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A STUDY ON CERTAIN CLASS OF HARMONIC FUNCTIONS
OF COMPLEX ORDER ASSOCIATED WITH CONVOLUTION

M. K. AOUF - A. O. MOSTAFA - A. A. SHAMANDY - A. K. WAGDY

In this paper, we introduce a new class of harmonic functions of com-
plex order associated with convolution. We also derive the coefficient in-
equality, distortion theorem, extreme points, convolution conditions and
convex combination for this class.

1. Introduction

A continuous complex-valued function f = u+ iv defined in a simply connected
complex domain D is said to be harmonic in D if both «# and v are real harmonic
in D. Let

f=h+g
be defined in any simply connected domain, where /& and g are analytic in D.
A necessary and sufficient condition for f to be locally univalent and sense-
preserving in D is that

W (2)] > |¢'(2)

Let Sy denote the class of functions of the form:

, 2€ D (see [2]). (1)

f=h+g
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which are harmonic univalent and sense-preserving in the open unit disc U =
{z:2€C,|z| < 1}, where

h(z) =2+ ) and", g(z) = Y bad", b1] <1, )
n=2 n=1
that, is that
f@)=z+Y ad"+ Y buz". 3)
n=2 n=1

Clunie and Shell-Small [2] investigated the class Sy as well as its geometric
subclasses and obtained some coefficient bounds.
For f(z) € Sy of the form (3) and F(z) given by

F(z)=z+) A"+ ) B.Z", 4)
n=2 n=1

the convolution f* F of the functions f and F is defined by

(f*F)(2) =z+ Y apAn2" + ) buBuz". 5)

n=2 n=1
For0<B<1,0<A<1beC =C\{0}, ol < 1,2 = fj (e=re?), 0 <
r<1,0<6<2rand f'(z) = aa—ef(z), let Cy(F,b,A, ) be the subclass of Sy

consisting of functions f(z) and F(z) of the form (3) and (4) respectively, and
satisfying the analytic criterion:
‘ 1

[ 2(f*F)(2)
blZ[(1-A)z+A(f*F

RN ©

or, equivalently,

/
%{Z, [(l—i({z*f)),((;)*F)(Z)]} >1-Blb|. ™)
Let Sy denote the class of functions of the form:
f=n+g, (8)
where _ .
h(z) =z~ Zzlanlz”, g(z) = Zl |ba| 2", |b1] < 1. 9)
Let ) :

Cﬁ(F,b,l,B) = CH(F,b,)L,ﬁ) ﬂgH.
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We note that:

(i) Cxg(F,1—7v,A,1) = Tu(F;A,y) (0 <y < 1) (see Murugusundaramoorthy
[5D);

(it) For F(z) = 1= + (1%2), Cy(F,b,1,B) = HS*(b,B) (see Janteng [4]);

—Z
(iii) For F(z) = 1~ + (%), Cg(F,1—a,1,1) = Sy(a) (0 < ot < 1) (see Ja-
hangiri [3]).

Also we note that:
(i) For F(z) = 1% + (%), Cg(F.b, A, B) = Cg(b, A, B)

B < |1 zf'(z) B ,
‘{f(Z)ESH"b[z’[(l—Msz(z)] 1H<ﬁ}’
(i) Cq(F, (1 — a)cos e A, 1) = Cx(F, L, 9, )

2(f*F)(z)
7101 —7L>z+7t(f*F)(Z)]} g ““’S"’}’

:{f(z)eSH:E){{ei‘P

where || < Zand0 < a < 1;
(i#f) Cg(z— X on(@)2"+ X on(@)2",b,4,B) = Cql0a:6,4, )

<B},

LB T 41 (- 1).. T+, (0= 1)
Oy (al) - — » )
(n—1)! [mr_IOF(am)] I(Bi+Bi(n—1))...I(By+B;(n—1))
(10)
ay,Aj,...,0y,Apand B1, By, ..., By, By (p,q € N) be positive and real parameters,
1+ iB i— flA ;>0 and W/ [oy] f(z) is the Wright generalized operator on

j=1 j=
harmonic functions (see Murugusundaramoorthy and Vijaya [6]), which is a

generalization of many other linear operators considered earlier;

1

Z(WY [ou] f(2)) 1
Z[(1=2)z+AW) [ou] f(2)]

:{f(Z)GSHI b

where o, (o) is defined by

(V) Cale— ¥ T(@)e"+ X (o), 4, B) = CH (@i, 2. B)

|1 [ 2(Hys(0u,Br)f(2)
Z[(

b [ Z[(1-A)z+AHy (ou, Br) f(2)] _1} ‘ - ﬁ}’
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where I, () is defined by

Fn(Otl) =

(@i >0,i=1,..,¢:8;>0,j=1,....;55g <s+1,q,s € No =NU{0}), (11)
and the operator H, (i, B1) is the modified Dziok-Srivastava operator of the

harmonic function (see [1]).

