PRESERVING PROPERTIES OF SUBORDINATION AND SUPERORDINATION OF ANALYTIC FUNCTIONS INVOLVING THE WRIGHT GENERALIZED HYPERGEOMETRIC FUNCTION

JAMAL M. SHENAN

In this paper, we obtain some subordination and superordination preserving results of analytic functions associated with the Wright generalized hypergeometric function. Sandwich-type result involving this operator is also derived.

1. Introduction

Let $H(U)$ be the class of functions analytic in $U = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \}$ and $H[a,k]$ be the subclass of $H(U)$ consisting of functions of the form $f(z) = a + a_k z^k + a_{k+1} z^{k+1} + \ldots$, with $H_0 \equiv H[0,1]$ and $H \equiv H[1,1]$.

Let A_p denote the class of functions of the form

$$ f(z) = z^p + \sum_{k=1}^{\infty} a_{k+p} z^{k+p} \quad (p, \in \mathbb{N} = \{1,2,3,\ldots\}; z \in U), \quad (1) $$

which are analytic in the open unit disk U.

Let f and F be members of $H(U)$, the function $f(z)$ is said to be subordinate to $F(z)$, or $F(z)$ is said to be superordinate to $f(z)$, if there exists a function $w(z)$.

Entrato in redazione: 6 dicembre 2012

AMS 2010 Subject Classification: 30C45.

Keywords: Analytic function, Multivalent function, Wright generalized hypergeometric function, Subordination, Superordination.
analytic in U with $w(0) = 0$ and $|w(z)| < 1 (z \in U)$, such that $f(z) = F(w(z))$. In such a case we write $f(z) \prec F(z)$. In particular, if F is univalent, then $f(z) \prec F(z)$ if and only if $f(0) = F(0)$ and $f(U) \subset F(U)$ (see [1,2]). Let $\Psi : C^2 \times U \to C$ and let h be univalent in U. If p is analytic in U and satisfies the first order differential subordination

$$\Psi\left(p(z), zp'(z); z\right) \prec h(z) (z \in U),$$

(2)

then p is called a solution of the differential subordination (2). The univalent function q is called a dominant solutions of the differential subordination (2) if $p \prec q$ for all p satisfying (2). A dominant \bar{q} that satisfies $\bar{q} \prec q$ for all dominants q of (2) is said to be the best dominant of (2). Similarly, let $\Phi : C^2 \times U \to C$ and let h be univalent in U. If p is analytic in U and satisfies the first order differential superordination

$$h(z) \prec \Phi\left(p(z), zp'(z); z\right) (z \in U),$$

(3)

then p is called a solution of the differential superordination (3). The univalent function q is called a subordinant solutions of the differential superordination (3) if $q \prec p$ for all p satisfying (3). A subordinant \bar{q} that satisfies $q \prec \bar{q}$ for all subordinant q of (3) is said to be the best subordinant. (see the monograph by Miller and Mocanu [11], and [12]). Let $\alpha_1, A_1, ..., \alpha_l, A_l$ and $\beta_1, B_1, ..., \beta_m, B_m$ ($l, m \in \mathbb{N} = \{1, 2, ...\}$) be positive real parameters such that

$$1 + \sum_{k=1}^{m} B_k - \sum_{k=1}^{l} A_k > 0.$$

(4)

The Wright generalized hypergeometric function (see [14], [15] and [16])

$$I_{\Psi} m\left[\left(\alpha_1, A_1, ..., \alpha_l, A_l\right); \left(\beta_1, B_1, ..., \beta_m, B_m\right); z\right] = L_{\Psi} m\left[\left(\alpha_n, A_n\right)_{1,l}; \left(\beta_n, B_n\right)_{1,m}; z\right]$$

is defined by

$$I_{\Psi} m\left[\left(\alpha_n, A_n\right)_{1,l}; \left(\beta_n, B_n\right)_{1,m}; z\right] = \sum_{k=0}^{\infty} \left\{ \prod_{n=1}^{l} \Gamma(\alpha_n + kA_n) \right\} \left\{ \prod_{n=1}^{m} \Gamma(\beta_n + kB_n) \right\}^{-1} \frac{z^k}{k!} (z \in U).$$

(5)

