0 > y γ(η)> γ(y), η ∈ (y,y0);
ψ(x,y) is the given, continuously differentiable function; ϕ(x,y) is an unknown
function.

If α,β are integers and α ≡ m,β ≡ n the solution of equation (28) has the
following form:

ϕ(x,y) =
ω ′(x)γ ′(y)

m!n!
∂ m+n+2ψ(x,y)

(∂ω(x))m+1 (∂γ(y))n+1 . (29)

When α,β are not integers, then the solution of equation (28) has the form

ϕ(x,y) =
1

Γ(α +1)Γ(β +1)Γ(k−α)Γ(α−β )
×

× ∂ 2

∂x∂y

∫ x

x0

∫ y

y0

∂ k+lψ(ξ ,η)

(∂ω(ξ ))k(∂γ(η))l
ω ′(ξ )γ ′(t)dξ dη

(ω(x)−ω(ξ ))α+1−k×
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× 1

(γ(y)− γ(η))β+1−l . (30)

Indeed, the formula (29) is evident. Let α,β are not integers, k = [α + 1],
l = [β + 1]. Let be put µ ≡ k− α , v = l − β (0 < µ < 1,0 < v < 1). By
differentiating both sides of (28) k times with respect to ω(x) and l times with
respect to γ(y), we have

∂ k+lψ(x,y)
(∂ω(x))k(∂γ(y))l =

=
Γ(α +1)Γ(β +1)

Γ(α− k+1)Γ(β − l +1)

∫ x

x0

∫ y

y0

φ(ξ ,η)dξ dη

(ω(x)−ω(ξ ))µ (γ(y)− γ(η))v ·

In the above expression, replace x by t and y by τ , and multiply by

ω ′(t)γ ′(t)dtdτ

(ω(x)−ω(t))1−µ (γ(y)− γ(τ))1−v .

Then, integrate with respect to t and τ to get,

∫ x

x0

∫ y

y0

{∫ t

x0

∫
τ

y0

ϕ(ξ ,η)dξ dη

(ω(t)−ω(ξ ))µ (γ(τ)− γ(η))v

}
×

× ω ′(t)γ ′(τ)dtdτ

(ω(x)−ω(t))1−µ (γ(y)− γ(τ))1−v =

=
Γ(α− k+1)Γ(β − l +1)

Γ(α +1)Γ(β +1)
×

×
∫ x

x0

∫ y

y0

∂ k+lψ(t,τ)

(∂ω(t))k (∂γ(τ))l ·
ω ′(t)γ ′(τ)dtdτ

(ω(x)−ω(t))1−µ (γ(y)− γ(τ))1−v .

Then transform the left part of equality,

∫ x

x0

∫ y

y0

ϕ(ξ ,η)dξ dη

∫ x

ξ

ω ′(t)dt

(ω(t)−ω(ξ ))µ (µ(x)−ω(t))1−µ
×

×
∫ y

η

γ ′(τ)dτ

(γ(τ)− γ(η))v (γ(y)− γ(τ))1−v =

=

∣∣∣∣r = ω(t)−ω(ξ )

ω(x)−ω(ξ )
, s =

γ(τ)− γ(η)

γ(y)− γ(η)

∣∣∣∣= ∫ x

x0

∫ y

y0

ϕ(ξ ,η)dξ dη×
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×
∫ 1

0

dr
rµ(1− r)1−µ

∫ 1

0

ds
sv(1− s)1−v =

= Γ(1+α− k)Γ(k−α)Γ(1+β − l)Γ(l−β )
∫ x

x0

∫ y

y0

ϕ(ξ ,η)dξ dη .

Let us note that by the help of formulas (18), (26) and (28), the one–to–
one correspondence between xkyl- wave functions and wave functions in D is
established as their imaginary parts on [a,b] and [c,d] are zero.

Corollary 3.5. Let k
2 − 1 is integer ( k

2 − 1 ≡ m), l
2 − 1 is not an integer. Intro-

ducing the notation,
[ l

2

]
≡ n we get the following inversion formula for (18):

u0(x,y)+ iυ0(x,y) =
2

m!Γ
( l

2

)
Γ
(
n+1− l

2

) {2x
∂

∂y

∫ y

0

∂ m+n+1

(∂x2)m+1 (∂ t2)n

(
xk−1η l−1ũ(x,η)

)
ηdη

(y2−η2)
l
2−n

+ i
2
y

∂

∂y

∫ y

0

∂ m+n+1 (υ̃(x,η))

(∂x2)m+1 (∂η2)n× (31)

× ηdη

(y2−η2)
l
2−n

}
.