In this paper we obtain the coefficient inequality, distortion theorem, extreme
points, convolution conditions and convex combination for functions of the class
Cﬁ(F,b,)L,ﬁ).

2. Main results

Unless otherwise mentioned, we assume throughout this paper that 0 < 8 < 1,
0<SA<SLbLeCH |b|<1,7=2 (z=re®),0<r<1,0<0<2m f'(2) =
f—ef(z) and z € U.

In the following theorem, we obtain the coefficient inequality for the class

CH(F7b72‘7ﬁ)'

Theorem 2.1. Let f = h+g, where h and g are given by (2). Furthermore, let

o [ A (1= B[b])]|Ax v [+ A (1B [b])]|Bn]
n; Bb) !an!+n; Bl bl <1, (12)

then f is sense-preserving, harmonic univalent in U and f(z) € Cy(F,b, A, B).

Proof. Let z1 # 22, then

>1—
h(zi)—h(z) | — ‘h(zl)—h(m)
):, by (1’11 —ZS) Y n|b,|
— 1 n= >1--—=L_
(z1—22) + Zan( —25) 1—)_:2”\%‘
< n+A(1— n
£ A gl
Z 1_ n=1 b
1§ A,
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This proves that f is univalent. We find that f is sense-preserving in U, because

‘h’(z)} >1— Zn\an\ 7" > 1— Zn]an]

[n—2A (1B b)) |Ax] o [n+A (1= B[b])]|B,]

=) ﬁlbl '"22 Bl
Z

2
st 13 bl =l

[Bn|

Now we show that f(z) € Cy(F,b,A, ). We only need to show that if (12) holds
then the condition (7) is satisfied. Since R(w) > 0 if and only if [ — 3 +w| >
|14 0 —w/, it suffices to show that

[(14+B b)) (Z[(1=2) 24+ A(f *F)(2)))
+[2(f+F)(2) =2 [(1 = A) 2+ A(f +F) ()] |
—|(1=B b)) (Z'[(1=A)z+A(f *F)(2)])
—[2(f*F)(2) =2 [(1=2A) 2+ A(f* F)(2)]]| > 0.

Substituting for (f * F)(z) and z(f * F)'(z), we obtain

[(L+B1B]) (£ [(1 =) 2+ A(f *F)(2)])
+[z(f*F) (Z)* [( —A)z+A(f*F)(2)]]
—[(1=BIb) (¢ [(1 =) 2+ A(f = F)(2)])
—[a(f*F) () -7 [( —A)z+A(f*F)(2)]]

oo

— (BB 2+ Y (14 AB b)) ands — ¥ (n— 2B |bl) buB,2
n=2

n=1

(=)

—|(1=Bb)z=Y (n+AB[b] —21)anAn" + Y (n—AB|b|+22) byB,Z"
n=2 n=1

oo (=

> (1+B b)) |zl = X (n+AB|b]) lanAnl [2]" =} (n—ABb]) [baBul |2|"

n=2 n=1

oo

—(1=Blb)lzl = Y (n+2AB[b] —22) |anAn| |2|"

n=2

- Z (n—AB|b|+27) |b,B,] 2"
n=1
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—2B 16|~ Y 20n— A (1~ B 5] lanAa| !

n=2

Y 2t A (1= B 1b])] (BB o
n=1

oo

> [n—A(1—=P0|b|)]l|a,A, n+A(1—B1|bD)]|b,B,
>2ﬁ|b{1—z[ (Bl _ k(B bt

n=2

(13)
This last expression is non-negative by (12), which completes the proof of the

Theorem.
The harmonic univalent functions

e B1b) \
F@=24 X G a = Bl

- Bl
LA —ppE e 9

where Z 1X| + Z |Y,| = 1, show that the coefficient bound given by (12) is

sharp. ThlS is because

Bl 5 RO =BIIB

—_

,,Z o al+ X g

A= BB B1b)