If $A_n = 1$, $(n = 1, \ldots, l)$, $B_n = 1$, $(n = 1, \ldots, m)$, we have

$$\Omega I_{\Psi} m\left[\left(\alpha_n, 1\right)_{1,l}; \left(\beta_n, 1\right)_{1,m}; z\right] = I_{F} m\left(\alpha_1, ... \alpha_l, \beta_1, ... \beta_m, z\right),$$

(6)

which is the generalized hypergeometric function where

$$\Omega = \left(\prod_{n=1}^{l} \Gamma(\alpha_n) \right)^{-1} \left(\prod_{n=1}^{m} \Gamma(\beta_n) \right).$$

(7)
Using the Wright hypergeometric function, Dziok and Raina ([7] and [8]) introduced the linear operator

\[\theta^l_m \left[(\alpha_n, A_n)_{1,l}; (\beta_n, B_n)_{1,m} \right] : A_p \to A_p, \]

which is defined by the following convolution

\[\theta^l_m \left[(\alpha_n, A_n)_{1,l}; (\beta_n, B_n)_{1,m} \right] f(z) = \phi^l_m \left[(\alpha_n, A_n)_{1,l}; (\beta_n, B_n)_{1,m} \right] * f(z), \quad (8) \]

where

\[\phi^l_m \left[(\alpha_n, A_n)_{1,l}; (\beta_n, B_n)_{1,m} \right] = \Omega(z^p)_m [\Omega(z^p)_m \left[(\alpha_n, A_n)_{1,l}; (\beta_n, B_n)_{1,m} ; z \right] * f(z)] \]

\[\text{If } f(z) \in A_p \text{ is given by equation (1), then we have} \]

\[\theta^l_m \left[(\alpha_n, A_n)_{1,l}; (\beta_n, B_n)_{1,m} \right] f(z) = z^p + \sum_{k=1}^{\infty} \sigma(k) a_k z^{k+p}, \quad (10) \]

where

\[\sigma(k) = \Omega \prod_{n=1}^{l} \Gamma(\alpha_n + k A_n) \prod_{n=1}^{m} \Gamma(\beta_n + k B_n) k!. \quad (11) \]

In order to make the notation simple, we write

\[\theta^l_m \left[(\alpha_n, A_n)_{1,l}; (\beta_n, B_n)_{1,m} \right] = \theta^l_m \left[\alpha_1, A_1, B_1 \right]. \quad (12) \]

It is easily verified from (9) that

\[z \left(\theta^l_m \left[\alpha_1, A_1, B_1 \right] f(z) \right)' = \frac{\alpha_1}{A_1} \theta^l_m \left[\alpha_1 + 1, A_1, B_1 \right] f(z) - \left(\frac{\alpha_1}{A_1} - p \right) \theta^l_m \left[\alpha_1, A_1, B_1 \right] f(z) \quad (A_1 > 0). \quad (13) \]

Not that for \(A_n = 1, (n = 1, \ldots, l), B_n = 1, (n = 1, \ldots, m), \) we have

\[\theta^l_m \left[\alpha_1, 1, 1 \right] = H^l_m \left[\alpha_1 \right], \quad (14) \]

where \(H^l_m \left[\alpha_1 \right] \) is the Dziok–Srivastava operator [5].

It is well known [6] that

\[z \left[H^l_m \left[\alpha_1 \right] f(z) \right]' = \alpha_1 H^l_m \left[\alpha_1 + 1 \right] f(z) - (\alpha_1 - p) \alpha_1 H^l_m \left[\alpha_1 \right] f(z), \quad (15) \]

where \(H^l_m \left[\alpha_1 \right] f(z) = H^l_m \left(\alpha_1, \ldots, \alpha_i; \beta_1, \ldots, \beta_m \right) f(z). \)

To prove our results, we need the following definitions and lemmas.
Definition 1.1. ([11]) Denote by Q the set of all functions $q(z)$ that are analytic and injective on $\bar{U}/E(q)$ where

$$E(q) = \{ \zeta \in \partial U : \lim_{z \to \zeta} q(z) = \infty \},$$

and are such that $q'(\zeta) \neq 0$ for $\zeta \in \partial U/E(q)$. Further, let the subclass of Q for which $q(0) = a$ be denoted by $Q(a), Q(0) \equiv Q_0$ and $Q(1) \equiv Q_1$.

