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ON SOME APPLICATIONS OF SUBORDINATION AND
SUPERORDINATION OF MULTIVALENT FUNCTIONS

INVOLVING THE EXTENDED FRACTIONAL
DIFFERINTEGRAL OPERATOR

ALI MUHAMMAD

In this paper, we apply fractional differintegral operator and study
various properties of differential subordination and superordination.

1. Introduction

Let H(E) denote the class of analytic functions in the open unit disc E = {z
| z∈C and |z|< 1} and let H[a, p] denote the subclass of the functions f ∈H(E)
of the form

f (z) = a+apzp +ap+1zp+1 + ..., (a ∈ C, p ∈ N= {1,2, ...}).

Also, let A(p) be the subclass of functions f ∈ H(E) of the form

f (z) = zp +
∞

∑
k=p+1

ak zk (p ∈ N), (1)

and set A≡A(1).
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If f and g are analytic in E, we say that f is subordinate to g, written f ≺ g
or f (z) ≺ g(z), if there exists a Schwarz function w in E with |w(0)| = 0 and
|w(z)|< 1, z ∈ E, such that f (z) = g(w(z)).

Suppose that h and k are two analytic functions in E, let

ϕ(r,s, t;z) : C3×E −→ C.

If h and ϕ(h(z),zh′(z),z2h′′(z);z) are univalent functions in E and if h satisfies
the second order superordination

k(z)≺ ϕ(h(z),zh′(z),z2h′′(z);z), (2)

then k is said to be a solution of the differential superordination (2). A function
q ∈ H(E) is called a subordinant to (2), if q(z) ≺ h(z) for all the functions h
satisfying (2).

A univalent subordinant q̃ that satisfies q(z)≺ q̃(z) for all of the subordinants
q of (2), is said to be the best subordinant.

Miller and Mocanu [6] obtained sufficient conditions on the functions k,q
and ϕ for which the following implications hold:

k(z)≺ ϕ(h(z),zh′(z),z2h′′(z);z) =⇒ q(z)≺ h(z).

Using these results, the authors in [1] considered certain classes of first-order
differential superordinations, see also [4], as well as superordination-preserving
integral operators [3]. Aouf et al. [1,2], obtained sufficient conditions for certain
normalized analytic functions f to satisfy

q1(z)≺
z f ′(z)
f (z)

≺ q2(z),

where q1 and q2 are given univalent normalized functions in E. Very recently,
Shanmugam et al. [12] obtained the such called sandwich results for certain
classes of analytic functions.

Definition 1.1. [8] The fractional integral of order λ > 0, is defined, for a func-
tion f , analytic in a simply-connected region of the complex plane containing
the origin, by

D−λ
z f (z) =

1
Γ(λ )

z∫
0

f (t)
(z− t)1−λ

dt, (3)

where the multiplicity of (z− t)λ−1 is removed by requiring log(z− t) to be real
when (z− t)> 0.
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Definition 1.2. [8] Under the hypothesis of Definition 1.1, the fractional deriva-
tive of f of order λ > 0 is defined by:

Dλ
z f (z) =

 1
Γ(1−λ )

d
dz

z∫
0

f (t)
(z−t)λ

dt, 0≤ λ < 1

dn

dzn Dλ−n
z f (z) n≤ λ < n+1; n ∈ N0 = {0,1,2, ...},

(4)

where the multiplicity of (z− t)λ−1 is removed as in Definition 1.1.

In [10], Patel and Mishra defined the extended fractional differintegrall op-
erator Ω

(λ ,p)
z : A(p) −→A(p) for a function f of the form (1.1) (with n = 1)

for a real number λ (−∞ < λ < p+1) by :

Ω
(λ ,p)
z f (z) = zp +

∞

∑
k=1

Γ(p+ k+1)Γ(p+1−λ )

Γ(p+1)Γ(p+1−λ )
ak+pzk+p

= zp
2F1(1, p+1; p+1−λ ;z)∗ f (z), (5)

(−∞ < λ < p+1, z ∈ E),

where 2F1 is the Gaussian hypergeometric function and (∗) represent the
Hadamard product (or convolution).

It is easily seen from (5), see [10], that

z(Ω(λ ,p)
z f (z))′= (p−λ )Ω

(λ+1,p)
z f (z)+λΩ

(λ ,p)
z f (z), (−∞< λ < p+1, z∈E).