-L Ao A (BT
= [0 A (1- B b)) B B1b)

L B1b) A (Bl "

Z|X|+ZIY|—1
n=2 n=1

O]

Now, we need to prove that the condition (12) is also necessary for functions

of the form (8) to be in the class Cg(F,b,A, ).
Theorem 2.2. Let f = h+g, where h and g are given by (9), then f(z) €
Cz(F,b,A,B) if and only if
- —Bb])]|An] o [n+24 (1—B|b])]Ba]

|an| + ba| < 1. (15)
L L B

n=2
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Proof. Since C(F,b,A) C Cy(F,b,A,3), we only need to prove the “only if”
part of this theorem. Let f(z) € Cgz(F,b,A, ), then

2(f*F)'(2) B
SR{Z’[(l—?L)erQL(f*F)(Z)]}21 B bl,
that, is that

EK{Z(J‘*F)’() (1-Bp)Z[(1=A)z+A(f*F)(z )]}
A=A z+A(f+F)(2)]

Blble— ¥ [1—A(1=BIb))|anAn — T [n+A(1—BIb]))buB,2"
2 9{ n=2 - °°n:] > 0 (16)
z— Y Aa A+ Y Ab,B,7"
n=1

n=.

By choosing the values of z on the positive real axis where 0 <z =r <1, we
have

Blbl= & [—l(l—ﬁ\bl)]anAnr"*l—n);[nJrl(l—ﬁlbD]annf”*l

= = > 0.
1— Y Aa,Apr1+ Y Ab,B,r"!

n=2 n=1
(17)
If the condition (15) does not hold, then the numerator in (17) is negative for
r — 1. This contradicts (17), then the proof of Theorem 2.2 is completed. [

Putting F(z) = % + (1%2) and A = 1 in Theorem 2.2, we obtain the fol-
lowing corollary:

Corollary 2.3. Let f = h+g, where h and g are given by (9). Then f(z) €
HS*(b,B) if and only if
- [n—1+Bb]] - [n+1-Bbl]
e a|+ ) by < 1.
L Lo
Also f is univalent sense-preserving and harmonic in U.
Remark 2.4. Corollary 2.3 corrects the result obtained by Janteng [4, Th. 2.1].

Putting b = (1 — ot)cospe ™ (|| < 5,0 < a < 1) and B = 1 in Theorem
2.2, we obtain the following corollary:

Corollary 2.5. Let f = h+g, where h and g are given by (9). Then f(z) €
Cy(F, o, @,A) if and only if

i[n l(l_(l_ )COS(P)”A" ‘

= (1—a)cosg fin

- [+ A (1—(1—a)cos)][B,|
HZ’ (I—a)cos@

b < 1. (18)
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Also f is univalent sense-preserving and harmonic in U.

Distortion bounds for the class C(F,b, A, B) are given in the following the-
orem.

Theorem 2.6. Let the function f(z) of the form (8) be in the class Cz(F,b,
A,B). Then for |z| = r < 1, we have

Bl (1A (1— o) 5
1< 1+ )+ (G e~ A= g )"

and

f @)= (1 =[bi])r

. B1b) LA BENB )
(P—lU—BWﬂAﬁ p—l@—ﬁ%MMﬂ””)' 20

The equalities in (19) and (20) are attained for the functions f(z) given by

o B1b) WA (- BB\
f“”‘“+“”+<pauﬁMMAa‘pAUﬁwnébof

and

- B B |b] [1+A(1-Bb)]B1, .
f(2)=(1—=b1)z— ({2_,1(1 —BIb)A2 [2—A(1—PB |b|)]A;bl> 2

Proof. Let f(z) € Cg(F,b,A,B). Then, we have

@ == ¥ ane'+ Y. B
n=2 n=1
SOHMWHiWWMMWSWWWHﬁiWMMm
- r B b |
= (b e p Al
o (oA -BEDA A BB, N
2%< B1b) an] B1b] '“0
< (141|bi])r+ Blbl

220 Blo)lAal
= (- A(L—BDIIA, [+ A (1B b)]IB
'Z< B1b] an] B1b] '“O#

n=2
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B1b) (2 0-BEDIBI )

BA(i—p b))l <1 B1b) 'b1'>
BIb) LA (1— B b])]|By)