Definition 1.2. ([12]) A function $L(z,t) (z \in U, t \geq 0)$ is said to be a subordination chain if $L(0,t)$ is analytic and univalent in $z \in U$ for all $t \geq 0$, $L(z,0)$ is continuously differentiable on $[0;1]$ for all $z \in U$ and $L(z,t_1) \prec L(z,t_2)$ for all $0 \leq t_1 \leq t_2$.

Lemma 1.3. ([13]) The function $L(z,t) : U \times [0;1] \to \mathbb{C}$ of the form

$$L(z,t) = a_1(t)z + a_2(t)z^2 + \ldots \quad (a_1(t) \neq 0; t \geq 0),$$

and $\lim_{t \to \infty} |a_1(t)| = \infty$ is a subordination chain if and only if

$$\Re \left\{ \frac{z \partial L(z,t)}{\partial t} \right\} > 0 \quad (z \in U, t \geq 0).$$

Lemma 1.4. ([9]) Suppose that the function $H : \mathbb{C}^2 \to \mathbb{C}$ satisfies the condition

$$\Re \{ H(is,t) \} \leq 0$$

for all real s and for all $t \leq -n(1+s^2)/2, n \in \mathbb{N}$. If the function $p(z) = 1 + a_nz^n + a_{n+1}z^{n+1} + \ldots$, is analytic in U and

$$\Re \{ H(p(z); zp'(z)) \} > 0 \quad (z \in U).$$

then $\Re \{ p(z) \} > 0$ for $z \in U$.

Lemma 1.5. ([10]) Let $k, \gamma \in \mathbb{C}$ with $k \neq 0$ and let $h \in H(U)$ with $H(0) = c$. If $\Re \{ kh(z) + \gamma \} > 0$ $(z \in U)$, then the solution of the following differential equation:

$$q(z) + \frac{zq'(z)}{kq(z)} = h(z)(z \in U; q(0) = c),$$

is analytic in U and satisfies $\Re \{ kh(z) + \gamma \} > 0$ for $z \in U$.

Lemma 1.6. ([11]) Let $p \in Q(a)$ and let $q(z) = a + a_nz^n + a_{n+1}z^{n+1} + \ldots$, be analytic in U with $q(z) \neq 0$ and $n \geq 1$. If q is not subordinate to p, the there exists two points $z_0 = r_0e^{i\theta} \in U$ and $\xi_0 \in \partial U/E(q)$ such that

$q(U_{r_0}) \subset p(U); q(z_0) = p(\xi_0)$ and $z_0p'(z_0) = m\xi_0p'(\xi_0) m \geq n$.
Lemma 1.7. ([12]) Let \(q \in H[a, 1] \) and \(\phi : \mathbb{C}^2 \rightarrow \mathbb{C} \) also \(\phi (q(z), tzq'(z)) = h(z) \). If \(L(z,t) = \phi (q(z), tzq'(z)) \) is a subordination chain and \(q \in H[a, 1] \cap \mathcal{Q}(a) \), then
\[
\h(z) \prec \phi (p(z), zp'(z)),
\]
implies that \(q(z) \prec p(z) \). Further, if \(\phi (q(z), tzq'(z)) = h(z) \) has a univalent solution \(q \in \mathcal{Q}(a) \), then \(q \) is the best subordination.

In the present paper, we aim to prove some subordination-preserving and superordination-preserving properties associated with the fractional differintegral operator \(\theta_p^{L,m} [\alpha_1, A_1, B_1] \). Sandwich-type result involving this operator is also derived. A similar problem for analytic functions was studied by Aouf and Seoudy [3] and [4].

2. Subordination, superordination and sandwich results involving the operator \(\theta_p^{L,m} [\alpha_1, A_1, B_1] \)

Theorem 2.1. Let \(f, g \in A_p \) and let
\[
\Re \left\{ 1 + \frac{z\phi''(z)}{\phi'(z)} \right\} > -\delta,
\]
where
\[
\phi(z) = \left(\frac{\theta_p^{l,m} [\alpha_1 + 1, A_1, B_1] g(z)}{\theta_p^{l,m} [\alpha_1, A_1, B_1] g(z)} \right) \left(\frac{\theta_p^{l,m} [\alpha_1, A_1, B_1] g(z)}{z^p} \right)^\mu \quad (\mu > 0; z \in U),
\]
where \(\alpha_1, A_1, \ldots, \alpha_l, A_l \) and \(\beta_1, B_1, \ldots, \beta_m, B_m \) \((l, m \in \mathbb{N} = \{1, 2, \ldots \})\) are positive real parameters such that \(1 + \sum_{k=1}^{m} B_k - \sum_{k=1}^{l} A_k > 0 \), and \(\delta \) is given by
\[
\delta = \frac{A_1^2 + \mu^2 \alpha_1^2 - A_1^2 - \mu^2 \alpha_1^2}{4\mu A_1 \alpha_1}.
\]