(6)
We also note that

Ω
(0,p)
z f (z) = f (z), Ω

(1,p)
z f (z) =

z f ′(z)
p

,

and in general

Ω
(λ ,p)
z f (z) =

Γ(p+1−λ )

Γ(p+1)
zλ Dλ

z f (z) (−∞ < λ < p+1, z ∈ E), (7)

where Dλ
z f (z) is respectively, the fractional integral of f of order −λ when

−∞ < λ < 0 and the fractional derivative of f of order λ when 0≤ λ < p+1.
For integral value λ , (7) becomes

Ω
( j,p)
z f (z) =

(p− J)! f ( j)(z)
p!

( j ∈ N; J < p+1).
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and

Ω
(−m,p)
z f (z) =

p+m
zm

z∫
0

tm−1
Ω

(−m+1,p)
z f (t)dt m ∈ N

= F1,p( f )◦F2,p( f )◦F3,p ◦ ...◦Fm,p( f )(z)

= F1,p ∗
(

zp

1− z

)
∗F2,p ∗

(
zp

1− z

)
∗ ...∗Fm,p ∗

(
zp

1− z

)
∗ f (z)′

where Fµ,p is the familiar generalized Bernardi-Libra-Livingston operator and
◦ denotes the usual composition of functions.

The fractional differential operator Ω
(λ ,p)
z with 0 ≤ λ < 1 was investigated

by Srivastava and Aouf [13]. More recently, Srivastava and Mishra [14] ob-
tained several interesting properties and characteristics for certain subclasses
of p-valent analytic functions involving the differintegral operator Ω

(λ ,p)
z when

−∞ < λ < 1. The operator Ω
(λ ,1)
z = Ωλ

z was introduced by Owa and Srivas-
tava [9]. The interested reader are referred to the work done by research workers
[1,8,15].

2. Preliminaries

Definition 2.1. ([7]) Let Q be the set of all functions f that are analytic and
injective on E\U( f ), where

U( f ) =
{

ζ ∈ ∂E : lim
z→ζ

f (z) = ∞

}
,

and are such that f ′(ζ ) 6= 0 for ζ ∈ ∂E\U( f ).

To establish our main results we need the following Lemmas.

Lemma 2.2. (Miller and Mocanu [6]) Let q be univalent in the unit disc E, and
let θ and ϕ be analytic in a domain D containing q(E), with ϕ(w) 6= 0 when
w ∈ q(E). Set Q(z) = zq′(z)ϕ(q(z)), h(z) = θ(q(z)+Q(z) and suppose that

(i) Q is a starlike function in E,
(ii) Re zh′(z)

Q(z) > 0, z ∈ E.
If p is analytic in E with p(0) = q(0), p(E)⊆ D and

θ(p(z))+ zp′(z)ϕ(p(z)≺ θ(q(z))+ zq′(z)ϕ(q(z), (8)

then p(z)≺ q(z), and q is the best dominant of (8).
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Lemma 2.3. (Shanmugam et al. [12]) Let µ, γ ∈ C with γ 6= 0, and let q be a
convex function in E with

Re
(

1+
zq′′(z)
q′(z)

)
> max

{
0;−Re

µ

γ

}
, z ∈ E.

If p is analytic in E and

µ p(z)+ γzp′(z)≺ µq(z)+ γzq′(z), (9)

then p(z)≺ q(z), and q is the best dominant of (9).

Lemma 2.4. (Bulboacă [5]) Let q be a univalent function in the unit disc E, and
let θ and ϕ be analytic in a domain D containing q(E). Suppose that

(i) Re θ ′(q(z))
ϕ(q(z) > 0 for z ∈ E,

(ii) h(z) = zq′(z)ϕ(q(z)) is starlike in E.
If p ∈ H[q(0),1]∩Q with p(E) ⊆ D, θ(p(z)+ zp′(z))ϕ(p(z)) is univalent

in E, and

θ(q(z))+ zq′(z)ϕ(q(z))≺ θ(p(z))+ zp′(z)ϕ(p(z)), (10)

then q(z)≺ p(z), and q is the best subordinant of (10).

Note that this result generalize a similar one obtained in [4].

Lemma 2.5. (Miller and Mocanu [7]) Let q be convex in E and let γ ∈ C, with
Reγ > 0. If p ∈ H[q(0),1]∩Q and p(z)+ γzp′(z) is univalent in E, then

q(z)+ γzq′(z)≺ p(z)+ γzp′(z), (11)

implies q(z)≺ p(z), and q is the best subordinant of (11).