- (”“’1‘)”<[2—A<1—Brb|>1|Az|‘[2—A<1—ﬁ|b\>]|Az| "’1'>r2‘

IN

(14|b1]) r+

Similarly, since

oo

[f@| = (1= bi]) |zl = Y (lan| +16a]) [2]", 2D
n=2
we can prove (20). Thus the proof of Theorem 2.6 is completed. O

Puttingb=1—y(0<y< 1), B =1 and replacing A,,,B, by C, (n > 1) in
Theorem 2.6, we obtain the following corollary:

Corollary 2.7. Let the function f(z) of the form (8) be in the class Ty(F;A,7).
Then for |z| = r < 1, we have
-y (1+yA)[C

< nhr+ (Gl - e nl) P e

and

l—y (14+74)|Ci]
@z -ty (T - G ) 2 )

The equalities in (22) and (23) are attained for the functions f(z) given by

f2)=(1+b)z+ ((2_1;;?)@ - E;fgj;gb]) 2

and

_ _ -y (I4+7A)Ci,
fle)={=b)z= <<2—m>cz - <2—m>cz”1)zz'

Remark 2.8. Corollary 2.7 corrects the result obtained by Murugusundara-
moorthy [5, Theorem 3.1].

Putting F(z) = 1%, + (%) and A = 1 in Theorem 2.6, we obtain the fol-
lowing corollary:

Corollary 2.9. Let the function f(z) of the form (8) be in the class HS*(b,j3).
Then for |z| = r < 1, we have

@ (L - BN e e
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and

@z -l (2 B b2 es)

The equalities in (24) and (25) are attained for the functions f(z) given by

Blsl  2-Blol \
T 1+B!blb1>z

f(z)—(1+b1)z+<

and

e (B 2=l
0= 000 (g~ g )

Remark 2.10. Corollary 2.9 corrects the result obtained by Janteng [4, Theorem
2.2].

Putting b = (1 — o) cos pe ¢ (|¢| < 3,0 < a < 1) and = | in Theorem
2.6, we obtain the following corollary:

Corollary 2.11. Let the function f(z) of the form (8) be in the class C(F,
@, 7). Then for |z| = r < 1, we have

1 144 (1— B
11 < W+ i+ (e — e 1) 7
(26)
and
1— 1+A(1— B
71 2 (1= onr = (e — A aemaa il)
(27)
The equalities in (26) and (27) are attained for the functions f(z) given by
_ 1- 142 (1—(1— )B
f(2) =(+b1)z+ ([2—2,(1(—(101);380((65(4))%2 - %2—1%1—%1 3233%5’9 )
and
_ 1—a) cos 1+A(1—(1— B
f@R)=(0-b)z- ([24(1(7(3);31&(;;)% - %2451 El Z?Eﬁiiﬁﬂféb )

The covering result for the class Ci(F,b, A, ) is given by the following
corollary.

Corollary 2.12. If f(z) € Cgz(F,b, A, B) then we have

. R-A(—BIb)]MAs|—Blbl _ [2-A(1—Blb]]/As|—[1+A(1-Blb]IB]
{W' Wl < S aipmnia) Py e e— ’} Cf((zé)
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Proof. From (20) and letting r — 1, we have

. By LA (- BB BY
(=) (P—AU—BMNMﬂ D—lﬂ—ﬁMMMﬂw”>
1
(=B R2—A (1— B b)) Aol — (B 16l [1+4 (1 — BIb] IBibi ]}
B A (1= B b)IAs

:{p—xu—ﬁwMMﬂ—ﬁw
220 B b)) A
22 (1~ B}l — [1+ 2 (1— B )] |5
- 2= A= Bl s lw”}cf“”

O

Our next theorem is on the extreme points of convex hulls of Cz(F,b,A,f)
denoted by clco Cg(F,b,A,B).
Theorem 2.13. Let f(z) be given by (8). Then f € Cy(F,b,A,B) if and only if
fz)= Z (Xnhn(2) + Ygn(2)), where

n=1

M) =2 ) =2 e (=230, @)
and
8n(2) Z+[n—|—/’L(1B—’b[|3\b])]Bn "(n=1,2,...)
(XnZO;YnZO; y (X, +Y,) = 1)- (30)
Proof. Let h