Then the subordination condition
\[
\left(\frac{\theta_p^{l,m} [\alpha_1 + 1, A_1, B_1] f(z)}{\theta_p^{l,m} [\alpha_1, A_1, B_1] f(z)} \right) \left(\frac{\theta_p^{l,m} [\alpha_1, A_1, B_1] f(z)}{z^p} \right)^\mu
\]
\[
\prec \left(\frac{\theta_p^{l,m} [\alpha_1 + 1, A_1, B_1] g(z)}{\theta_p^{l,m} [\alpha_1, A_1, B_1] g(z)} \right) \left(\frac{\theta_p^{l,m} [\alpha_1, A_1, B_1] g(z)}{z^p} \right)^\mu
\]
implies that
\[
\left(\frac{\theta^{l,m}_{p}[\alpha_1,A_1,B_1]f(z)}{z^p} \right)^{\mu} < \left(\frac{\theta^{l,m}_{p}[\alpha_1,A_1,B_1]g(z)}{z^p} \right)^{\mu},
\]
and the function \(\left(\frac{\theta^{l,m}_{p}[\alpha_1,A_1,B_1]g(z)}{z^p} \right)^{\mu} \) is the best dominant.

Proof. Let us define the functions \(F(z) \) and \(G(z) \) in \(U \) by
\[
F(z) = \left(\frac{\theta^{l,m}_{p}[\alpha_1,A_1,B_1]f(z)}{z^p} \right)^{\mu} \quad \text{and} \quad G(z) = \left(\frac{\theta^{l,m}_{p}[\alpha_1,A_1,B_1]g(z)}{z^p} \right)^{\mu}\]
(19)
we assume here, without loss of generality, that \(G(z) \) is analytic and univalent on \(U \) and
\[
G'(\zeta) \neq 0 \quad (|\zeta| = 1).
\]
If not, then we replace \(F(z) \) and \(G(z) \) by \(F(\rho z) \) and \(G(\rho z) \), respectively, with \(0 < \rho < 1 \). These new functions have the desired properties on \(\bar{U} \), and we can use them in the proof of our result. Therefore, the results would follow by letting \(\rho \to 1 \). We first show that, if
\[
q(z) = 1 + \frac{zG''(z)}{G'(z)} \quad (z \in U),
\]
(20)
then
\[
\Re \{ q(z) \} > 0 \quad (z \in U).
\]
From (11) and the definition of the functions \(G, \phi \), we obtain that
\[
\phi(z) = G(z) + \frac{A_1zG'(z)}{\mu \alpha_1}.
\]
(21)
Differentiating both side of (21) with respect to \(z \) yields
\[
\phi''(z) = \left(1 + \frac{A_1}{\mu \alpha_1} \right) G'(z) + \frac{A_1zG'(z)}{\mu \alpha_1}.
\]
(22)
Combining (20) and (22), we easily get
\[
1 + \frac{z\phi''(z)}{\phi'(z)} = q(z) + \frac{A_1zq'(z)}{q(z) + \mu \alpha_1} = h(z) \quad (z \in U).
\]
(23)
It follows from (16) and (23) that
\[\Re \left\{ h(z) + \frac{A_1 \alpha_1}{A} \right\} > 0 \quad (z \in U). \]

(24)

Moreover, by using Lemma 1.5, we conclude that the differential equation (23) has a solution \(q(z) \in H(U) \) with \(h(0) = q(0) = 1 \). Let

\[H(u, v) = u + \frac{A_1 v}{A_1 u + \mu \alpha_1} + \delta, \]

where \(\delta \) is given by (18). From (23) and (24), we obtain
\[\Re \{ H(q(z); zq'(z)) \} > 0 \quad (z \in U). \]

To verify the condition that \(\Re \{ H(is; t) \} \leq 0 \quad (t \leq -(1+s^2)/2; s \in \mathbb{R}) \),