Lemma 2.6. (Royster [11]) The function q(z) = 1
(1−z)2ab is univalent in E if and

only if |2ab−1| ≤ 1 or |2ab+1| ≤ 1.

3. Main Results

Theorem 3.1. Let q be univalent in E, with q(0) = 1, and suppose that

Re
(

1+
zq′′(z)
q′(z)

)
> max

{
0; − p(p−λ )Re

1
α

}
, z ∈ E, (12)

where −∞ < λ < p, α ∈ C∗ = C\{0}, z ∈ E and p ∈ N.



64 ALI MUHAMMAD

If f ∈ A(p) satisfies the subordination

(p+α)

p

(
zp

Ω
(λ ,p)
z f (z)

)
− α

p
zpΩ

(λ+1,p)
z f (z)(

Ω
(λ ,p)
z f (z)

)2 ≺ q(z)+
α

p(p−λ )
zq′(z), (13)

then (
zp

Ω
(λ ,p)
z f (z)

)
≺ q(z),

and q is the best dominant of (13).

Proof. Set (
zp

Ω
(λ ,p)
z f (z)

)
= h(z),

where h(z) is analytic in E with h(0) = 1.
A simple computation along with identity (6) shows that

(p+α)

p

(
zp

Ω
(λ ,p)
z f (z)

)
− α

p
zpΩ

(λ+1,p)
z f (z)(

Ω
(λ ,p)
z f (z)

)2 = h(z)+
α

p(p−λ )
zh′(z),

hence the subordination (13) is equivalent to

h(z)+
α

p(p−λ )
zh′(z)≺ q(z)+

α

p(p−λ )
zq′(z).

Combining this last relation together with Lemma 2.3 for the special case γ =
α

p(p−λ ) and µ = 1, we obtain our result.

Taking q(z) = 1+Az
1+Bz in Theorem 3.1, where −1 ≤ B < A ≤ 1, the condition

(12) reduces to

Re
1−Bz
1+Bz

> max
{

0; − p(p−λ )Re
1
α

}
, z ∈ E. (14)

It is easy to verify that the function ϕ(ζ ) = (1−ζ )
(1+ζ )

, |ζ |< B, is convex in E, and

since ϕ(ζ ) = ϕ(ζ ) for all |ζ | < |B| , it follows that ϕ(E) is a convex domain
symmetric with respect to the real axis, hence

inf
{

Re
1−Bz
1+Bz

: z ∈ E
}
=

1−|B|
1+ |B|

> 0. (15)

Then, the inequality (14) is equivalent to

p(p−λ )Re
1
α
≥ |B|−1
|B|+1

,

hence we have the following result.
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Corollary 3.2. Let−∞ < λ < p, p ∈ N, α ∈ C∗ and − 1≤ B < A≤ 1 with

max
{

0; − p(p−λ )Re
1
α

}
≤ 1−|B|

1+ |B|
.

If f ∈ A(p), and

(p+α)

p

(
zp

Ω
(λ ,p)
z f (z)

)
− α

p
zpΩ

(λ+1,p)
z f (z)(

Ω
(λ ,p)
z f (z)

)2 ≺
1+Az
1+Bz

+
α

p(p−λ )

(A−B)z
(1+Bz)2 ,

(16)
then (

zp

Ω
(λ ,p)
z f (z)

)
≺ 1+Az

1+Bz
,

and 1+Az
1+Bz is the best dominant of (16).

Example 3.3. For p = 1, A = 1 and B =−1. Let −∞ < λ < 1 and α ∈C∗ with

(1−λ )Re
1
α
≥ 0

If f ∈ A, and

(1+α)

(
z

Ω
(λ ,1)
z f (z)

)
− α

p
zΩ

(λ+1,1)
z f (z)(

Ω
(λ ,1)
z f (z)

)2 ≺
1+ z
1− z

+
α

(1−λ )

2z
(1− z)2 , (17)

then (
z

Ω
(λ ,1)
z f (z)

)
≺ 1+ z

1− z
,

and 1+z
1−z is the best dominant of (17).