Corollary 3.6. Let be k
2 − 1 is not integer, l

2 − 1 is integer ( l
2 − 1 ≡ n). Intro-

ducing notation,
[ k

2

]
≡ m we get the following inversion formula for (18):

u0(x,y)+ iυ0(x,y) =

=
2

n!Γ
( k

2

)
Γ
(
m+1− k

2

) {2y
∂

∂x

∫ x

0

∂ m+n+1
(
ξ k−1yl−1ũ(ξ ,y)

)
(∂ξ 2)m (∂y2)n+1 ×

× ξ dξ

(x2−ξ 2)
k
2−m

+ i
2
x

∂

∂x

∫ x

0

∂ m+n+1 (υ̃(ξ ,y))

(∂ξ 2)m (∂y2)n+1
ξ dξ

(x2−ξ 2)
k
2−m

}
. (32)

Theorem 3.7. (special integral representation of the xkyl-wave function) Let be
domain G is restricted by characteristics:
x−y = a, x+y = b, b > a≥ 0, and by segment [a,b] of Ox. Then the function

φ(z) = u(x,y)+ iυ(x,y) =
1√
xkyl

∫
∞

0

√
xrJ k−1

2
(rx)J l−1

2
(ry)A(r)

dr

r
k+l

2
−
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−i
√

xkyl
∫

∞

0

√
xrJ k+1

2
(rx)J l+1

2
(ry)A(r)

dr

r
k+l

2
(33)

is the xkyl- wave function in G with the condition: A(r) is restricted on every
finite interval and∫

∞

0
|A(r)| dr

r
k+l

2
< ∞, (r→ ∞); A(r) ∈C ((0,+∞)) . (34)

Proof. Follows from the definition of the xkyl- wave function, asymptotic for-
mulae for the Bessel function of the first kind, and Bessel functions differentia-
tion formulae [8].

4. Singular Cauchy’ problem

As an example we consider here a singular Cauchy problem.
In the domain G = {(x,y) : 0 < x < ∞,0 < y < x} find the xkyl-wave func-

tion
φ(z) = u(x,y)+ iυ(x,y), which satisfy the following conditions:

φ(z) ∈C(Ḡ),

φ(x) = f (x),x ∈ (0,+∞). (35)

Here, f (x) ∈ D(0,∞). Let be D(0,∞) is the set of the finitely differentiable
functions on (0,∞).

We seek the solution of the problem in the form of (33). It is easy to note
that (35) is valid. Using the second condition of (35) for the finding of function
A(r) ,we get equality

2
1−l

2

Γ
( l+1

2

) ∫ ∞

0
(rx)

1−k
2 J k−1

2
(rx)A(r)dr = f (x). (36)

But f (x) ∈ D(0,∞), and Hankel transform (36) (see [5 ] ) is an automor-
phism in the space of the basic functions. Thus we have

A(r) = 2
l−1

2 Γ

(
l +1

2

)∫
∞

0
(rξ )

k+1
2 J k−1

2
(rξ ) f (ξ )dξ . (37)

Substituting (37) into (33) we get,
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φ(z) = 2
l−1

2 Γ

(
l +1

2

)
×

×
[∫

∞

0
(rx)

1−k
2 J k−1

2
(ry)

1−l
2 J l−1

2
(ry)

(∫
∞

0
(rξ )

k+1
2 J k−1

2
(rξ ) f (ξ )dξ

)
dr−

− i
∫

∞

0
r−k−l(rx)

k+1
2 J k+1

2
(rx)(ry)

1+l
2 J l+1

2
(ry)×

×
(∫

∞

0
(rξ )

k+1
2 J k−1

2
(rξ ) f (ξ )dξ

)
dr
]
.

After some transformation and simplification, we get the solution of the singu-
lar Cauchy’ problem in the class of the xkyl- wave functions, involving Gauss
hypergeometric function [ 8 ]

φ(z) =
∫ x+y

x−y
f (ξ )W1(x,y,ξ )dξ + i

∫ x+y

x−y
f (ξ )W2(x,y,ξ )dξ , (38)

where

W1(x,y,ξ ) =
Γ
( l+1

2

)
√

πΓ
( l

2

)y1−l
(

ξ

x

) k
2 [

y2− (x−ξ )2] l
2−1×

× 2F1

(
1− k

2
,

k
2

;
l;
2

;
y2− (x−ξ )2

4xξ

)
,

W2(x,y,ξ ) =−
Γ
( l+1

2

)
(xξ )

k
2

2
√

πΓ
(
1+ l

2

) { k
2ξ

[
y2− (x2−ξ

2)
] l

2 × (39)

× 2F1

(
−k

2
,

k
2
+1;

l
2
+1;

y2− (x−ξ )2

4xξ

)]}
+

+
d

dξ

[[
y2− (x−ξ )2

) l
2
]

2F1

(
−k

2
,

k
2
+1;

l
2
+1;

y2− (x−ξ )2

4xξ

)]}
as k ≥ 0, l > 2.

Formula (37) gives the solution of the singular Cauchy’ problem in G with
the condition, that f (x) can be continued on all axis in such way that its contin-
uation belongs to class D(0,∞).
Note, that for (37) is valid and on weaker condition for f (x).
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