(25)

we proceed it as follows:
\[\Re \{ H(is; t) \} = \Re \left\{ is + \frac{A_1 t}{A_1 is + \mu \alpha_1} + \delta \right\} = \frac{A_1 \alpha_1 t \mu}{A_1^2 s^2 + \mu^2 \alpha_1^2} + \delta \]
\[\leq -\frac{A_1^2 \psi_p(\alpha_1, \mu, A_1, s)}{2 [A_1^2 s^2 + \mu^2 \alpha_1^2]}, \]

where
\[\psi_p(\alpha_1, \mu, A_1, s) = \left[\frac{\mu \alpha_1}{A_1} - 2\delta \right] s^2 - 2\delta \frac{\mu^2 \alpha_1^2}{A_1^2} + \frac{\mu \alpha_1}{A_1}. \]

(26)

For \(\delta \) given by (18), we note that the expression \(\psi_p(\alpha_1, \mu, A_1, s) \) in (26) is a positive, which implies that (25) holds. Thus, by using Lemma 1.4, we conclude that
\[\Re \{ q(z) \} > 0 \quad (z \in U). \]

By the definition of \(q(z) \), we know that \(G \) is convex. To prove \(F \prec G \), let the function \(L(z, t) \) be defined by
\[L(z, t) = G(z) + \frac{(1+t)A_1 z G'(z)}{\mu \alpha_1} \quad (0 \leq t < \infty; z \in U). \]

(27)

Since \(G \) is convex, then
\[\frac{\partial L(z, t)}{\partial z} \bigg|_{z=0} = G'(0) \left(1 + \frac{A_1(1+t)}{\mu \alpha_1} \right) \neq 0 \quad (0 \leq t < \infty; z \in U). \]
Therefore, by using Lemma 1.3, we deduce that \(L(z, t) \) is a subordination chain. It follows from the definition of subordination chain that

\[
\phi(z) = G(z) + \frac{A_1 z G'(z)}{\mu \alpha_1} = L(z, 0),
\]

and

\[
L(z, 0) \prec L(z, t) \quad (0 \leq t < \infty),
\]

which implies

\[
L(\zeta, t) \notin L(U, 0) \quad (0 \leq t < \infty; \zeta \in \partial U),
\]

(28)

If \(F \) is not subordinate to \(G \), by using Lemma 1.6, we know that there exist two points \(z_0 \in U \) and \(\zeta_0 \in \partial U \) such that

\[
F(z_0) = G(\zeta_0) \quad \text{and} \quad z_0 F'(z_0) = (1 + t) \zeta_0 p(\zeta_0) \quad (0 \leq t < \infty).
\]

(29)

Hence, by virtue of (11) and (29), we have

\[
L(\zeta_0, t) = G(\zeta_0) + \frac{(1 + t) A_1 z G'(\zeta_0)}{\mu \alpha_1} \quad = F(z_0) + \frac{A_1 z_0 F'(z_0)}{\mu \alpha_1}
\]

\[
= \left(\frac{\theta_p^{l,m} [\alpha_1 + 1, A_1, B_1] f(z_0)}{\theta_p^{l,m} [\alpha_1, A_1, B_1] f(z_0)} \right) \mu \phi(U).
\]

This contradicts to (28). Thus, we deduce that \(F \prec G \). Considering \(F = G \), we see that the function \(G \) is the best dominant.

By taking \(A_n = 1 \), \((n = 1, \ldots, l) \) and \(B_n = 1 \), \((n = 1, \ldots, m) \), in Theorem 2.1 and using the relation (14) we get the following corollary

Corollary 2.2. Let \(f, g \in A_p \) and let

\[
\Re \left\{ 1 + \frac{z \phi''(z)}{\phi'(z)} \right\} > -\delta,
\]

(30)

where

\[
\phi(z) = \left(\frac{H_p^{l,m} [\alpha_1 + 1] g(z)}{H_p^{l,m} [\alpha_1] g(z)} \right) \left(\frac{H_p^{l,m} [\alpha_1] g(z)}{z^p} \right) (\mu > 0; z \in U),
\]

(31)
where \(\alpha_1, \ldots, \alpha_l \) and \(\beta_1, \ldots, \beta_m \) are positive real parameters and \(\delta \) is given by
\[
\delta = \frac{1 + \mu^2 \alpha_1^2 - |1 - \mu^2 \alpha_1^2|}{4 \mu \alpha_1}.
\] (32)

Then the subordination condition
\[
\left(\frac{H_p^{l,m}[\alpha_1 + 1] f(z)}{H_p^{l,m}[\alpha_1] f(z)} \right)^\mu \prec \left(\frac{H_p^{l,m}[\alpha_1 + 1] g(z)}{H_p^{l,m}[\alpha_1] g(z)} \right)^\mu,
\]
implies that
\[
\left(\frac{H_p^{l,m}[\alpha_1] f(z)}{z^\mu} \right) \prec \left(\frac{H_p^{l,m}[\alpha_1] g(z)}{z^\mu} \right),
\]
and the function \(\left(\frac{H_p^{l,m}[\alpha_1] g(z)}{z^\mu} \right)^\mu \) is the best dominant.