Theorem 3.4. Let q be univalent in E, with q(0) = 1 and q(z) 6= 0 for all z ∈ E.
Let γ , µ ∈ C∗ and v, η ∈ C, with v+η 6= 0. Let f ∈ A(p) and suppose that f
and q satisfy the following conditions:

(v+η)zp

v
(

Ω
(λ+1,p)
z f (z)

)
+η

(
Ω

(λ ,p)
z f (z)

) 6= 0, −∞ < λ < p, p ∈ N, z ∈ E, (18)

and

Re
(

1+
zq′′(z)
q′(z)

− zq′(z)
q(z)

)
> 0, z ∈ E. (19)
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If

1+ γµ

p−
vz(
(

Ω
(λ+1,p)
z f (z)

)′
+ηz

(
Ω

(λ ,p)
z f (z)

)′
v
(

Ω
(λ+1,p)
z f (z)

)
+η

(
Ω

(λ ,p)
z f (z)

)
≺ 1+ γ

zq′(z)
q(z)

, (20)

then  (v+η)zp

v
(

Ω
(λ+1,p)
z f (z)

)
+η

(
Ω

(λ ,p)
z f (z)

)
µ

≺ q(z),

and q is the best dominant of (20). The power is the principal one.

Proof. We begin by setting (v+η)zp

v
(

Ω
(λ+1,p)
z f (z)

)
+η

(
Ω

(λ ,p)
z f (z)

)
µ

= h(z), z ∈ E, (21)

where h(z) is analytic in E with h(0) = 1. Differentiating Equation (21) loga-
rithmically with respect to z, we have

µ

p−
vz(
(

Ω
(λ+1,p)
z f (z)

)′
+ηz

(
Ω

(λ ,p)
z f (z)

)′
v
(

Ω
(λ+1,p)
z f (z)

)
+η

(
Ω

(λ ,p)
z f (z)

)
=

zh′(z)
h(z)

.

To prove our result we use Lemma 2.2. Consider in this Lemma

θ(w) = 1 and ϕ(w) =
γ

w
,

then θ is analytic in C and ϕ(w) 6= 0 is analytic in C∗. Also, if we let

Q(z) = zq′(z)ϕ(q(z)) = γ
zq′(z)
q(z)

,

and

g(z) = θ(q(z))+Q(z) = 1+ γ
zq′(z)
q(z)

,

then, since Q(0) = 0 and Q′(0) 6= 0, the assumption (19) would yield that Q is
a starlike function in E. From (19), we have

Re
zg′(z)
Q(z)

= Re
(

1+
zq′′(z)
q′(z)

− zq′(z)
q(z)

)
> 0, z ∈ E,

and by using Lemma 2.2, we deduce that the subordination (20) implies that
h(z)≺ q(z), and the function q is the best dominant of (20).
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In particular, v = 0, η = γ = 1 and q(z) = 1+Az
1+Bz in the above Theorem 3.4, it

is easy to see that the assumption (19) holds whenever −1≤ A < B≤ 1, which
leads to the next result:

Corollary 3.5. Let −1 ≤ A < B ≤ 1 and µ ∈ C∗. Let f ∈ A(p) and suppose
that zp

Ω
(λ ,p)
z f (z)

6= 0, z ∈ E.

If

1+µ

p−
z
(

Ω
(λ ,p)
z f (z)

)′(
Ω

(λ ,p)
z f (z)

)
≺ 1+

(A−B)z
(1+Az)(1+Bz)

, (22)

then (
zp

Ω
(λ ,p)
z f (z)

)µ

≺ 1+Az
1+Bz

,

and 1+Az
1+Bz is the best dominant of (22). The power is the principal one.

Putting v= 0, η = p= 1,λ = 0, γ = 1
ab , a, b∈C∗, µ = a, and q(z) = 1

(1−z)2ab

in Theorem 3.4, then combining this together with Lemma 2.6, we have the next
result.

Corollary 3.6. Let a, b∈C∗ such that |2ab−1| ≤ 1 or |2ab+1| ≤ 1. Let f ∈A
and let z

f (z) 6= 0 for all z ∈ E. If

1+
1
b

(
1− z f ′(z)

f (z)

)
≺ 1+ z

1− z
,

then (
z

f (z)

)a

≺ 1
(1− z)2ab , (23)

and 1
(1−z)2ab is the best dominant of (23). The power is the principal one.

Putting v = 0, η = γ = p = 1, λ = 0, and q(z) = (1+Bz)
µ(A−B)

B , −1≤ B <
A≤ 1, B 6= 0 in Theorem 3.4, and using Lemma 2.6, we have the next result.