Z X hy +Yngn

B 2 Blb y
B PR Ok M ey v WG

B 1|

D (e T atd
- B b - B b y
S D ey B 173 WG DY w1 RGN
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From (15) we have

A (L= BB, & [t A (1= Bb]][B]
B1b) al+ X, B1b) i
= [n— A (1 - B|B)] |4 B b

-4 Blb A= BN

L B AOBIoDIIB B b
S BB rAU-BRIE

n=2 n:l

agki

Y,

—_

then f € Cx(F,b, A, ).
Conversely, if f € Cz(F,b,A,[), then

=AU =BEDIA
X, = BT lan| (n=2,3,...) (32)

and
[n+A (1—Bb])]|B|
B 1b|

Y, = ba| (n=1,2,...), (33)

where E (X, +7Y,) =1. Then
1

f(z):h(z)+@=z—2|an|z +Z|b 2"

n=2
e Bl - Bl
= L s —pliA Yt Y s A (- B b)IBs

Y7

I
A\
_I_
101
=
S
~
~—
|
&
2
+
agk
—~~
o
S
—~
~
h<

n=2 n=1

X 000 (2)+ i)

This completes the proof of Theorem 2.13. O

Now we wish to prove that the class Cz(F,b,A, ) is closed under convex
combinations.



A STUDY ON CERTAIN CLASS OF HARMONIC FUNCTIONS 181

Theorem 2.14. Let 0 < c¢; <1 fori=1,2,... and Z ¢; = 1. If the functions
i=1
fi(z) defined by

fi@)=z= Y lanild"+ Y |buil?" (z€U:i=1,2,3,...) (34)
n=2 n=1

are in the class Cg(F,b,A, ), then E ¢ifi(z) of the form
i=1

Y cifilz) =z, (Z ci |an,i|> +Y (Z Ci |bn,i|> 4 (35)
i=1 n=2 \i=1 n=1 \i=1

is in the class Ci(F,b, A, ).

Proof. Since fi(z) € Cy(F,b,A,B), it follows from Theorem 2.2 that

o [n—A (1= B[b])]|A,] P - [+ A (1—BB)]IBal,,
n;2 B bl ‘”"’Hn; B bl buil <1 (36)

foreveryi=1,2,3,... Hence

Z(lwwﬁgqmm> £ (etppin £ o)

n=2 n=1

q<§ ﬁWM”%J+EnH Mbwme

Il
n[v]g s

IN
I/\

By Theorem 2.2, it follows that ): ¢ifi(z) € Cz(F,b,A,B). This proves that the

i=1

class Ci(F,b,A,B) is closed under convex combinations. O

Theorem 2.15. If f € Cz(F,b,A,B). Then f is convex in the disc

(1—[b1]) B p] "
IZ<%${[MM—U+Aa—ﬁwmme} | *

Proof. Since f € Cy(F,b,A,B8) and 0 < r < 1, then r~! f(r,z) € Cyx(F,b,1,B)
and

oo oo

Z n’ (lan| + ‘bn‘)’”’%l = Z n(|ay|+ |bal) (nr"il)

n=2 n=2
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i [n—2A(1-BIb])] IAnl‘anH["ﬂ%(l—ﬁ!bl)] |B”|\b,,\ ]

<
I Blbl B bl
< 1- ‘bl‘ )
provided that
_ 1— by
n—1
nr'" < , (38)
[1+A(1=Bb)]IBi]
- b1
B bl
which mean that
1
1— =t
,Smin{ (1 [ba]) B b } |
n=2 | n[B bl —[1+A (1=Bb)][Bib:]]
Thus the proof of the Theorem is completed. O

Remark 2.16. (i) Putting F(z) = 1%; + (1%;) in the above results, we obtain
the corresponding results for the class Ci (b, A, ).
(ii) Putting b = (1 — a)cos e ? (0 < o < 1,|¢| < §) and B = 1 in the above

results, we obtain the correspondmg results for the class Cg(F,a, ¢,1);
(iii) Putting F(z) =z — Z o, (0n)z" + Z o, (a)7" , where o, (o) is given

by (10) in the above results we obtain the corresponding results for the class
CH(al’b72‘>ﬁ)’

(iv) Putting F(z) =z — Z (o) + Z L,(ap)z" , where T'y(a) is given
n—=
by (11) in the above results, we obtain the corresponding results for the class

CHq,s(alabalaﬁ)'
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