We now derive the following superordination result.

Theorem 2.3. Let \(f, g \in A_p \) and let
\[
\mathcal{R} \left\{ 1 + \frac{z \phi''(z)}{\phi'(z)} \right\} > -\delta,
\] (33)
where
\[
\phi(z) = \left(\frac{\theta_p^{l,m}[\alpha_1 + 1, A_1, B_1] g(z)}{\theta_p^{l,m}[\alpha_1, A_1, B_1] g(z)} \right)^\mu \left(\frac{\theta_p^{l,m}[\alpha_1, A_1, B_1] g(z)}{z^\mu} \right) (\mu > 0; z \in U),
\] (34)
where \(\alpha_1, A_1, \ldots, \alpha_l, A_l \) and \(\beta_1, B_1, \ldots, \beta_m, B_m \) are positive real parameters such that \(1 + \sum_{k=1}^m B_k - \sum_{k=1}^l A_k > 0 \), and \(\delta \) is given by (18).

If the function
\[
\left(\frac{\theta_p^{l,m}[\alpha_1 + 1, A_1, B_1] f(z)}{\theta_p^{l,m}[\alpha_1, A_1, B_1] f(z)} \right)^\mu \left(\frac{\theta_p^{l,m}[\alpha_1, A_1, B_1] f(z)}{z^\mu} \right)
\]
is univalent in \(U \) and
\[
\left(\frac{\theta_p^{l,m}[\alpha_1 + 1, A_1, B_1] f(z)}{\theta_p^{l,m}[\alpha_1, A_1, B_1] f(z)} \right)^\mu \in Q,
\]
then the superordination condition
\[
\left(\frac{\theta_p^{l,m}[\alpha_1 + 1, A_1, B_1] f(z)}{\theta_p^{l,m}[\alpha_1, A_1, B_1] f(z)} \right)^\mu \prec \left(\frac{\theta_p^{l,m}[\alpha_1, A_1, B_1] f(z)}{z^\mu} \right)^\mu,
\]
implies that
\[
\left(\frac{\theta_p^{l,m}[\alpha_1 + 1, A_1, B_1] f(z)}{\theta_p^{l,m}[\alpha_1, A_1, B_1] f(z)} \right)^\mu \prec \left(\frac{\theta_p^{l,m}[\alpha_1, A_1, B_1] f(z)}{z^\mu} \right)^\mu,
\]
implies that
\[
\left(\frac{\theta_{p,l,m}^{l,m} [\alpha_1, A_1, B_1] g (z)}{z^p} \right)^\mu \prec \left(\frac{\theta_{p,l,m}^{l,m} [\alpha_1, A_1, B_1] f (z)}{z^p} \right)^\mu,
\]
and the function \(\left(\frac{\theta_{p,l,m}^{l,m} [\alpha_1, A_1, B_1] g (z)}{z^p} \right)^\mu \) is the best subordinant.

Proof. Suppose that the functions \(F, G \) and \(q \) are defined by (19) and (20), respectively. By applying the similar method as in the proof of Theorem 2.1, we get
\[
\Re \{ q(z) \} > 0 \ (z \in U).
\]
Next, to arrive at our desired result, we show that \(G \prec F \). For this, we suppose that the function \(L (z, t) \) be defined by (27).
Since \(G \) is convex, by applying a similar method as in Theorem 2.1, we deduce that \(L (z, t) \) is subordination chain. Therefore, by using Lemma 1.7, we conclude that \(G \prec F \). Moreover, since the differential equation
\[
\phi(z) = G(z) + \frac{A_1 z G'(z)}{\mu \alpha_1} = \phi \left(G(z), zG'(z) \right)
\]
has a univalent solution \(G \), it is the best subordinant. \(\square \)