Corollary 3.7. Let −1 ≤ B < A ≤ 1 with B 6= 0, and suppose that
∣∣∣ µ(A−B)

B−1

∣∣∣ ≤ 1

or
∣∣∣ µ(A−B)

B+1

∣∣∣≤ 1. Let f ∈ A such that z
f (z) 6= 0 for all z ∈ E, and let µ ∈ C∗. If

1+µ

(
1− z f ′(z)

f (z)

)
≺ 1+[B+µ(A−B)]z

1+Bz
, (24)
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then (
z

f (z)

)µ

≺ (1+Bz)
µ(A−B)

B ,

and (1+Bz)
µ(A−B)

B is the best dominant of (24). Here the power is the principal
one.

By taking v = 0, η = γ = p = 1, λ = 0, γ = eiλ

abcosλ
, a, b ∈ C∗, |λ | < π

2 ,

µ = a and q(z) = 1
(1−z)2abcosλe−iλ in Theorem 3.4, we obtain the following result.

Corollary 3.8. Let a, b∈C∗ and |λ |< π

2 , and suppose that
∣∣abcosλe−iλ −1

∣∣≤
1 or

∣∣abcosλe−iλ +1
∣∣≤ 1. Let f ∈ A such that z

f (z) 6= 0 for all z ∈ E. If

1+
eiλ

bcosλ

(
1− z f ′(z)

f (z)

)
≺ 1+ z

1− z
, (25)

then (
z

f (z)

)a

≺ 1
(1− z)2abcosλe−iλ ,

and 1
(1−z)2abcosλe−iλ is the best dominant of (25). The power is the principal one.

Theorem 3.9. Let q be univalent in E with q(0) = 1, let µ, γ ∈ C∗ and let δ ,
Ω, v, η ∈ C with v+η 6= 0. Let f ∈ A(p) and suppose that f and q satisfy the
next two conditions:

(v+η)zp

v
(

Ω
(λ+1,p)
z f (z)

)
+η

(
Ω

(λ ,p)
z f (z)

) 6= 0, z ∈ E, (26)

and

Re
(

1+
zq′′(z)
q′(z)

)
> max

{
0;−Re

δ

γ

}
, z ∈ E. (27)

If

ψ(z)≡

 (v+η)zp

v
(

Ω
(λ+1,p)
z f (z)

)
+η

(
Ω

(λ ,p)
z f (z)

)
µ

(28)

·

δ + γµ

p−
vz(
(

Ω
(λ+1,p)
z f (z)

)′
+ηz

(
Ω

(λ ,p)
z f (z)

)′
v
(

Ω
(λ+1,p)
z f (z)

)
+η

(
Ω

(λ ,p)
z f (z)

)

+Ω,

and
ψ(z)≺ δq(z)+ γzq′(z)+Ω, (29)
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then  (v+η)zp

v
(

Ω
(λ+1,p)
z f (z)

)
+η

(
Ω

(λ ,p)
z f (z)

)
µ

≺ q(z),

and q is the best dominant of (29). All the powers are the principal ones.

Proof. We begin by setting (v+η)zp

v
(

Ω
(λ+1,p)
z f (z)

)
+η

(
Ω

(λ ,p)
z f (z)

)
µ

= h(z). (30)

Then h(z) is analytic in E with h(0) = 1. Logarithmic differentiating of (30)
yields

µ

p−
vz(
(

Ω
(λ+1,p)
z f (z)

)′
+ηz

(
Ω

(λ ,p)
z f (z)

)′
v
(

Ω
(λ+1,p)
z f (z)

)
+η

(
Ω

(λ ,p)
z f (z)

)
=

zh′(z)
h(z)

,

and hence

µh(z)

p−
vz(
(

Ω
(λ+1,p)
z f (z)

)′
+ηz

(
Ω

(λ ,p)
z f (z)

)′
v
(

Ω
(λ+1,p)
z f (z)

)
+η

(
Ω

(λ ,p)
z f (z)

)
= zh′(z).

Let us consider the functions:

θ(w) = δw+Ω, ϕ(w) = γ, w ∈ C,
Q(z) = zq′(z)ϕ(q(z) = γzq′(z), z ∈ E,

and
g(z) = θ(q(z)+Q(z) = δq(z)+ γzq′(z)+Ω, z ∈ E.