By taking \(A_n = 1 \), \((n = 1, \ldots, l)\) and \(B_n = 1 \), \((n = 1, \ldots, m)\), in Theorem 2.3 and using the relation (14) we get the following corollary

Corollary 2.4. Let \(f, g \in \mathcal{A}_p \) and let
\[
\Re \left\{ 1 + \frac{z \phi''(z)}{\phi'(z)} \right\} > -\delta,
\]
where
\[
\phi(z) = \left(\frac{H_{l,m}^{l,m} [\alpha_1 + 1] g (z)}{H_{l,m}^{l,m} [\alpha_1] g (z)} \right) \left(\frac{H_{l,m}^{l,m} [\alpha_1] g (z)}{z^p} \right)^\mu (\mu > 0; z \in U),
\]
where \(\alpha_1, \ldots, \alpha_l \) and \(\beta_1, \ldots, \beta_m (l, m \in \mathbb{N} = \{1, 2, \ldots\}) \) are positive real parameters and \(\delta \) is given by (32).
If the function
\[
\left(\frac{H_{l,m}^{l,m} [\alpha_1 + 1] f (z)}{H_{l,m}^{l,m} [\alpha_1] f (z)} \right) \left(\frac{H_{l,m}^{l,m} [\alpha_1] f (z)}{z^p} \right)^\mu
\]
is univalent in \(U \)
and \(\left(\frac{H_{l,m}^{l,m} [\alpha_1] f (z)}{z^p} \right)^\mu \in \mathcal{Q}, \) then the superordination condition
\[
\left(\frac{H_p^{1,m} [\alpha_1 + 1] g(z)}{H_p^{1,m} [\alpha_1] g(z)} \right) \left(\frac{H_p^{1,m} [\alpha_1] g(z)}{z^p} \right) \mu
\]

\[
\prec \left(\frac{H_p^{1,m} [\alpha_1 + 1] f(z)}{H_p^{1,m} [\alpha_1] f(z)} \right) \left(\frac{H_p^{1,m} [\alpha_1] f(z)}{z^p} \right) \mu
\]

implies that

\[
\left(\frac{H_p^{1,m} [\alpha_1] g(z)}{z^p} \right) \mu \prec \left(\frac{H_p^{1,m} [\alpha_1] f(z)}{z^p} \right) \mu,
\]

and the function \(\left(\frac{H_p^{1,m} [\alpha_1] g(z)}{z^p} \right) \mu \) is the best subordinant.

Combining Theorems 2.1 and 2.3, we obtain the following “sandwich-type result”.

Theorem 2.5. Let \(f, g_i \in A_p \ (j = 1, 2) \) and let

\[
\Re \left\{ 1 + \frac{z \phi_j'' (z)}{\phi_j (z)} \right\} > -\delta,
\]

where

\[
\phi_j(z) = \left(\frac{\theta_p^{1,m} [\alpha_1 + 1, A_1, B_1] g_j(z)}{\theta_p^{1,m} [\alpha_1, A_1, B_1] g_j(z)} \right) \cdot \left(\frac{\theta_p^{1,m} [\alpha_1, A_1, B_1] g_j(z)}{z^p} \right) \mu \ (\mu > 0; z \in U)
\]

where \(\alpha_1, \ldots, \alpha_i, \alpha_i \) and \(\beta_j, B_1, \ldots, B_m, B_m \ (L, m \in \mathbb{N} = \{1, 2, \ldots\}) \) are positive real parameters such that \(1 + \sum_{k=1}^m B_k - \sum_{k=1}^m A_k > 0 \), and \(\delta \) is given by (18).

If the function

\[
\left(\frac{\theta_p^{1,m} [\alpha_1 + 1, A_1, B_1] f(z)}{\theta_p^{1,m} [\alpha_1, A_1, B_1] f(z)} \right) \mu
\]

is univalent in \(U \) and

\[
\left(\frac{\theta_p^{1,m} [\alpha_1, A_1, B_1] f(z)}{z^p} \right)^\mu \in Q,
\]

then the condition

\[
\left(\frac{\theta_p^{1,m} [\alpha_1 + 1, A_1, B_1] g_1(z)}{\theta_p^{1,m} [\alpha_1, A_1, B_1] g_1(z)} \right) \mu
\]

\[
\prec \left(\frac{\theta_p^{1,m} [\alpha_1 + 1, A_1, B_1] f(z)}{\theta_p^{1,m} [\alpha_1, A_1, B_1] f(z)} \right) \mu
\]

implies that

\[
\left(\frac{\theta_p^{1,m} [\alpha_1, A_1, B_1] g_1(z)}{z^p} \right) \mu \prec \left(\frac{\theta_p^{1,m} [\alpha_1, A_1, B_1] f(z)}{z^p} \right) \mu.
\]
By taking \(A \) the best subordinant and the best dominant.