From the assumption (27) we see that Q is starlike in E and, that

Re
zg′(z)
Q(z)

= Re
(

δ

γ
+1+

zq′′(z)
q′(z)

)
> 0, z ∈ E,

thus, by applying Lemma 2.2 this completes the proof.

Taking q(z) = (1+Az)
(1+Bz) in Theorem 3.9, where−1≤ B < A≤ 1 and according

to (15), the condition (27) becomes

max
{

0;−Re
δ

γ

}
≤ 1−|B|

1+ |B|
.

Hence, for the special case v = 1 = γ, η = 0, we have the following result:
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Corollary 3.10. Let −1≤ B < A≤ 1 and let δ ∈ C with

max{0;−Reδ} ≤ 1−|B|
1+ |B|

.

Let f ∈ A(p) and suppose that

zp

Ω
(λ+1,p)
z f (z)

6= 0, z ∈ E, −∞ < λ < p, p ∈ N,

and let µ ∈ C∗. If[
zp

Ω
(λ+1,p)
z f (z)

]µ [
δ +µ

(
p− z(Ω(λ ,p)

z f (z))′

Ω
(λ ,p)
z f (z)

)]
+Ω (31)

≺ δ
1+Az
1+Bz

+Ω+
z(A−B)
(1+Bz)2 ,

then (
zp

Ω
(λ+1,p)
z f (z)

)µ

≺ 1+Az
1+Bz

,

and 1+Az
1+Bz is the best dominant of (31). All the powers are the principal ones.

Taking v = 0, η = γ = p = 1, λ = 0 and q(z) = 1+z
1−z in Theorem 3.9, we

obtain the next result.

Corollary 3.11. Let f ∈ A such that z
f (z) 6= 0 for all z ∈ E, and let µ ∈ C∗. If[

z
f (z)

]µ [
δ +µ

(
1− z f ′(z)

f (z)

)]
+Ω≺ δ

1+ z
1− z

+Ω+
2z

(1− z)2 , (32)

then [
z

f (z)

]µ

≺ 1+ z
1− z

,

and 1+z
1−z is the best dominant of (32). All the powers are the principal ones.

4. Superordination and Sandwich results

Theorem 4.1. Let q be convex in E with q(0) = 1, −∞ < λ < p, p ∈ N. Let
α ∈ C∗ with (p−λ )Reα > 0. Let f ∈ A(p) and suppose that

zp

Ω
(λ ,p)
z f (z)

∈ H [q(0),1]∩Q.
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If the function

(p+α)

p

(
zp

Ω
(λ ,p)
z f (z)

)
− α

p
zpΩ

(λ+1,p)
z f (z)(

Ω
(λ ,p)
z f (z)

)2

is univalent in the unit disc E, and

q(z)+
α

p(p−λ )
zq′(z)≺ (p+α)

p

(
zp

Ω
(λ ,p)
z f (z)

)
− α

p
zpΩ

(λ+1,p)
z f (z)(

Ω
(λ ,p)
z f (z)

)2 , (33)

then

q(z)≺

(
zp

Ω
(λ ,p)
z f (z)

)
,

and q is the best subordinant of (33).

Proof. Set (
zp

Ω
(λ ,p)
z f (z)

)
= h(z), z ∈ E.

Then h(z) is analytic in E with h(0) = 1.Taking logarithmic differentiation with
respect z, we have

p− z

(
(Ω

(λ ,p)
z f (z))′

Ω
(λ ,p)
z f (z)

)
=

zh′(z)
h(z)

. (34)

A simple computation together with (6) show that

h(z)+
α

p(p−λ )
zh′(z) =

(p+α)

p

(
zp

Ω
(λ ,p)
z f (z)

)
− α

p
zpΩ

(λ+1,p)
z f (z)(

Ω
(λ ,p)
z f (z)

)2 ,

and now, by using Lemma 2.5, we obtain the desired result.

Taking q(z) = 1+Az
1+Bz in Theorem 4.1, where −1≤ B < A≤ 1, we obtain the

next result.

Corollary 4.2. Let q be convex in E with q(0) = 1, let α ∈ C∗ with (p−
λ )Reα > 0. Let f ∈ A(p) suppose that zp

Ω
(λ ,p)
z f (z)

∈ H [q(0),1]∩Q. If the func-

tion
(p+α)

p

(
zp

Ω
(λ ,p)
z f (z)

)
− α

p
zpΩ

(λ+1,p)
z f (z)(

Ω
(λ ,p)
z f (z)

)2
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is univalent in the unit disc E, and

1+Az
1+Bz

+
α(A−B)z

p(p−λ )(1+Bz)2 ≺
(p+α)

p

(
zp

Ω
(λ ,p)
z f (z)

)
− α

p
zpΩ

(λ+1,p)
z f (z)(

Ω
(λ ,p)
z f (z)

)2 ,

(35)
then

1+Az
1+Bz

≺

(
zp

Ω
(λ ,p)
z f (z)

)
,

and 1+Az
1+Bz is the best subordinant of (35), where −1≤ B < A≤ 1.

Using the same techniques as in Theorem 3.9, and then applying Lemma
2.4, we have the following theorem.

Theorem 4.3. Let q be convex in E with q(0) = 1, let µ, γ ∈C∗, and let δ , Ω, v,
η ∈ C with v+η 6= 0 and Re δ

γ
> 0. Let f ∈ A(p) and suppose that f satisfies

the following conditions:

(v+η)zp

v
(

Ω
(λ+1,p)
z f (z)

)
+η

(
Ω

(λ ,p)
z f (z)

) 6= 0, −∞ < λ < p, p ∈ N, z ∈ E,

and  (v+η)zp

v
(

Ω
(λ+1,p)
z f (z)

)
+η

(
Ω

(λ ,p)
z f (z)

)
µ

∈ H[q(0),1]∩Q.

If the function ψ given by equation (28) is univalent in E, and

δq(z)+ γzq′(z)+Ω≺ ψ(z), (36)

then

q(z)≺

 (v+η)zp

v
(

Ω
(λ+1,p)
z f (z)

)
+η

(
Ω

(λ ,p)
z f (z)

)
µ

,

and q is the best subordinate of (36) (all powers are the principal ones).

Note that by combining Theorem 3.1 with Theorem 4.1 and Theorem 3.9
with Theorem 4.3, we have, respectively, the following two sandwich theorems:

Theorem 4.4. Let q1 and q2 be two convex functions in E with q1(0) = q2(0) =
1, let α ∈ C∗ with (p−λ )Reα > 0, −∞ < λ < p, p ∈ N. Let f ∈ A(p) and
suppose that zp

Ω
(λ ,p)
z f (z)

∈ H[q(0),1]∩Q. If the function

(p+α)

p

(
zp

Ω
(λ ,p)
z f (z)

)
− α

p
zpΩ

(λ+1,p)
z f (z)(

Ω
(λ ,p)
z f (z)

)2
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is univalent in the unit disc E, and

q1(z)+
α

p(p−λ )
zq′1(z)≺

(p+α)

p

(
zp

Ω
(λ ,p)
z f (z)

)
− α

p
zpΩ

(λ+1,p)
z f (z)(

Ω
(λ ,p)
z f (z)

)2

≺ q2(z)+
α

p(p−λ )
zq′2(z), (37)

then

q1(z)≺

(
zp

Ω
(λ ,p)
z f (z)

)
≺ q2(z),

and q1 and q2 are, respectively, the best subordinate and the best dominant of
(37).

Theorem 4.5. Let q1 and q2 be two convex functions in E with q1(0)= q2(0)= 1
−∞ < λ < p, p ∈ N, let µ, γ ∈ C∗, and let δ , Ω,v, η ∈ C with v+η 6= 0 and
Re δ

γ
> 0. Let f ∈ A(p) satisfy the following conditions: (v+η)zp

v
(

Ω
(λ+1,p)
z f (z)

)
+η

(
Ω

(λ ,p)
z f (z)

)
 6= 0, z ∈ E,

and  (v+η)zp

v
(

Ω
(λ+1,p)
z f (z)

)
+η

(
Ω

(λ ,p)
z f (z)

)
µ

∈ H[q(0),1]∩Q.

If the function ψ given by (28) is univalent in E, and

δq1(z)+ γzq′1(z)+Ω≺ ψ(z)≺ δq2(z)+ γzq′2(z)+Ω, (38)

then

q1(z)≺

 (v+η)zp

v
(

Ω
(λ+1,p)
z f (z)

)
+η

(
Ω

(λ ,p)
z f (z)

)
µ

≺ q2(z),

and q1 and q2 are, respectively, the best subordinate and the best dominant of
(38) (all the powers are the principal ones).
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