\[
\left(\frac{\theta_{p}^{l,m}[\alpha_{1} + 1, A_{1}, B_{1}] g_{2}(z)}{\theta_{p}^{l,m}[\alpha_{1}, A_{1}, B_{1}] g_{2}(z)} \right)^{\mu} \left(\frac{\theta_{p}^{l,m}[\alpha_{1}, A_{1}, B_{1}] g_{2}(z)}{z^{p}} \right) = 0,
\]

implies that

\[
\left(\frac{\theta_{p}^{l,m}[\alpha_{1}, A_{1}, B_{1}] g_{1}(z)}{z^{p}} \right)^{\mu} \left(\frac{\theta_{p}^{l,m}[\alpha_{1}, A_{1}, B_{1}] f(z)}{z^{p}} \right) = \left(\frac{\theta_{p}^{l,m}[\alpha_{1}, A_{1}, B_{1}] g_{1}(z)}{z^{p}} \right)^{\mu},
\]

and the function \(\left(\frac{\theta_{p}^{l,m}[\alpha_{1}, A_{1}, B_{1}] g_{1}(z)}{z^{p}} \right)^{\mu} \) and \(\left(\frac{\theta_{p}^{l,m}[\alpha_{1}, A_{1}, B_{1}] g_{2}(z)}{z^{p}} \right)^{\mu} \) are, respectively, the best subordinant and the best dominant.

By taking \(A_{n} = 1, (n = 1, \ldots, l) \) and \(B_{n} = 1, (n = 1, \ldots, m), \) in Theorem 2.5 and using the relation (14) we get the following corollary

Corollary 2.6. Let \(f, g_{j} \in A_{p} \ (j = 1, 2) \) and let

\[
\Re \left\{ 1 + \frac{z \phi_{j}''(z)}{\phi_{j}'(z)} \right\} > -\delta, \quad (39)
\]

where

\[
\phi_{j}(z) = \left(\frac{H_{p}^{l,m}[\alpha_{1} + 1] g_{j}(z)}{H_{p}^{l,m}[\alpha_{1}] g_{j}(z)} \right)^{\mu} \left(\frac{H_{p}^{l,m}[\alpha_{1}] g_{j}(z)}{z^{p}} \right) \ (\mu > 0; z \in U) \quad (40)
\]

where \(\alpha_{1}, \ldots, \alpha_{l} \) and \(\beta_{1}, \ldots, \beta_{m} (l, m \in \mathbb{N} = \{1, 2, \ldots\}) \) are positive real parameters and \(\delta \) is given by (32). If the function \(\left(\frac{H_{p}^{l,m} g_{1}(z)}{H_{p}^{l,m} f(z)} \right)^{\mu} \) is univalent in \(U \) and \(\left(\frac{H_{p}^{l,m} g_{1}(z)}{z^{p}} \right)^{\mu} \) is a part of the relation (39).
implies that
\[
\left(\frac{H_{p}^{l,m}[\alpha_{1}]g_{1}(z)}{z^{p}} \right)^{\mu} \prec \left(\frac{H_{p}^{l,m}[\alpha_{1}]f(z)}{z^{p}} \right)^{\mu} \prec \left(\frac{H_{p}^{l,m}[\alpha_{1}]g_{1}(z)}{z^{p}} \right)^{\mu},
\]
and the function \(\left(\frac{H_{p}^{l,m}[\alpha_{1}]g_{1}(z)}{z^{p}} \right)^{\mu} \) and \(\left(\frac{H_{p}^{l,m}[\alpha_{1}]g_{2}(z)}{z^{p}} \right)^{\mu} \) are, respectively, the best subordinant and the best dominant.

3. Acknowledgement
The author would like to express many thanks to the referee for his valuable suggestions.

REFERENCES

JAMAL M. SHENAN
Department of mathematics
Al Azhar University-Gaza
P. O. Box 1277, Gaza, Palestine.
e-mail: shenanjm@yahoo.com